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Abstract: Different bacterial species have dramatically different generation times, from 20–30 min
in Escherichia coli to about two weeks in Mycobacterium leprae. The translation machinery in a
cell needs to synthesize all proteins for a new cell in each generation. The three subprocesses of
translation, i.e., initiation, elongation, and termination, are expected to be under stronger selection
pressure to optimize in short-generation bacteria (SGB) such as Vibrio natriegens than in the long-
generation Mycobacterium leprae. The initiation efficiency depends on the start codon decoded by the
initiation tRNA, the optimal Shine–Dalgarno (SD) decoded by the anti-SD (aSD) sequence on small
subunit rRNA, and the secondary structure that may embed the initiation signals and prevent them
from being decoded. The elongation efficiency depends on the tRNA pool and codon usage. The
termination efficiency in bacteria depends mainly on the nature of the stop codon and the nucleotide
immediately downstream of the stop codon. By contrasting SGB with long-generation bacteria
(LGB), we predict (1) SGB to have more ribosome RNA operons to produce ribosomes, and more
tRNA genes for carrying amino acids to ribosomes, (2) SGB to have a higher percentage of genes
using AUG as the start codon and UAA as the stop codon than LGB, (3) SGB to exhibit better codon
and anticodon adaptation than LGB, and (4) SGB to have a weaker secondary structure near the
translation initiation signals than LGB. These differences between SGB and LGB should be more
pronounced in highly expressed genes than the rest of the genes. We present empirical evidence in
support of these predictions.

Keywords: Mycobacterium leprae; Mycobacterium tuberculosis; translation efficiency; translation initia-
tion; translation elongation; translation termination; RNA secondary structure; rrn operons; tRNA

1. Introduction

“The dream of a bacterium is to become two bacteria” [1], but the realization of this
dream is often delayed by the rate of biosynthesis, especially the rate of translation [2–9],
partly because most of the cellular dry weight is contributed by proteins. In well-studied
enterobacteria, proteins account for more than half of the cell dry mass [10,11]. In Escherichia
coli, the ratio of dry weight to wet weight is 0.2294 [12], and the ratio of protein weight
to wet weight is about 0.2 [13]. Thus, proteins contribute about 87% (=0.2/0.2294) of the
cellular dry biomass. It is not surprising that the growth rate of E. coli increases with the
rate of protein production [11]. One, therefore, would expect a strong selection to optimize
the translation machinery and mRNA features to increase translation efficiency.

1.1. Empirical Studies on Natural Selection for Optimizing Translation Efficiency

Efficient translation requires efficient initiation, elongation, and termination, as well
as mRNA stability, and limits the rate of biosynthesis in both bacteria [3,6,7,14,15] and
phages [5,16,17]. Translation initiation is often the limiting step [2,4,18–20]. Efficient
initiation in bacteria generally requires (1) AUG as a start codon, (2) a well-positioned
base-pairing between the Shine–Dalgarno (SD) sequence and the anti-SD (aSD) of the free
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3′ end of the small ribosomal rRNA [21–26], and (3) no strong secondary structure that
would embed the start codon or SD and consequently obscure it from being decoded by
initiation tRNA or aSD, respectively [27–29].

With efficient translation initiation, translation elongation becomes rate-limiting [7,14].
Codon–anticodon adaptation is invariably observed in rapidly replicating organisms [2,6,
30,31], especially in highly expressed genes [6,7,30–36]. The same pattern was also found in
phages [5,9,16,17,37]. Experimental replacement of minor codons by major codons or vice
versa typically leads to an increased or decreased translation rate in bacteria [7,38–42] and
viruses [43,44]. Eukaryotic viruses such as HIV-1 tend to have the codon usage of their early
and late genes adapted to their respective tRNA pools [45]. These results have led to the
explicit formulation of codon–anticodon coevolution and adaptation theory, e.g., [6,46–49],
and codon adaptation indices [7,50–52]. Although the relationship between codon usage
optimization and protein production was briefly challenged [3], the relationship was fully
reestablished by more detailed data analysis [7,14].

Translation termination in bacterial species is mediated by one or two release factors
RF1 (decoding UAA and UAG) and RF2 (decoding UAA and UGA). All three stop codons
can be misread by tRNAs in bacterial species [53,54]. The readthrough frequency is at least
10−3 to 10−2 for UGA in Salmonella typhimurium [55] and E. coli [56,57], and 1.1 × 10−4 to
7 × 10−3 for UAG, depending on the nature of the downstream nucleotides [54,58–60].
The readthrough rate is the lowest for UAA, at frequencies from 9 × 10−4 to less than
1 × 10−5 [54]. The readthrough error rate in the order of UGA > UAG > UAA has been
consistently observed in multiple studies [57,61–66]. Empirical evidence supports the
hypothesis that highly expressed genes prefer UAA stop codons [67].

Termination efficiency also depends on the nucleotide immediately downstream of the
stop codon [68–70], leading to the proposal of the tetranucleotide stop signal including the
+4 site [68,70–76]. Crosslinking was detected between RF2 and the +4 site in E. coli [77–79]
and translation termination efficiency changes when different nucleotides were placed at
the +4 site in E. coli [80]. In particular, the nucleotide usage bias at the +4 site is stronger in
highly expressed genes than in low-expressed genes [70,81]. The best-documented case
involves the translation of prfB mRNA (encoding RF2) in E. coli in which an inframe UGA
stop codon is followed by nucleotide C [82–84]. When RF2 is abundant, the inframe UGA
is decoded correctly to terminate translation, generating a short non-functional peptide.
When RF2 is rare, the inframe UGA is not decoded. A +1 frameshift leads to the translation
of GAC at a different coding frame, generating a functional RF2.

Almost all studies reviewed above focus on the optimization of mRNA but not on the
translation machinery, which consists mainly of ribosomes, translation initiation factors,
tRNAs, tRNA-charging enzymes, and release factors, as well as the energy that drives
the translation machinery ([9,85] pp. 522–635). Given that ribosomes represent parallel
translation machines, there are two lines of empirical evidence suggesting that short-
generation bacteria (SGB) should produce more ribosomal proteins, rRNA [86,87], and
tRNA [88] than LGB. First, the bacterial growth rate increases with the number of ribosomes
in the cell [89–92]. Second, the number of ribosomes increases with rRNA abundance [93].
More ribosomes imply a greater need for tRNAs [94]. There should be more rRNA operons
and tRNA genes in SGB than in LGB.

1.2. Two Approaches in Studying the Effect of Selection on Translation Optimization

The first approach to identifying the effect of selection on translation optimization is by
within-species comparisons, especially by contrasting highly expressed and low-expressed
genes (HEGs and LEGs) in rapidly replicating bacteria [5,8,9,33,49,67]. Because AUG
and UAA represent stronger start and stop signals, respectively, than their alternatives,
one would predict that HEGs should exhibit a stronger preference for AUG and UAA as
start and stop codons than LEGs [5,8,9,67]. Because a strong secondary structure embeds
translation signals such as a start codon, SD sequence, and stop codon, one would predict
that HEGs should have a weaker secondary structure in sequence flanking these translation
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signals than LEGs [95]. Because early genes and late genes are translated with dramatically
different tRNA pools, the two groups of genes should exhibit different codon optimization
degrees [45]. The studies reviewed above constitute empirical tests of such predictions
involving different groups of genes within individual species.

This paper focuses on differential selection for translation optimization among species.
Relatively few studies are available, partly because of the difficulty in identifying differen-
tial selection. Occasionally, codon usage itself was taken as a proxy for selection [86], which
is not a satisfactory approach. However, in at least four cases, such differential selection
was identified with little controversy. The first case involves mitochondrial tRNA and
protein-coding genes. Mitochondrial genomes of most multicellular eukaryotes encode
only a single tRNAMet/CAU (where Met is the amino acid methionine and CAU is the tRNA
anticodon for a Watson–Crick base-pairing with the Met codon AUG) to decode both Met
codons AUG and AUA (through wobble-pairing). In contrast, mitochondrial genomes
in some bivalve species and tunicate species encode an additional tRNAMet/UAU gene,
which can decode AUA codons without wobble-pairing. One can predict that AUA codons
should be used more frequently in mitochondrial protein-coding genes in those bivalve
and tunicate species, which is true [31,96,97].

The second case of identifiable differential selection involves stop codons and release
factors (RF1 decoding UAA and UAG, and RF2 decoding UAA and UGA) in bacteria [67].
If bacterial species X has more RF2 but less RF1 than species Y, then we would predict more
UGA usage in species X than in species Y. This predicted pattern has also been documented
in multiple bacterial species [67].

The third case involves phages differing in the presence of a lysogenic phase. Phage
genomes in a lysogenic phase generally are not under selection for translation efficiency
because the phage genome replicates by hitchhiking on the host genome. In contrast, phages
without a lysogenic phase will be more commonly selected for translation optimization.
This leads to the prediction that the former should exhibit stronger translation optimization
than the latter, which is consistent with the empirical evidence [5,16].

The fourth case involves a key component of the translation machinery, i.e., a small
subunit rRNA whose functions depend on stable secondary structures. Thermophiles are
expected to have longer and more GC-rich stems than mesophiles, and this prediction is
empirically supported [98]. The difference in growth temperature between thermophiles
and mesophiles also affects the proportion of SD-led genes [99].

1.3. Hypothesized Impact of Differential Selection on Translation among Bacterial Species

Bacterial species differ dramatically in generation time. Under optimal culture con-
ditions, the generation time is ~10 min in Vibrio natriegens [100,101], 16–20 min in Vib-
rio cholerae [102], 20–30 min in Escherichia coli [103], 30–70 min Bacillus subtilis [104],
103–107 min in Haemophilus influenzae [105], about 2 h in Mycobacterium smegmatis [106],
4–5 h in M. abscessus [107], 20–30 h in M. tuberculosis [15,108,109], and more than 7 days
in Mycobacterium leprae [15,110]. Such dramatic differences in generation time have been
dichotomized into r- and K-selection [111,112]. However, the evolutionary consequence of
such differential selection has rarely been explored at the molecular level.

Translation machinery that needs to complete the task of protein synthesis in 10 min,
as in the case of V. natriegens, should be under stronger selection for optimizing translation
than that completing the task in 7 days, as in the case of M. leprae. The fitness of some
parasitic bacteria is more related to survival against host attacks than to efficient translation.
For example, M. tuberculosis cells build their private niches essentially isolated from the
surrounding environment. This protective environment, while beneficial for the survival of
the pathogen, also makes it difficult for the pathogen to gain nutrients and oxygen. If protein
production is not the limiting factor in growth and reproduction, then one would not expect
strong selection optimizing the translation machinery. Thus, we predict that selection for
optimizing translation should leave much stronger signatures in rapidly replicating species
such as V. natriegens than in slowly replicating species such as M. tuberculosis and M. leprae.



Microorganisms 2024, 12, 768 4 of 25

2. Materials and Methods

We include nine bacterial species with completely sequenced genomes and a well-
documented generation time from the shortest to the longest among mesophiles under
optimal growth conditions (Table 1). Generation time has typically been quantified only in
model organisms (e.g., E. coli as a model species for Gram-negative bacteria and Bacillus
subtilis as a model species for Gram-positive bacteria) and very harmful pathogens, so
the sample of nine species is not representative of all bacteria. Also, the optimal growth
condition from an experimenter’s perspective may not be the true optimal, so the generation
time in Table 1 might be overestimated. However, the rank of the relative length of
generation time (Table 1) should be correct, and the subsequent analysis will mainly be
based on this rank. Our general prediction is that SGB should have more efficient protein-
production systems than long-generation bacteria (LGB).

Table 1. Nine species with complete genomes and well-documented generation times (GTs) under
optimal growth conditions.

Species Accession (1) OGT (2) GT (3) Rank (4) Ref. (5)

Vibrio natriegens NZ_CP009977, NZ_CP009978.1 37 ◦C 10 min. 1 [100,101]
Vibrio cholerae NZ_CP043554, NZ_CP043556.1 37 ◦C 16–20 min. 2 [102]
Escherichia coli NC_000913.3 37 ◦C 20–30 min. 3 [103]
Bacillus subtilis NC_000964.3 37 ◦C 30–70 min. 4 [104]
Haemophilus influenzae NZ_CP007470.1 37 ◦C 103–107 min. 5 [105]
Mycolicibacterium smegmatis NZ_CP054795.1 37 ◦C ~2 h 6 [106]
Mycobacterioides abscessus NZ_CP034181.1 36 ◦C 4–5 h 7 [107]
Mycobacterium tuberculosis NC_000962.3 37 ◦C 20–30 h 8 [15,108,109]
M. leprae NZ_CP029543.1 30 ◦C 7 days 9 [15,110]

(1) GenBank accession number. (2) Optimal growth temperature. (3) Generation time under optimal growth
conditions. (4) Ranking of generation time from smallest to largest. (5) References pertaining to the generation time.

The optimal growth temperature for the first eight species in Table 1 is about 37 ◦C (or
slightly lower). This is true not only for human pathogens and commensals but also for the
free-living B. subtilis and M. smegmatis. The optimal growth temperature is about 30 ◦C for
M. leprae when cultured with mouse foot pads [113] (as it has never been grown in vitro).
M. leprae exhibits reduced growth above 33 ◦C presumably because of the lack of a heat
shock response [106].

The RefSeq genomic sequences for the nine species were downloaded from GenBank
by using the accession numbers in Table 1. The software DAMBE 7.3.0 [114] was used
to extract coding sequences (CDSs), rRNA, and tRNA genes from the GenBank files. We
classified the bacterial host genes into two expression groups: (1) known highly expressed
protein-coding genes (HEGs) including small and large ribosomal protein genes, RNA
polymerases, and some other genes known to be highly expressed (Supplemental Table S1),
and (2) the rest of protein-coding genes not in the HEG group (REST). Pseudogenes were
excluded from all analyses.

The RNA secondary structure could embed important translation signals such as
the start codon, SD sequence, and stop codon and prevent them from being decoded
by the translation machinery. We measured secondary structural stability based on the
minimum folding energy (MFE) implemented in DAMBE [114], which uses the Vienna
RNA fold library [115] for secondary structural characterization. A sliding window of 40 nt
along the CDSs was used to characterize the change in MFE along the sequence. Codon
adaptation was measured by the index of translation efficiency (ITE), which generalizes
the conventional codon adaptation index (CAI) [50,51] to accommodate the background
mutation rate [7].

The base-pairing between the SD sequence on mRNA and the aSD sequence on small-
subunit (ssu) rRNA was hypothesized to position the start codon at the P-site to pair with
the initiation tRNA [5,9,116]. The distance between the end of the ssu rRNA and the start
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codon (DtoStart) is highly constrained in bacterial genes, especially highly expressed ones. A
narrow distribution of DtoStart values suggests a stronger selection in terms of the SD/aSD
pairing than a wide distribution. DAMBE [95] implements the calculation of DtoStart.

3. Results
3.1. Differential Investment in Translation Machinery

Ribosomes represent parallel protein-production factories and their abundance in E.
coli increases linearly with the growth rate [117,118]. Short-generation species may have
not only more efficient factories but also more factories than LGB. Each ribosome features a
set of 16S, 23S, and 5S rRNAs that are transcribed from the same operon and processed into
individual rRNAs [119]. E. coli has seven rRNA operons (rrnA to rrnE, rrnG, rrnH) with
promotors that are almost identical to the −10 and −35 consensus [120,121], suggesting
a high demand for rRNA molecules met by both efficient and parallel transcription of
multiple rRNA operons. The production of ribosomes in E. coli is limited by rRNA pro-
duction [122], which explains why E. coli maintains multiple rrn operons in its genome
for parallel transcription. A generalization of this would lead to the prediction that SGB
should have more rrn operons than LGB. This prediction should also apply to tRNA genes
because, with more ribosomes, more tRNA molecules are needed [123].

The two predictions are both supported by empirical evidence (Table 2), with the
number of rRNA and tRNA genes decreasing highly significantly with an increasing
generation time (p < 0.0001 for any rank-based nonparametric tests). The observation that
SGB maintain more rRNA and tRNA genes in their genomes than LGB is consistent with
the interpretation of stronger selection for translation efficiency in SGB than in LGB.

Table 2. Short generation times are associated with increased genomic investment in ribosomal RNA
and tRNA.

Species GT (1) LGenome
(2) NCDS

(3) Nrrn
(4) NtRNA

(5)

Vibrio natriegens 1 5,175,153 4496 11 129
Vibrio cholerae 2 4,089,299 3628 10 102
Escherichia coli 3 4,641,652 4298 7 86
Bacillus subtilis 4 4,215,606 4237 10 86

Haemophilus influenzae 5 1,846,259 1714 6 59
Mycolicibacterium smegmatis 6 6,993,871 6540 3 47

Mycobacterioides abscessus 7 5,067,231 4938 1 47
Mycobacterium tuberculosis 8 4,411,532 3905 1 45

Mycobacterium leprae 9 3,187,112 2328 1 45
(1) Ranking of generation times from the shorted to the longest. (2) Genome length. The two Vibrio species each
have two chromosomes. The genome length is the sum of the two chromosomes. (3) Number of protein-coding
genes. (4) Number of rrn operons in the genome. (5) Number of tRNA genes in the genome.

Note that an organism needs at least one rrn operon for translation. Ribosomal RNAs
form the core of ribosomes with all important sites such as A, P, and E sites, with ribosomal
proteins padding the surface of a ribosome [124]. Thus, the number of rrn operons cannot
be less than 1. Also, there should be a minimum set of tRNA genes to decode all 61 sense
codons. One might use the following two equations to model the numbers of rrn operons
and tRNA genes, respectively:

Nrrn = 1 + ae−bx (1)

NtRNA = c + ae−bx (2)

where x is RankGT in Table 2. Equation (1) ensures a minimum Nrrn of 1. Equation (2)
ensures a minimum NtRNA of c, which is estimated by the least-squares approach to be 30
(Figure 1B). The minimum number of tRNA genes required for decoding all sense codons in
a natural translation system is observed in a vertebrate mitochondrial genome that encodes
22 tRNA genes.
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3.2. Differential Preference for Start Codon AUG

Among the three canonical start codons (AUG, GUG, and UUG), the translation
initiation efficiency is consistently in the order of AUG > GUG > UUG [125,126]. HEGs
in bacteria and bacteriophages tend to prefer AUG as a start codon [5,9,18,125–127]. This
is true for all nine bacterial species in which the percentage of AUG (AUG%, Table 3) is
consistently higher in HEGs than those in the REST (Table 3), which includes all genes not in
the HEG group and consequently contains both highly expressed and low-expressed genes.
This suggests that AUG is the most efficient start codon, as is consistent with previous
empirical studies based on within-species comparisons [5,8,9].

Table 3. Start codon usage and percentage of AUG (AUG%) in highly expressed protein-coding genes
(HEGs) and the rest of the protein-coding genes (REST).

Species
HEGs REST

AUG GUG YUG (1) NHEG
(2) AUG% AUG GUG YUG (1) AUH (1) NREST

(2) AUG%

V. natriegens 71 3 2 76 93.42 3976 297 124 15 4412 90.12
V. cholerae 70 3 3 76 92.11 3166 253 131 18 3568 88.73

E. coli 69 3 1 73 94.52 3805 335 81 4 4225 90.06
B. subtilis 58 5 3 66 87.88 3225 382 555 9 4171 77.32

H. influenzae 68 1 1 70 97.14 1554 51 28 10 1643 94.58
M. smegmatis 54 18 0 72 75.00 4255 1998 187 26 6466 65.81
M. abscessus 53 14 1 68 77.94 3255 1458 145 14 4872 66.81

M. tuberculosis 49 13 0 62 79.03 2357 1306 177 4 3844 61.32
M. leprae 48 16 3 67 71.64 1162 782 276 43 2263 51.35

(1) YUG includes CUG and UUG; AUH includes AUA, AUC, and AUU. (2) NHEG: the number of highly expressed
genes; HREST: the number of all other genes not in the HEG group.

Given that AUG is the most efficient start codon, one would predict that SGB should
use more AUG codons as start codons than LGB. The AUG% in Table 3 is indeed strongly
associated with the ranked generation time in Table 1, as predicted. However, the AUG% is
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also affected by the genomic GC% because GC-rich genomes tend to have more GC-rich
codons [31]. This is best illustrated by focusing on start codons AUG and GUG. AT-rich
genomes tend to have AT-biased mutations, which favor AUG over GUG. Among the nine
species, the H. influenzae genome is the most AT-rich and is expected to have a high AUG%
because both mutation and selection favor AUG over GUG. In contrast, GC-rich genomes
have GC-biased mutations, which will favor GUG over AUG. Because the four LGB all have
a higher GC% than the five species with relatively short generations, they may use fewer
AUG and more GUG codons as start codons simply because of their genomic GC-richness.
For this reason, it is necessary to include genomic GC as a control variable. Also, HEGs
and REST genes may differ in the relationship between AUG% and the generation time. A
conceptually more comprehensive and explicit model is, therefore, needed.

Here, the dependent variable is AUG% and independent variables include ranked
generation time (RankGT), genomic GC content (GC%, which is taken as a proxy for a
genomic mutation shared by both HEGs and REST genes), and gene expression (GE with
two categories, HEGs and REST genes, encoded as 0 and 1, respectively). The input data
(Table 4) are used to fit the model.

Table 4. The percentage of AUG codons (AUG%) acting as start codons depends on the generation
time (RankGT), genomic GC content (GC%), and gene expression (GE).

Species AUG% RankGT GC% GE

V. natriegens 93.4211 1 45.0 HEG
V. cholerae 92.1053 2 47.3 HEG
E. coli 94.5205 3 50.8 HEG
B. subtilis 87.8788 4 43.5 HEG
H. influenzae 97.1429 5 38.2 HEG
M. smegmatis 75.0000 6 67.4 HEG
M. abscessus 77.9412 7 64.1 HEG
M. tuberculosis 79.0323 8 65.6 HEG
M. leprae 71.6418 9 57.8 HEG

V. natriegens 90.1179 1 45.0 REST
V. cholerae 88.7332 2 47.3 REST
E. coli 90.0592 3 50.8 REST
B. subtilis 77.3196 4 43.5 REST
H. influenzae 94.5831 5 38.2 REST
M. smegmatis 65.8058 6 67.4 REST
M. abscessus 66.8103 7 64.1 REST
M. tuberculosis 61.3163 8 65.6 REST
M. leprae 51.3478 9 57.8 REST

A regression analysis of the input data in Table 4 showed that all three independent
variables were statistically significant, but their interaction terms were not (Table 5). The
regression model was then fitted without interaction terms. This reduced model accounted
for 82.0% of the variation in the dependent variable AUG%. The two regression equations
derived from the regression coefficients in Table 5, one for HEGs and the other for the
REST, are

For HEGs : AUG% = 125.86 − 2.54RankGT − 0.52GC% (3)

For REST : AUG% = 116.68 − 2.54RankGT − 0.52GC% (4)

Equations (3) and (4) and Table 5 show that (1) the AUG% decreases highly significantly
with the generation time, and (2) the AUG% is significantly higher in HEGs than in REST
genes (Table 5). However, the GC% also has a significant effect on the AUG% (p = 0.01825,
Table 5), with the AUG% decreasing with an increasing GC%. This is consistent with the
interpretation of stronger selection operating on SGB than on LGB. That is, a non-AUG
start codon mutating to AUG is more strongly favored by natural selection in SGB than
in LGB.
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We should emphasize that Equations (3) and (4) are descriptive models. They do not
explicitly prevent AUG% from taking values smaller than 0 or larger than 1. A sigmoidal
function would have been more appropriate if there were enough data for parameter
estimation.

Table 5. Regression analysis of data in Table 4, with AUG% as the dependent variable, and ranked
generation time (RankGT), genomic GC content (GC%), and gene expression (with HEG and REST
encoded as 0 and 1, respectively) as the independent variables.

Coefficient Standard Error t Stat p-Value

Intercept 125.85528 8.60272 14.62970 0.00000
RankGT −2.53863 0.76412 −3.32229 0.00503

GC% −0.52069 0.19491 −2.67147 0.01825
GE −9.17674 2.94435 −3.11673 0.00758

3.3. Differential Preference for Stop Codon UAA

As reviewed previously, the stop codon UAA exhibits the smallest readthrough error
rate among the three nonsense codons [57,61–66]. Consequently, HEGs favor stop codon
UAA over other stop codons in multiple bacterial species [9,67,74]. This is also true for all
nine bacterial species. UAA was preferred by HEGs in E. coli, B. subtilis, M. tuberculosis [67],
and M. abscessus [9]. Of the five remaining species, the proportions of UAA in REST genes
and HEGs were 0.653 and 0.8816, respectively, in V. natriegens; 0.6365 and 0.9474 in V.
cholerae; 0.7602 and 0.9429 in H. influenzae; 0.0585 and 0.2222 in M. smegmatis; and 0.2364
and 0.2836 in M. leprae. Thus, UAA is consistently preferred in HEGs relative to REST genes.

Given that UAA is the best stop codon [128,129], we predicted that SGB should use
more UAA codons as stop codons than LGB. Similar to our analysis of the start codon AUG
usage, the dependent variable now was UAA% and the independent variables included the
ranked generation time (RankGT), genomic GC content (GC%), and gene expression (GE
with two categories, HEGs and REST genes, encoded as 0 and 1, respectively). The genomic
GC% is particularly relevant in studying UAA usage because protein-coding genes in a
GC-rich genome tend to use more UGA and UAG stop codons than those in an AT-rich
genome [67].

A regression analysis showed that all three independent variables were statistically
significant (Table 6). The model accounted for 94.7% of the total variation in UAA%. The
two regression equations derived from the regression coefficients in Table 6, one for HEGs
and the other for the REST, are

For HEGs : UAA% = 197.95 − 3.78RankGT − 2.22GC% (5)

For REST : UAA% = 180.60 − 3.78RankGT − 2.22GC% (6)

Equations (5) and (6) and Table 6 show that the UAA% decreases highly significantly
with an increasing generation time, and that HEGs use UAA significantly more frequently
than REST genes (Table 6, a 17.35326% difference between the two). This is consistent with
the interpretation of stronger selection operating on SGB than on LGB. A non-UAA stop
codon mutating to UAA is more strongly favored by natural selection in SGB than in LGB.

UAA usage also decreases significantly with an increasing genomic GC% (Table 6),
which is understandable. As the genomic GC% increases, GC-biased mutations will favor
UAG and UGA codons over UAA codons [67]. It is for this reason that the genomic GC
content needs to be taken into consideration when assessing codon usage bias.
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Table 6. Regression analysis of the impact of UAA% on three independent variables: ranked
generation time (RankGT), genomic GC content (GC%), and gene expression (with HEG and REST
encoded as 0 and 1, respectively).

Coefficient Standard Error t Stat p-Value

Intercept 197.94875 11.48080 17.24172 0.00000
RankGT −3.77935 1.01976 −3.70611 0.00235

GC% −2.21876 0.26012 −8.52992 0.00000
GE −17.35326 3.92940 −4.41627 0.00059

3.4. Impact of Differential Selection on Sense Codons

It is difficult to evaluate the impact of tRNA-mediated selection on codon usage across
species because the codon adaptation index (CAI) [50,51] and the index of translation
efficiency (ITE) [7] are both for comparing genes within species. The effective number
of codons (ENC) [52,130] could potentially be used for among-species comparisons, but
all these indices are strongly affected by genomic mutation bias [131,132]. For example,
protein-coding genes in strongly GC-biased genomes will have mostly G-ending and
C-ending codons, leading to a reduced ENC that has little to do with selection.

It is reasonable to assume that mutation bias affects both HEGs and REST genes. Thus,
the difference in mean ITE between HEGs and REST genes, i.e.,

DITE =
(

ITE.HEG − ITE.REST
)
, (7)

should be relatively independent of mutation bias. DITE should increase with selection in-
tensity for translation elongation efficiency. If there is no selection for translation elongation
efficiency, then DITE is expected to be 0. With an increasingly strong selection for translation
elongation efficiency, DITE should also increase because the selection is expected to be
stronger for HEGs than for REST genes. In other words, strong selection for translation
efficiency in SGB should drive HEGs towards better codon adaptation than the REST genes,
thereby increasing DITE .

The DITE values and its ranks (Rank DITE , Table 7) depend strongly on generation
time (RankGT, Table 7). The relationship is best illustrated with two ranked variables, i.e.,
ranked generation time (RandGT) and ranked DITE (Figure 2). The fitted regression line
accounts for 87.84% of the total variation in ranked DITE (Figure 2).

Table 7. Differences in mean ITE values between HEGs and REST genes (DITE ) for the nine bacterial
species at different generation times (RankGT).

Species RankGT DITE Rank DITE

V. natriegens 1 0.2516 9
V. cholerae 2 0.2380 6.5

E. coli 3 0.2465 8
B. subtilis 4 0.2380 6.5

H. influenzae 5 0.2092 5
M. smegmatis 6 0.1266 3
M. abscessus 7 0.1806 4

M. tuberculosis 8 0.0267 1
M. leprae 9 0.0689 2
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3.5. Differential Selection Drives tRNA Adaptation

Codons and tRNAs are expected to coevolve and adapt to each other [2,6,30,31],
especially in highly expressed genes [6,7,30–36,133]. Given the better codon optimization
in SGB than in LGB (Figure 2 and Table 7), one would predict more tRNA genes for highly
used codons than rarely used codons. If we focus on the anticodons of tRNA genes, then
the prediction above implies a smaller effective number of anticodons (NAC), equivalent
to the concept of the effective number of codons [52,130], in SGB than in LGB. Specifically,
NAC should increase with RankGT (ranked generation time).

We calculated NAC in the same way the effective number of codons is calculated [52],
except that codons in coding sequences were replaced by anticodons in tRNA genes. The
ranked NAC increased highly significantly with ranked RankGT (Table 8 and Figure 3A),
consistent with our prediction that SGB should have a smaller NAC than LGB. One should
note the difference between a codon replacement and an anticodon replacement. A codon
replacement may have only a minor effect on the translation of a single gene, but an
anticodon replacement will affect the translation of numerous codons. For this reason,
anticodons are strongly constrained and much less affected by genomic GC%.

We have previously used Rank DITE (Table 7) as a species-level measure of codon
adaptation. This DITE is expected to be negatively associated with the ranked NAC for
the following reason. Better codon adaptation (high Rank DITE ) implies higher usage of
major codons, which requires more tRNAs with the corresponding decoding anticodon
to translate these overused major codons, leading to a decreased NAC in species with a
high degree of codon adaptation. This expected relationship between NAC and DITE was
substantiated empirically (Figure 3B, p = 0.00015).

Table 8. The effective number of anticodons (NAC and its ranked NAC) increases with ranked
generation time (RankGT).

Species RankGT NAC Rank NAC

V. natriegens 1 40.2129 1
V. cholerae 2 44.2802 2

E. coli 3 49.0127 4
B. subtilis 4 45.8531 3

H. influenzae 5 50.4305 5
M. smegmatis 6 59.0667 7
M. abscessus 7 58.8153 6

M. tuberculosis 8 59.3744 8.5
M. leprae 9 59.3744 8.5
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The analysis above assumes that tRNA gene copy numbers in bacterial genomes
are proportional to the abundances of tRNA molecules in the cell. With the availability
of transcriptomic data, it has been found that the assumption is generally true, i.e., the
copy number of a tRNA is highly correlated with the transcriptomic representation of the
tRNA [134].

3.6. Secondary Structural Stability near the Start and Stop Codons

Because the 30S ribosomal subunit requires a single-stranded mRNA region for bind-
ing [28,29], sequences immediately flanking translation signals in bacteria (e.g., Shine–
Dalgarno sequence and start and stop codons) are expected to have reduced secondary
structures, to avoid embedding translation signals in a stable secondary structure [18,27,
116,126,135,136]. This pattern has also been observed in bacteriophage genes [5,9]. The
weakening of the secondary structure near, or immediately upstream of, the start codon has
also been observed in highly expressed eukaryotic mRNAs [8,137], especially in mRNAs
requiring internal ribosome entry for translation [138].

Secondary structural stability in RNA is typically measured by the minimum folding
energy (MFE). An MFE equal to 0 means no secondary structure, and a stronger secondary
structure corresponds to a more negative MFE value. Experiments involving engineered
E. coli genes have shown that the translation initiation efficiency depends heavily on the
MFE of the sequence upstream and including the start codon [3,7,14]. We followed the
convention of previous studies [5,9] and measured the MFE with a sliding window of 40 nt
along mRNA sequences, to quantify the change in secondary structural stability.

Secondary structural stability, as measured by MFE, decreased near the start codon,
but the weakest secondary structure was observed slightly upstream of the start codon
(Figure 4), corresponding to the SD sequence. This pattern has been observed before in
bacteriophage genes and their host genes [5,9] and is consistent with the interpretation that
a strong secondary structure embedding the SD sequence or the start codon is selected
against because it prevents the translation initiation signal (SD and start codon) from being
decoded by the aSD sequence and the initiation tRNA, respectively.
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Figure 4. Change in MFE (minimum folding energy) over a sliding window of 40 nt in HEGs of the 
nine bacterial species (one sub-figure for each species). The start codon occupies sites 61–63. The 
mid-window site (horizontal axis) indicates the middle of the sliding window of 40 nt. The middle 
blue curve is the mean MFE of all HEGs (e.g., each point in the mean curve for V. nitriegens is the 

Figure 4. Change in MFE (minimum folding energy) over a sliding window of 40 nt in HEGs of the
nine bacterial species (one sub-figure for each species). The start codon occupies sites 61–63. The
mid-window site (horizontal axis) indicates the middle of the sliding window of 40 nt. The middle
blue curve is the mean MFE of all HEGs (e.g., each point in the mean curve for V. nitriegens is the
average of 76 HEGs). The two curves above and below the mean curve are the 95% upper and lower
limits (UL and LL).

One might argue against the interpretation that the reduced secondary structure near
the translation initiation serves to avoid embedding crucial translation initiation signals
such as SD sequences and start codons in a stable secondary structure. The SD sequences
are purine-rich and cannot form a secondary structure within them. Thus, the reduced
secondary structure near the SD sequence (Figure 4) could be a direct consequence of the
purine-richness in the SD sequences, with nothing to do with the hypothesized avoidance
of the secondary structure embedding important translation initiation signals. We thus have
two hypotheses. Hypothesis 1 invokes selection against secondary structural stability near
the translation initiation signals. Hypothesis 2 states that the weakening of the secondary
structure near the translation initiation signal is a simple consequence of the purine-rich
SD, with no selection specifically against the secondary structure.

One way to differentiate these two hypotheses is to consider the observation that SD
sequences are mainly G-rich. Because G will base-pair with C, Hypothesis 1 (invoking
selection against secondary structural stability) will predict a stronger avoidance of nu-
cleotide C relative to nucleotide U. In contrast, Hypothesis 2 gives no reason to expect an
avoidance of nucleotide C relative to U near the translation initiation signals. Figure 5 plots
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the position weight matrix (PWM) scores for the 60 nucleotides immediately upstream of
the start codon for two species, Bacillus subtilis and Vibrio cholarae. PWM scores measure
nucleotide usage bias relative to the background nucleotide frequencies. A value of 0 means
unbiased usage, a positive value means overuse, and a negative value means avoidance.
Figure 5A,B contrast the HEGs and the REST genes in B. subtilis. If Hypothesis 1 is correct,
then we expect stronger avoidance of C relative to U in HEGs than in the REST genes. The
nucleotide usage patterns in Figure 5A,B are consistent with the prediction from Hypothesis
1. An approximate statistical test can be performed as follows. Within sites 45 to 55, there
36 nucleotide Cs and 129 nucleotide Us in the HEGs. The corresponding numbers are
2952 C and 7069 U. The percent of C is 21.818% in the former and 29.458% in the latter. The
two are significantly different (likelihood ratio chi-square = 4.84, DF = 1, p = 0.0278). If
we narrow the range to sites 48 to 53, then the difference becomes more significant. The
nucleotide usage patterns for HEGs and REST genes in V. cholerae are similar (Figure 5C,D).

Microorganisms 2024, 12, x FOR PEER REVIEW 13 of 25 
 

 

average of 76 HEGs). The two curves above and below the mean curve are the 95% upper and lower 
limits (UL and LL). 

One might argue against the interpretation that the reduced secondary structure near 
the translation initiation serves to avoid embedding crucial translation initiation signals 
such as SD sequences and start codons in a stable secondary structure. The SD sequences 
are purine-rich and cannot form a secondary structure within them. Thus, the reduced 
secondary structure near the SD sequence (Figure 4) could be a direct consequence of the 
purine-richness in the SD sequences, with nothing to do with the hypothesized avoidance 
of the secondary structure embedding important translation initiation signals. We thus 
have two hypotheses. Hypothesis 1 invokes selection against secondary structural stabil-
ity near the translation initiation signals. Hypothesis 2 states that the weakening of the 
secondary structure near the translation initiation signal is a simple consequence of the 
purine-rich SD, with no selection specifically against the secondary structure. 

One way to differentiate these two hypotheses is to consider the observation that SD 
sequences are mainly G-rich. Because G will base-pair with C, Hypothesis 1 (invoking 
selection against secondary structural stability) will predict a stronger avoidance of nu-
cleotide C relative to nucleotide U. In contrast, Hypothesis 2 gives no reason to expect an 
avoidance of nucleotide C relative to U near the translation initiation signals. Figure 5 
plots the position weight matrix (PWM) scores for the 60 nucleotides immediately up-
stream of the start codon for two species, Bacillus subtilis and Vibrio cholarae. PWM scores 
measure nucleotide usage bias relative to the background nucleotide frequencies. A value 
of 0 means unbiased usage, a positive value means overuse, and a negative value means 
avoidance. Figure 5A,B contrast the HEGs and the REST genes in B. subtilis. If Hypothesis 
1 is correct, then we expect stronger avoidance of C relative to U in HEGs than in the REST 
genes. The nucleotide usage patterns in Figure 5A,B are consistent with the prediction 
from Hypothesis 1. An approximate statistical test can be performed as follows. Within 
sites 45 to 55, there 36 nucleotide Cs and 129 nucleotide Us in the HEGs. The correspond-
ing numbers are 2952 C and 7069 U. The percent of C is 21.818% in the former and 29.458% 
in the latter. The two are significantly different (likelihood ratio chi-square = 4.84, DF = 1, 
p = 0.0278). If we narrow the range to sites 48 to 53, then the difference becomes more 
significant. The nucleotide usage patterns for HEGs and REST genes in V. cholerae are sim-
ilar (Figure 5C,D). 

−7
−6
−5
−4
−3
−2
−1

0
1
2

0 10 20 30 40 50 60

PW
M

 va
lu

e

Site

A C G U
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

0 10 20 30 40 50 60

PW
M

 va
lu

e
Site

A C G U

−3

−2

−1

0

1

0 10 20 30 40 50 60

PW
M

 va
lu

e

Site

A C G U
−1.5

−1

−0.5

0

0.5

1

0 10 20 30 40 50 60

PW
M

 va
lu

e

Site

A C G U

(A) Bacillus subtilis HEG (B) Bacillus subtilis REST

(C) Vibrio cholerae HEG (D) Vibrio cholerae REST

 
Figure 5. Dramatic reduction in nucleotide C near the Shine–Dalgarno sequence (shaded). Plotted 
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Figure 5. Dramatic reduction in nucleotide C near the Shine–Dalgarno sequence (shaded). Plotted
are position weight matrix (PWM) scores in sequences immediately upstream of the start codon (at
sites 61–63) in HEGs (A) and REST genes (B) in Bacillus subtilis, and in HEGS (C) and REST genes (D)
in Vibrio cholerae.

All nine bacterial species exhibited a decreased secondary structure near the translation
initiation signals (Figure 4). However, we did not take into account the effect of the GC%.
Increasing the GC% is expected to increase secondary structural stability in mRNA. As
we can see from Table 9, H. influenzae has the lowest genomic GC% (38.2%), and its mean
MFE is the closest to 0 (which means no secondary structure). In contrast, M. smegmatis
and M. tuberculosis have the highest genomic GC%, and their mRNAs tend to have more
negative MFE values (Figure 4). Accordingly, without controlling for GC%, the observation
that the LGB have a stronger secondary structure than the SGB cannot be attributed to a
reduced selection in these LGB against a stable secondary structure. Note that the MFE and
GC% were calculated for each sequence, and their averages are presented in Table 9 as the
MeanMFE and GC%, respectively.

Given that a weak secondary structure near the SD sequence and the start codon is
favorable (Figure 4), one would predict that SGB should have weaker secondary structures
(larger MFE values) than LGB. In order to test this prediction while accommodating the
effect of the GC%, we characterized the MFE plots of sliding windows for each species using
a single value for each. That is, for each plot in Figure 4, we calculated the mean value for
mid-window sites 46–65 (with the start codon occupying sites 58–60). These sites included
both the SD sequence and the start codon. The mean MFE (Table 9) was now the dependent
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variable. It was expected to (1) decrease (i.e., more stable secondary structure) with an
increasing generation time (RankGT) and increasing GC%, and (2) increase with gene
expression (GE, i.e., be greater for HEGs than for REST genes). These three independent
variables are also included in Table 9.

Table 9. Secondary structural stability (measured by MeanMFE) is expected to change with generation
time (RankGT), GC%, and gene expression (GE).

Species RankGT GC% GE MeanMFE

V. natriegens 1 42.8557 HEG −4.2351
V. cholerae 2 43.7813 HEG −4.0721

E. coli 3 46.5955 HEG −4.2153
B. subtilis 4 38.7556 HEG −3.7484

H. influenzae 5 37.9329 HEG −3.2660
M. smegmatis 6 60.4224 HEG −6.4462
M. abscessus 7 60.4048 HEG −5.5966

M. tuberculosis 8 61.5043 HEG −6.2934
M. leprae 9 56.5344 HEG −5.7794

V. natriegens 1 40.4234 REST −3.5238
V. cholerae 2 43.3125 REST −4.0330

E. coli 3 45.6418 REST −4.4059
B. subtilis 4 38.6014 REST −3.7406

H. influenzae 5 33.7986 REST −2.5466
M. smegmatis 6 63.6954 REST −8.6708
M. abscessus 7 61.2667 REST −8.3538

M. tuberculosis 8 63.0856 REST −9.1141
M. leprae 9 57.1858 REST −7.9865

The best model, which accounts for 98.2% of the total variation in MeanMFE in Table 9,
included the three dependent variables and an interaction term (Table 10). The two-tailed p
for RankGT was 0.064 (Table 10). However, because we had an explicit one-tailed prediction
of a negative slope (i.e., MeanMFE should decrease with increasing RankGT), p was half of
0.064, i.e., 0.032. Other regression terms for GC%, GE, and their interaction were highly
significant and consistent with the predictions (Table 10).

Table 10. Regression output based on data in Table 9, with GE encoded as a binary dummy variation
(0 for HEG and 1 for REST). “GC%* GE” is the interaction term.

Coefficients Standard Error t Stat p-Value

Intercept 0.57408 0.61265 0.93704 0.36582
RankGT −0.08382 0.04142 −2.02386 0.06404

GC% −0.10038 0.01414 −7.09756 0.00001
GE 4.46040 0.75315 5.92236 0.00005

GC%*GE −0.10972 0.01483 −7.39673 0.00001

As before, we give the two regression equations separately for HEGs and the REST
from the regression coefficients in Table 10:

For HEGs : MeanMFE = 0.57408 − 0.08382 RankGT − 0.10038 GC% (8)

For REST : MeanMFE = 5.03448 − 0.08382 RankGT − 0.21009 GC% (9)

Equations (8) and (9) show that, for both HEGs and REST genes, secondary structural
stability increases with the generation time (MFE becomes more negative with an increasing
generation time). This is consistent with our prediction that selection against the secondary
structure near the translation start signals (SD sequence and start codon) is stronger in SGB
than LGB.
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MeanMFE decreases more sharply with the GC% in Equation (9) than in Equation (8),
i.e., secondary structural stability increases more rapidly with the GC% for REST genes
than for HEGs. This is easy to understand if the selection against secondary structural
stability is on average stronger in HEGs than in REST genes. The MeanMFE decreases
by only 0.10038 (Equation (8)) for a unit increase in the GC% with the strong selection of
HEGs, but decreases by 0.21009 (Equation (9)) for the same unit change in the GC% with
the relatively weak selection of REST genes.

The selectionist interpretation above does not consider the effect of mutations, which
offers an alternative interpretation. In general, spontaneous mutations in AT-rich genomes
tend to be AT-biased, based on (1) comparisons between pseudogenes and their functional
counterparts [139,140], (2) the mutation patterns of pathogenic bacteria with relaxed se-
lection [141,142], and (3) nucleotide bias at the three codon sites across multiple bacterial
species [143]. H. influenzae has an AT-rich genome, suggesting AT-biased mutation, in
contrast to M. smegmatis, which has a GC-rich genome. However, protein-coding genes
in both species have SD sequences that are purine-rich (especially G-rich) (Figure 6). The
G-rich SD will form base-pairs with nearby C nucleotides, so the MFE will not fall to 0.
In pseudogenes where selection for maintaining the G-rich SD sequence is absent, or in
low-expressed genes where the selection is weak, the AT-rich H. influenzae will lose these G
nucleotides in the SD sequence, leading to an MFE closer to 0. Indeed, the MeanMFE value
for the 19 pseudogenes in H. influenzae is −2.2887, closer to 0 than all MeanMFE values in
Table 9. Similarly, the MeanMFE is −3.2660 for HEGs and −2.5466 for REST genes (Table 9).
This is consistent with the interpretation that the G-rich SD is more likely to be hit by G→A
and G→T mutations and lose G/C base-pairs in REST genes than in HEGs. For example,
H. influenzae has a GC% of 37.9329% for HEGs but only 33.7986% for REST genes, leading
to a MeanMFE value closer to 0 in REST genes than in HEGs.
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In short, although the purine-rich SD sequences (Figure 6) can hardly form secondary
structures within themselves, the dramatically increased G nucleotides within the SD se-
quence could base-pair with the neighboring C nucleotides and contribute to secondary
structural stability. If there is no selection maintaining the G-richness in the SD sequences,
then these G nucleotides may be replaced by A and T, leading to a further decrease in sec-
ondary structural stability. Thus, both selection and mutation could contribute to secondary
structural stability in sequences near the translation initiation signals (the SD sequence and
the start codon). The models in Equations (8) and (9) are, therefore, oversimplified and
should be interpreted with caution. The secondary structure in sequences near the stop
codon exhibits a similar pattern to those near the start codon (Figure 6).

The decrease in secondary structural stability may not necessarily be related to the
avoidance of embedding SD sequences and start codons. Efficiently translated yeast
mRNAs (i.e., mRNAs in polysomes with high ribosome densities) often have a short
poly(A) tract before the start codon [137], with the poly(A) interpreted as long enough
to recruit translation initiation factors but short enough to avoid binding by the poly(A)-
binding proteins. However, the presence of poly(A) also weakens the secondary structural
stability as a secondary consequence.

4. Discussion

Our assumption that SGB are under stronger selection for translation efficiency than
LGB appears to be valid because multiple predictions based on the assumption are con-
sistent with the empirical evidence. First, the number of ribosome RNA operons, as well
as the number of tRNA genes, increases with a decreasing generation time (Table 2 and
Figure 1). Second, AUG is known to be the most efficient start codon, and SGB genes exhibit
a stronger preference for AUG as a start codon than LGB, especially in highly expressed
genes (HEGs) (Tables 3–5). This is also true in the usage of stop codon UAA (Table 6),
which is known to be the most efficient termination signal with the smallest readthrough
error rate as a stop codon. Third, SGB, especially their HEGs, exhibits better codon and
anticodon adaptation than LGB (Table 7 and Figure 2 for codons, and Table 8 and Figure 3).
Finally, SGB genes have weaker secondary structures near translation initiation signals
than LGB (Figure 4 and Tables 9 and 10). A similar pattern was observed with sequence
secondary structures near the stop codon (Figure 7). However, as we discussed previously,
the selectionist interpretation is sometimes confounded by biased mutations.

One may ask why there should ever be LGB with weak selection for translation
optimization, given natural selection operating to maximize growth and reproduction.
There are different environments in which translation efficiency may not be a limiting factor
for growth and reproduction. For example, M. tuberculosis wraps itself with a thick layer of
mycolic acids that serves two functions [144]: (1) to prevent antibiotics from reaching the
cell membrane [145], and (2) to evade the attack of the host immune system [146]. However,
after being phagocytosed by pulmonary macrophages and confined within the phagosome
and the granuloma, M. tuberculosis survives in an extremely nutrient-limited environment
and adopts a prolonged stage of dormancy with no chance of rapid growth [109]. Mutations
still occur during this latent stage of dormancy [147,148] in both protein-coding genes [149]
and rRNA genes [150,151]. Thus, mutations without the checking of natural selection will
lead to a suboptimal translation machinery in M. tuberculosis. Such a suboptimal machinery
cannot perform efficient translation even when the bacteria are not nutrient-limited. This
is in dramatic contrast to E. coli, which experiences rapid alternation of feast and famine
cycles several times each day, with natural selection eliminating those mutants that cannot
translate efficiently during the feast period.
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Modern biological research aims to formulate and validate quantitative and mecha-
nistic models. In this context, this study has several shortcomings. The first shortcoming
is the inherent inaccuracy of generation time. The experimentally measured generation
time sometimes varies widely among strains and among different studies. For example,
the generation time is ~21 h in drug-sensitive strains of M. tuberculosis, but ~35 h in the
multi-drug-resistant strains [152]. This suggests a cost to the pathogen in developing
multi-drug resistance, i.e., the resistance is at the cost of longer generations. However, the
observation also highlights the inherent variation in measured generation time. Particularly
controversial is what generation time to use. For example, the generation time in E. coli
is only about 20–30 min under favorable culture conditions but could be substantially
longer in the natural habitat of the mammalian intestine, estimated by the rate of mutation
accumulation [153]. To model the joint effect of mutation and selection, the generation
time under natural conditions would seem more appropriate than that under optimal
experimental conditions. Unfortunately, the generation time in bacterial populations in
nature cannot be measured accurately. For example, the estimated generation of 15 h for
E. coli [153] is associated with a 95% confidence interval of 0–30 h. Another uncertainty
with generation time is that we do not know if long-generation species such as M. leprae
really cannot replicate fast or if they could grow fast but microbiologists have not been able
to shift them into the fact-growing mode. Because of the uncertainty in generation times
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among the bacterial species, we ranked the generation times in the hope that, relative to
one another, they would be in the correct order. It is for this reason that we chose species
with widely different generation times characterized experimentally, so that our ranking of
the generation times would not be controversial.

The second shortcoming of this study is the small number of bacterial species, partly
because of our conscious effort to avoid species with uncertain generation times. There
are various tables of bacterial generation times for more than nine bacterial species, but
they often do not include original references or do not have fully sequenced genomes.
Some bacterial species in Mollicutes have known generation times, e.g., ~6 h in Mycoplasma
pneumoniae [154,155], as well as fully sequenced genomes. However, their genetic code
(i.e., translation table 4) differs from the rest of the bacteria (translation table 11). This
complicates comparisons. Consequently, they are not included in this study. The small
number of bacterial species included here results in two limitations. First, it does not permit
the validation of parameter-rich models. Second, it does not allow for phylogeny-based
inference [156–158] to alleviate the issue of data dependence. We have previously used
such phylogeny-based inference to quantify the relationships between body temperature
and genome size [159] and between the optimal growth temperature and ribosomal RNAs’
secondary structural stability (i.e., the stem length and GC% in the stem–loop structure
in rRNAs) [98]. The phylogenetically independent contrasts showed that the stem–loop
structure in bacterial thermophiles tended to have longer and more GC-rich stems than
that in mesophiles [98] and that poikilotherms in warm climates tended to have smaller
genomes than those in cold climates [159]. In this context, we may highlight two points.
First, our results are highly consistent with the prediction that increasing the generation time
decreases the intensity of selection on translation efficiency. Second, the bacterial species
we use are highly divergent. Even the two most closely related species, M. tuberculosis and
M. leprae, have an evolutionary distance of more than 0.3 even for conserved ribosomal
protein genes [160], so phylogenetic inertia might not affect the quantified relationships,
i.e., the data points might be considered to be roughly independent.

The third shortcoming is the lack of a general conceptual framework for the impact
of mutation and selection on translation optimization, one that can be used across species.
Protein production from an mRNA depends on the ribosomal recruitment rate, the effi-
ciency in forming the 70S initiation complex, the elongation efficiency and accuracy, the
termination efficiency and accuracy, the stability of the mRNA, the differential amino acid
and tRNA availability, and the energy level of the cell [4,18,161,162]. How do these vari-
ables interact with each other to affect protein production? For example, when translation
is not efficient, codon usage optimization has little effect on protein production. However,
protein production increases significantly with codon optimization in mRNAs with efficient
initiation [3,7,14]. Similarly, there are conflicts between maximizing transcription efficiency
and translation efficiency. An RNA will be transcribed efficiently if it maximizes the usage
of the abundant nucleotide A and minimizes the rare nucleotide C [163,164]. However,
this will drive up the usage of A-ending codons that may not be the optimal codons for
translation. There are also factors affecting codon usage that are not related to transla-
tion. For example, mammalian species have zinc-finger antiviral proteins (ZAPs), which
work against RNA viruses by targeting CpG dinucleotides in the viral RNA [165–169].
Many human RNA viruses exhibit much reduced CpG dinucleotides [165,170–173], with
SARS-CoV-2 being the extreme among coronaviruses [174,175]. Most of the CpG reduction
occurs at the di-codon configuration, from NNC GNN to NNT GNN (i.e., a synonymous
replacement). This NNC to NNU change has nothing to do with codon optimization. So,
what will be the functional relationship among all these variables? The model is even more
complicated if we consider not only HEGs but also genes whose optimal protein level is
not the maximal, such as the autoregulated level of release factor 2 in E. coli [82,83] or many
others [176]. We highlight such questions in the hope that they will motivate researchers to
address them.
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The last point we wish to discuss is the usage of ranked variables such as the ranked
generation time (RankGT). Specifically, the difference in generation time (GT) between the
fast-growing Vibrio natriegens and V. cholerae is only a few minutes, whereas that between the
slow-growing Mycobacterium tuberculosis and M. leprae is about six days. After completing
a ranking, the difference in RankGT between the two fast-growing species becomes one
(=2–1), which is the same as the difference in RankGT between the two slow-growing
species (=9–8). This implicitly assumes that the difference of a few minutes in GT between
the two fast-growing species is roughly equivalent to the differences of about six days in
GT between the two slow-growing species.

Our results seem to substantiate the assumption above. For example, Mycobacterium
tuberculosis and M. leprae have one rrn operon in their genomes. Any species with a much
longer generation time in months or even years will not reduce the number of rrn operons
below one. Thus, adding many days to the generation time in a slow-growing species
will not change the number of rrn operons, but shortening the generation time by a few
minutes in a fast-growing species may well increase the number of rrn operons. This
suggests that a difference of a few minutes in GT in fast-growing species may actually
result in a greater effect than a difference of a few days in slow-growing species. The
same applies to the number of tRNA genes (Figure 1) and might be applicable to other
translation-related features.

5. Conclusions

Detection of the impact of selection on translation efficiency is mostly performed by
contrasting highly expressed genes and low-expressed genes within rapidly replicating
species. We generalized such investigations to determine how differential selection for
translation efficiency among different species will leave its footprints on the species-specific
translation machinery. Our results suggest that selection for translation optimization is
stronger in short-generation species than long-generation species, and that this differential
selection strongly shapes the evolutionary trajectories of translation machineries in these
species, affecting translation initiation, elongation, and termination.
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