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Abstract: Phosphonates are a class of organic phosphorus (P) compounds that contribute ~25% of
dissolved organic P. Recent studies reveal the important role of phosphonates mediated by prokary-
otes in the marine P redox cycle. However, its bioavailability by eukaryotic phytoplankton is under
debate. 2-Aminoethylphosphonic acid (2-AEP) and 2-amino-3-phosphonopropionic acid (2-AP3) are
two biogenic phosphonates in the marine environment. Here, Thalassiosira pseudonana, a common
diatom species in the ocean, is able to recover growth from P starvation when provided with 2-AEP
and 2-AP3. Moreover, 2-AEP cultures exhibited a more similar growth rate at 12 ◦C than at 25 ◦C
when compared with inorganic P cultures. The cellular stoichiometry of 2-AEP groups was further
determined, the values of which are in-between the P-depleted and DIP-replete cultures. This study
provides evidence that biogenic phosphonates could be adopted as alternative P sources to support
diatom growth and may provide physiological adaptation.
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1. Introduction

Phosphorus (P) is an essential nutrient for the growth of living organisms. Dissolved
inorganic P (DIP), the preferred form of P used by phytoplankton, is often a limiting
nutrient for phytoplankton in marine environments [1–3]. Thus, dissolved organic P (DOP)
has emerged as a prominent alternative P source [4,5].

Phosphonates are a class of organic P with a chemically stable C-P bond. Besides
synthetic compounds (e.g., herbicide glyphosate), biogenic phosphonates produced by
various organisms are present in the ocean [6,7]. Two biogenic phosphonate compounds,
2-aminoethylphosphonate (2-AEP) and its derivative, 2-amino-3-phosphonopropionic acid
(2-AP3), are the composition of membrane phospholipids in many organisms, such as
prokaryotes and mollusks [8,9]. A recent study shows that Prochlorococcus likely allocates
over 40% of cellular P towards phosphonate production in the ocean [10]. Genome surveys
suggest that de novo synthesis of 2-AEP is performed in corals [11]. Therefore, exploring the
bioavailability of biogenic phosphonates by phytoplankton has considerable importance.

Compared with the well-elucidated metabolism of phosphonates in prokaryotes [12–14],
discrepancies were found in a few studies of eukaryotic phytoplankton [15,16]. Picoprasino-
phyte Micromonas commode and coccolithophore Emiliania huxleyi are able to utilize 2-AEP,
whereas diatom Phaeodactylum tricornutum failed [17]. However, our recent study showed
that P-starvation-treated P. tricornutum can recover growth with a 2-AEP supplement, and
the utilization is mediated by endocytosis and integration into membrane phospholipids
(DAG-2-AEP, diacylglyceryl-2-AEP) [16]. Furthermore, an in silico analysis of the global
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meta-omic atlas suggests that the associated utilization functional genes are prevalent in
diatom assemblages and actively expressed in the cold regions [16].

On these grounds, a hypothesis that the cosmopolitan diatom Thalassiosira pseudo-
nana [18–20] is able to utilize biogenic phosphonates and the metabolic activity is temperature-
sensitive is proposed. Here, the bioavailability of 2-AEP and 2-AP3, which share similar
chemical structures and are components of membrane phospholipids, was investigated [8,9].
Then, the physiological responses of algae grown with phosphonate supplements were
examined at different temperatures.

2. Materials and Methods
2.1. Cell Culture and Experiment Setup

T. pseudonana was provided by the Center for Collections of Marine Bacteria and
Phytoplankton of Xiamen University, China. Two batch experiments were conducted to
(batch 1) examine the bioavailability of 2-AEP and 2-AP3 (Sigma-Aldrich, St. Louis, MO,
USA) and (batch 2) explore the physiological response under the conditions of significant
temperature differences (Table 1). As documented in other studies, 12 ◦C and 25 ◦C
(comparable to those of 20 ◦C) represent the temperatures with the lowest growth rate
and the highest growth rate, respectively [21]. Before the experiments, seed cultures were
subject to P starvation for 8~10 days until the ambient phosphate concentration was below
~0.3 µM and the cell growth ceased. Antibiotics were applied to inhibit the growth of
bacteria (Table 1).

Table 1. Culture conditions (a, b: control groups in batch 1, b: control group in batch 2).

Culture T (◦C) P Nutrient
Concentration Culture Condition

Seed Starvation treated
8–10 days (<0.3 µM) • f/2 medium (salinity = 30)

• 14:10 light: dark cycle
• photon flux: 180 µmol m−2 s−1

• Antibiotics cocktail (final concentration in
medium: 100 mg L−1 ampicillin, 50 mg L−1

streptomycin, and 50 mg L−1 kanamycin)

−P a No addition
+P b DIP (36 µM)
Batch 1 20 2-AEP (36 µM)

2-AP3 (36, 72 µM)
Batch 2 12/25 2-AEP (72 µM)

2.2. Determination of Cell Density and Fv/Fm

Cell density was measured daily by using a CytoFLEX flow cytometer (Beckman
Coulter, Brea, CA, USA) and estimated by gating areas in the chlorophyll A versus SSC-
A dot plot generated from a 1 mL cell sample. Fv/Fm was determined using a FIRe
Fluorometer System (Satlantic, Halifax, NS, Canada). Prior to the measurement, 1 mL of
the cell sample was subject to dark adaption for 20 min and then processed following the
manufacturer’s protocol [22].

2.3. Cellular C and N Content

Cells were collected using pretreated GF/F membranes. The collected cells were dried
at 60 ◦C for 8 h. Then, 500 µL of 1% HCl was dripped onto the filters, and the filters were
dried at 60 ◦C for 12 h again. After the cells were pretreated [16], the cellular C and N
contents were determined using a Vario EL cube analyzer (Elementar Analysensysteme
GmbH, Langenselbold, Germany) in accordance with the reported method [23].

2.4. Determination of DIP and P Content

Cells were filtered onto GF/F membranes and resuspended in 25 mL of distilled water.
The suspension was digested by adding 4 mL of 50 g/L potassium persulfate and autoclav-
ing at 121 ◦C for 30 min [24]. Then, the cellular P content of the digested suspension and
the DIP concentration of the filtrate were determined using the molybdenum method [24].
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2.5. Statistical Analysis

Differences among different P and temperature treatment groups were measured with
t-tests.

3. Results and Discussion
3.1. Differential Growth-Promoting Effects between 2-AEP and 2-AP3

Different growth-promoting effects were observed in the batch 1 culture. After P
starvation, T. pseudonana was able to recover growth significantly in the medium supplied
with 2-AEP (36 µM) and 2-AP3 (72 µM), respectively (p < 0.05), while failing to grow in
the 2-AP3 supplement (36 µM, Figure 1a). The cells in the 2-AEP (36 µM) group continued
growth and peaked at the maximum cell concentration of 8.24 × 105 cells mL−1 at Day 3,
then declined gradually, and Fv/Fm exhibited a similar pattern accordingly (Figure 1a,b). In
comparison, we observe mild growth promotion in the 2-AP3 group. After the supplement
of 72 µM 2-AP3, instant cell growth was recovered in 24 h, showing a growth rate of
0.24 µ d−1, which is about half of that in the 2-AEP (36 µM) group (Figure 1a). After
then, cells ceased growth and declined towards the end of this experiment, accompanied
by an abrupt decline in Fv/Fm (Figure 1b). Maximum cell density observed on D2 was
6.26 × 105 cells mL−1, about half of that in the 2-AEP (36 µM) group.
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Figure 1. Physiological responses of T. pseudonana to different phosphorus levels ((a), growth curve;
(b), Fv/Fm) and temperatures ((c), growth curve; (d), Fv/Fm). The culture temperature was 20 ◦C
(a,b) and 12/25 ◦C (c,d). Each culture group was set up in biological triplicate. The error bar
represents the standard deviation of the mean values. The inner panel of (c) represents the growth
rate on D6 at 12 ◦C, and * represents a significant difference (p < 0.05) between P-depleted and
other groups.

DIP was barely detected (lower than the detection limit; ~0.3 mM) in the 2-AEP and
2-AP3 groups, demonstrating that 2-AEP and 2-AP3 can be utilized as an alternative P
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source by T. pseudonana. Though provided in the same or higher concentration, lower
cell density acquired in both phosphonate groups suggests limited utilization efficiency
compared with DIP, which is common according to previous reports [15,17]. Furthermore,
lower Fv/Fm indicates repressed photosynthesis, suggesting that T. pseudonana cells were
under P stress in both phosphonate groups.

2-AP3 is the derivative of 2-AEP, known as a component of phospholipids in cell mem-
branes. Studies have demonstrated that 2-AEP and its derivatives can be incorporated into
phospholipids in cell membranes [25–27]. 2-AP3 can be decomposed via a transamination
reaction and decarboxylation to 2-AEP in Tetrahymena [28]. Given the limited utilization
of 2-AP3 observed in the present study, the other possible metabolic pathways cannot be
completely excluded. The underlying mechanism of 2-AP3 utilization by T. pseudonana and
its potential bioavailability need to be further investigated to address the knowledge gap
in eukaryotic phytoplankton.

3.2. Different Growth Strategies under Variable P Nutrients and Temperatures

A recent study of the global ocean gene atlas shows an enriched distribution of
representative genes of the proposed 2-AEP utilization mechanism by diatoms in low-
temperature waters [16]. Therefore, the batch 2 experiment was conducted to further
explore the cellular physiological response grown with different P nutrients and tempera-
tures, in which 72 µM of 2-AEP was provided to obtain more significant differences for the
comparative analysis.

Different growth patterns that are temperature-dependent were observed (Figure 1c,d).
T. pseudonana cells exhibited sustained growth at 12 ◦C with higher cell density, and a short-
time rapid growth at 25 ◦C with lower cell density regardless of P condition. At 12 ◦C, the
cell density almost showed no change during the first 24 h and then increased steadily in
the 2-AEP and DIP groups until D6, sharing no difference in the first 4 days (Figure 1c).
When cultured at 25 ◦C, the cell density exhibited a rapid growth in the first 48 h and then
entered the stationary phase after D4 in the DIP group. The cells ceased growth after D3
in the 2-AEP group and then decreased significantly. Consistently, the growth rate of T.
pseudonana is higher under 8 ◦C~17 ◦C than that under 17 ◦C~25 ◦C with sufficient DIP
supply [29].

A significant difference was found in the promotion effect under different P conditions
(Figure 1c). In the DIP-replete groups, the final cell concentration at 12 ◦C was slightly
higher than at 25 ◦C. Meanwhile, in the 2-AEP groups, the final cell concentration in the
12 ◦C culture was about three times higher than that in the 25 ◦C culture. When cultured at
12 ◦C, the highest growth rate on D6 in the 2-AEP group was 0.152 ± 0.049 µ d−1, which is
66.4% of that in the DIP-replete group (0.228 ± 0.034 µ d−1, Figure 1c).

Variations of Fv/Fm showed a comparable pattern in accordance with the growth
curve (Figure 1d). The dramatic increase in Fv/Fm values in the first 24 h indicated that
instant recovery of photosynthetic capacity accounts for the rapid growth in both cultures
under 25 ◦C. After day 3, the Fv/Fm values declined continuously along with the cells
entering the stationary phase in 25 ◦C cultures. In contrast, the Fv/Fm values increased
steadily to meet sustained cell growth under 12 ◦C, and they were higher in the DIP-replete
group than in the 2-AEP group.

These results showed that T. pseudonana cells cultured with 2-AEP exhibited better
physiological adaptability under lower temperatures, resulting in significantly increased
cell density. Meanwhile, the Fv/Fm value represents a good consensus of higher photosyn-
thetic capacity and a higher growth rate.

3.3. Changes in Cellular Elemental Stoichiometry of T. pseudonana

Many studies have revealed that marine phytoplankton elemental stoichiometric ratios
deviate from the empirical Redfield ratio of 106C:16N:1P [30], thus playing a major role in
shaping the environmental stoichiometry ratio [31].
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3.3.1. Stoichiometry Variation under Different P Conditions

In this study, the N:P ratio of the DIP-replete group (~6:1) (Figure 2b) was far below
that of the Redfield ratio and the group-specific optimal value of 14:1 [32]. This finding can
be explained by the luxury uptake of DIP and storage in the form of polyP after P starvation,
which is typical in diatoms [33,34]. Regarding the initial P starvation state, the C:P and N:P
ratios were 117.72 ± 23.14 and 24.25 ± 7.94, respectively, consistent with reported cellular
stoichiometry in diatoms under insufficient nutrient conditions [35]. Afterwards, the C:P
and N:P ratios decreased significantly to 36.93 ± 3.96 and 5.63 ± 0.56, respectively, at D5 in
the DIP-replete group, whereas they barely changed or increased under other different P
conditions (Figure S2a).
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Figure 2. Cellular stoichiometry of T. pseudonana under different conditions. (-P, 2-AEP36, 2-AEP72,
2-AP336, and 2-AP372 represent P-depleted, 36 µM 2-AEP, 72 µM 2-AEP, 36 µM 2-AP3, and 72 µM
2-AP3 groups, respectively. D1 and D5 represent the first day and fifth day of the cultural period,
respectively). (a) C:P ratio; (b) N:P ratio. Each culture group was set up in biological triplicate. The
error bar represents the standard deviation of the mean values.

The stoichiometry of 2-AP3 groups (36 µM and 72 µM) was similar to that of the
P-depleted group (Figure 2), in line with the growth pattern. The P-depleted cells and those
treated with 2-AP3 were grouped together, showing higher C:P and N:P ratios, mainly
because of higher cellular C and N contents and lower cell P content than that in the
DIP-replete groups (Figure S3a).

3.3.2. Effect of Temperature on Cellular Stoichiometry

In the DIP-replete groups, no significant difference was identified between 12 ◦C and
25 ◦C (Figures 2 and S2b). In the 2-AEP group, the C:P and N:P ratios were lower than those
in P-depleted T. pseudonana and higher than those in the DIP-replete group. In the 72 µM
2-AEP cultures (12 ◦C and 25 ◦C), the C:P and N:P values were 111.2 ± 11.1~115.8 ± 12.1
and 13.9 ± 1.8~12.1 ± 0.6, respectively, closer to the Redfield ratio with higher 2-AEP
concentration and lower temperature.



Microorganisms 2024, 12, 761 6 of 9

The interactions between environmental conditions and cell growth are the key factors
driving stoichiometric variation [36]. Temperature is the major factor due to its direct effect
on cell growth [34,37]. Global research on phytoplankton stoichiometry has found that
C:P and N:P ratios decrease with temperature [37–39], but laboratory evidence regarding
species differences is insufficient. The findings of the present study show the synergetic
effect of temperature and phosphonates on cellular stoichiometry in T. pseudonana, higher
N:P ratios when cultured with 2-AEP under lower temperature. In the DIP-replete group,
the lower temperature significantly decreased the C:P and N:P ratios of T. pseudonana,
consistent with previous reports [37,40,41].

Cells increase ribosome concentration and cellular P content to compensate for low
translation efficiency of ribosomes at low temperature [42]. Such a hypothesis is consistent
with the observation of the strong temperature dependency of C:P and N:P in high-latitude
ecosystems [43]. In this study, the cellular P content of the DIP-replete groups was signif-
icantly higher at 12 ◦C than at 25 ◦C (Figure S3b), indicating that low temperature may
increase the P demand and promote the P absorption of T. pseudonana. In addition, tem-
perature had a significant effect on the C:P and N:P ratios in the DIP group. In the 2-AEP
group, temperature effects were barely observed on the stoichiometry of T. pseudonana. This
finding may be attributed to the stable chemical properties of 2-AEP, which is hard to be
hydrolyzed into phosphate during cellular P determination.

3.4. High Variability of Stoichiometry in Diatom

Nutrient availability is considered to be the major driver shaping phytoplankton
stoichiometry; for example, P limitation accounts for the increase in C:P and N:P ratios of
phytoplankton [44,45]. In this research, the C:P and N:P ratios of T. pseudonana declined
rapidly after 36 µM DIP supplementation. The C:P and N:P in this study were much lower
under the same or similar P conditions than those in other studies (Figure 3) [37,45–47]. In
agreement with the previous results, the C:P and N:P ratios of DIP-depleted T. pseudonana
were higher than the Redfield ratio [45,48,49]. According to the observation data from
ALOHA and BATS stations, the C:P ratio of suspended particles varies mostly from 100 to
200 and below the P-stressed threshold [50]. Our results show that T. pseudonana grown
with 2-AEP is close to the classical Redfield ratio.
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Figure 3. Comparison between the elemental stoichiometry of T. pseudonana in this study and
that in previous research. Normal represents the nutrients in adequate culture conditions, P-
replete represents DIP resupplied to the phosphorus-starvation cells, P-depleted represents the
phosphorus-starvation condition, and low P represents a very low phosphorus concentration in the
medium [37,45–49,51–53].
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The effects of other nutrients, such as N or Si, have been studied. N deficiency leads
to a decreased N:P ratio [48,51,52], and Si concentration has no significant effect on both
C:P and N:P ratios (Figure 3) [53]. Through summarizing and comparing with previous
reports, our study provides fundamental information for addressing temperature and P
nutrient effects on stoichiometry variation in T. pseudonana.

4. Conclusions

Overall, this study has three major findings. (1) Biogenic phosphonates 2-AEP and
2-AP3 can be utilized by diatom T. pseudonana to support cell growth, and 2-AEP is more
preferable than 2-AP3, as evidenced by higher cell density. (2) Disparate growth strategies
are identified under different temperatures, and the significantly promoted cell growth of
the 2-AEP culture under lower temperature than mild temperature indicates its adaptive
function. (3) The mediate value of C:P and N:P ratios in the 2-AEP groups between that in
P-depleted (2-AP3) and DIP-replete groups suggests the potential effect on environmental
elemental stoichiometry.

The results of this study provide new insights into interpreting the alternative P nu-
trient strategy adopted by diatoms in different scenarios. In sub-polar regions, diatoms
represent the major primary producers and may benefit from taking 2-AEP to support
growth. Another bold hypothetical scenario is in inorganic nutrient-scarce coral reef ecosys-
tems, where diatoms may obtain advantages by using biogenic phosphonates released by
metazoans [54], which require further study. The findings of stoichiometry variation of T.
pseudonana under different P and temperature conditions provide further understanding of
the diatom ecophysiology in marine biogeochemical cycling.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12040761/s1, Figure S1: Growth curve of P.
tricornutum under 2-AP3 treatment. Figure S2: Stoichiometry of T. pseudonana under different
phosphorus and temperature conditions. Figure S3: Variations of cellular C, N, and P of T. pseudonana
under different phosphorus and temperature conditions.
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the experiments. H.S. and X.L. analyzed the data. H.S., Y.S., J.M. and X.L. wrote the manuscript. All
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