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Abstract: In recent years, the Sanjiang Plain has experienced drastic human activities, which have
dramatically changed its ecological environment. Soil microorganisms can sensitively respond to
changes in soil quality as well as ecosystem function. In this study, we investigated the changes in
soil microbial community diversity and composition of three typical land use types (forest, wetland
and cropland) in the Sanjiang Plain using phospholipid fatty acid analysis (PLFA) technology, and
114 different PLFA compounds were identified. The results showed that the soil physicochemical
properties changed significantly (p < 0.05) among the different land use types; the microbial diversity
and abundance in cropland soil were lower than those of the other two land use types. Soil pH,
soil water content, total organic carbon and available nitrogen were the main soil physico-chemical
properties driving the composition of the soil microbial community. Our results indicate that the
soil microbial community response to the three different habitats is complex, and provide ideas for
the mechanism by which land use changes in the Sanjiang Plain affect the structure of soil microbial
communities, as well as a theoretical basis for the future management and sustainable use of the
Sanjiang plain, in the northeast of China.

Keywords: PLFA; soil microorganism; diversity; community composition

1. Introduction

Globally, ecosystems such as wetlands and forests are directly or indirectly threatened
by human activities, including urbanization, agricultural expansion, timber harvesting,
and climate change [1,2], which in turn lead to ecological destruction and degradation,
and dysfunctional coupling of human–land systems. Land use change is the most direct
reflection of human production activities, and the formation of its spatial pattern is the
result of the joint action of natural and man-made factors. Many studies have shown that
land use change can alter the environmental conditions of ecosystems and affect the quality
and stability of ecosystems [3,4]. Additionally, the structure of soil microbial communities
interacts with soil functions, can respond rapidly to changes in the soil environment, and is
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to some extent a sentinel for changes in environmental factors. Therefore, exploring the
structure and diversity dynamics of soil microbial communities helps us to better under-
stand the impacts of human activities (e.g., changes in management practices associated
with different land use types) on the ecosystem.

Soil microorganisms play a crucial role in soil organic matter decomposition, energy
flow, maintaining ecosystem function, and regulating global biogeochemical processes [5–8].
Changes in land use, such as wetland conversion to farmland, can significantly impact the
composition and function of soil microbial community [9]. For example, Hua et al. [10]
found that the relative abundance of Acidobacteria in plantation forests was significantly
higher than that in agricultural fields, and the ratio of soil fungi to bacteria also changed
significantly. Zhu et al. [11] reported that soil bacterial compositions and functions differed
between wetlands and croplands under long-term human activity disturbance. The soil
bacterial community composition was primarily affected by soil pH and soil texture, while
the fungal community composition was most closely related to soil nutrient availability [11].
Liu et al. [12] revealed that land conversion directly impacted the expression of functional
genes associated with assimilatory nitrate reduction in soil microorganisms. Therefore, the
response of the soil microbial structure to different land use patterns is still uncertain due
to different land use pattern and ecosystem types. We hypothesized that anthropogenic
agricultural activities may disrupt the diversity and abundance of soil microbial commu-
nities in the Sanjiang Plain, potentially impacting regional ecosystem stability. Therefore,
examining the influence of interactions between soil physicochemical properties and soil
microbial community structure under wetland conversion could uncover new insights for
managing the wetland ecosystem.

Located in the eastern part of Heilongjiang Province, in the middle of China’s largest
concentration of freshwater wetlands, Sanjiang Plain is not only an important agricul-
tural production base, but it also plays a very important role in protecting China’s food
security [13]. It is rich in natural resources, and aside from the economic value it brings,
there also exists an indispensable role in the protection of biodiversity, regulation of runoff,
water purification, and the balance of regional nutrient cycling. The Sanjiang Plain acts
as an important ecological barrier in Northeast Asia, which is of great significance to the
global biochemical cycle as well as to the maintenance of ecological and climate secu-
rity [14–17]. In addition to hydrology, topography, vegetation and other natural factors, the
Sanjiang Plain has experienced drastic and excessive human activities (e.g., construction
of artificial ditches, agricultural land reclamation, etc.) in the past few decades, which led
to fragmentation of landscapes such as wetland forests and land degradation; thus, the
ecological environment has changed dramatically [18,19]. Some studies claim that from
the mid-20th century to the beginning of the 21st century, the area of wetlands decreased
from 45.84% to 9.76%, the area of forests decreased from 29.39% to 25.34%, the area of
arable land (including paddy fields and drylands) increased from 8.20% to 57.97%, and
the area of grassland decreased from 15.36% to 4.65% [20]. The land structure, species
diversity and ecosystem structure of the Sanjiang Plain have been altered with drastic
human activities, which is why scientists have taken a keen interest in the study of the
Sanjiang Plain in recent years. Some studies have shown that the deterioration of habitat
conditions due to land use reduces fungal abundance but positively affects the abundance
of certain fungi [21]. Sui et al. [22] found that microbial diversity and community structure
significantly responded to land degradation successional gradients. Pellegrino et al. [23]
found that land use patterns changes affect microbial communities in the long term, and
they cannot recover their natural state even after many years. However, there is a gap in
the research on the differences in microbial community structure among different land
use types in the Sanjiang Plain. Therefore, it is important to study the effects of land use
changes on soil microbial communities in the Sanjiang plain to help better understand
future changes in wetland ecosystem functions due to human activities.

This study aims to investigate the effects of land use changes on soil physicochemical
properties and the diversity and composition of soil microbial communities. We selected
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two typical land use types and an undisturbed control in the Sanjiang Plain that have
been disturbed by human activities: natural wetlands, restored forests, and arable land.
We investigated the diversity and composition of soil microbial communities using PFLA
technology. Our specific objectives were (1) to investigate whether changes in land use
types caused by human activities resulted in significant differences in microbial community
structure, and (2) if so, whether soil physicochemical properties were the main cause of the
differences in microbial community structure.

2. Materials and Methods
2.1. Study Site

The study site is located in Honghe National Nature Reserve of Sanjiang Plain, North-
east China (47◦42′1800′′–47◦520′0700′′ N, 133◦340′3800′′–133◦460′2900′′ E) (Figure 1). The
study site exhibits a typical temperate humid/semi humid monsoon climate and exhibits an
average annual temperature of 1.9 ◦C, with an average annual precipitation of 585 mm and
evaporation of 1166 mm [22]. The soil in this region is classified as typical bleached stagnant
soil and fibrous organic soil according to the USDA soil taxonomy. Three representative
land use types were investigated in this study, including forest, wetland and cropland.
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Figure 1. The location of this study. The red indicates this research site.

The wetland habitat was a pristine marsh meadow wetland that was seasonally
flooded from May to August, and was the typical wetland type occurring in the Sanjiang
Plain where Deyeuxia angustifolia is the dominant plant species. The arable land habitat was
converted from a pristine marsh meadow wetland into a soybean plantation in 2007. The
soybean plantation was fertilized with 370 kg ha−1 y−1 of fertilizer (N, P and K) each year
in May. The forest habitat was plantations of Larix gmelinii that was planted on degraded
wetlands in 2000. At the time of this study in 2016, the average height of the Larix gmelinii
was about 7 m, the diameter at breast height was about 12 cm, and the average density
was 1600 stems ha−1. No fertilization or forest management was conducted in this forest
plantation. The wetland and arable land habitat types were approximately 400 m apart,
and the forest plantation was located between them at a distance of approximately 200 m
from each of the other two habitat types. The wetland, forest, and arable land covered a
total area of 3000 m2, 2000 m2, and 1000 m2, respectively.
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2.2. Soil Sampling Collecting

In July 2017, three 10 m × 10 m independent quadrats were set up in each land use type,
with a distance of no less than 50 m between each quadrat. In each quadrat, ten soil samples
were collected randomly from the soil surface (0–20 cm) using a 5 cm diameter soil auger,
sieved (2 mm mesh) to remove sand, gravel, and coarse plant material, and then placed in
ziplock bags stored in an ice box at 4 ◦C. Soil samples were then delivered immediately to
the laboratory and divided into two parts; one was stored at −20 ◦C for microbiological
analyses, and the other was dried for soil physico-chemical properties analysis.

2.3. Physico-Chemical Properties Analysis

Soil organic carbon (SOC) was determined using an elemental analyzer (VarioEL III,
Langenselbold, Germany) [24]. Briefly, twenty-five mL of 0.3 mol/L KMnO4 solution was
added to 0.5 g of soil, shaken for 30 min at room temperature, then centrifuged (5000 r/min)
for 5 min, and the supernatant was diluted 250-fold with distilled water, and the absorbance
at 565 nm was determined spectrophotometrically. A 1 mmol/L change in the concentration
of KMnO4 corresponds to the oxidation of 9 mg of carbon. A pH analyzer (HQ30d; Hach
Company, Loveland, CO, USA) was used to determine the pH value of soil. Soil moisture
was determined via the drying method and determined gravimetrically by oven drying at
105 ◦C for 24 h; soil total nitrogen (TN) was determined with an elemental analyzer (Flash
EA 1112 N, Thermo Fisher, Waltham, MA, USA); NO3

−-N was determined via the phenol
disulfonic acid colorimetric method; NH4

+-N was determined via the potassium chloride
leaching–indophenol blue colorimetric method. NH4

+-N and NO3
−-N were determined

by the Elemental Analyzer (Flash EA 1112 N, Thermo Fisher, Waltham, MA, USA).

2.4. Phospholipid Fatty Acid (PLFA) Analysis

The PLFA analysis was used to determine soil microbial biomass and comm-
unity composition [25,26]. We used a modified Bligh-Dyer method using an Agilent
5890 gas chromatograph (GC) (Santa Clara, CA, USA) with esterified C18:0 as an internal
standard [27,28]. The chromatographic conditions were as follows: HP-5 column
(30.0 µm × 320 µm × 0.25 µm); injection volume 1 µL; and carrier gas (N2) flow rate
0.8 mL/min. The initial temperature was 140 ◦C and held for 3 min, followed by an
increase from 140 ◦C to 190 ◦C at a rate of 4 ◦C/min and held for 1 min, and finally an
increase from 190 ◦C to 230 ◦C at a rate of 3 ◦C/min and held for 1 min. Detection was
carried out using a flame ionization detector. BAME (Bacterial Acid Methyl Ester) mix
and Supelco 37 Component FAME mix (Sigma-Aldrich, Burlington, MA, USA) were used
for the identification and quantification of each fatty acid. Classification of microbiome
groups based on detected PLFAs (as listed in Table 1) was based on the literature [29].
To facilitate the study of differences in soil microbial community composition and diver-
sity, we further categorized the more abundant microbial species in the soil into different
classes (e.g., actinomycetes are widely considered to be part of the Gram-positive bac-
teria, and the Gram-positive bacterial taxon numbering includes the actinomycetes) for
separate comparisons.

2.5. Data Analysis

We organized the raw PLFA data such as total PLFA mass, composition, and content
of each component expressed as a percentage of total PLFA. The individual characteristic
PLFA biomarker amount was obtained by converting the reaction value of the internal
standard 18:00 in ng/g with the following equation:

N =
Target Response
(18 : 0)Response

× (18 : 0)Concentration(ng/g)× Dissolved sample volume(µL)
Sample dry weight(g)

* where N is the amount of biomarker for the characteristic fatty acid type (ng/g); Response
is the response value for the biomarker; 18:0 is the internal standard C18:0 (ng/µL); and



Microorganisms 2024, 12, 780 5 of 13

the volume of the dissolved sample is in microliters, and the dry mass of the sample is
in grams.

Table 1. The phospholipid fatty acid (PLFA) markers used to identify particular soil microbial
community groups.

Microbial Group Peak Name

Bacteria 12:0, 13:0, 14:0, 15:0, 16:0, 18:0, 22:0, 24:0

Gram-Positive
11:0 iso, 11:0 anteiso, 12:0 iso, 12:0 anteiso, 13:0 iso, 13:0 anteiso, 14:1 iso ω7c, 14:0 iso, 14:0 anteiso, 15:1 iso ω9c,
15:1 iso ω6c, 15:1 anteiso ω9c, 15:0 iso, 15:0 anteiso, 16:0 iso, 16:0 anteiso, 17:1 iso ω9c, 17:0 iso, 17:0 anteiso,
18:0 iso, 19:0 iso, 19:0 anteiso, 20:0 iso, 22:0 is0

Gram-Negative

13:1 ω5c, 13:1 ω4c, 13:1 ω3c, 12:0 2OH, 14:1 ω7c, 14:1 ω5c 15:1 ω9c, 15:1 ω8c, 15:1 ω7c, 15:1 ω6c, 15:1 ω5c,
14:0 2OH, 16:1 ω9c, 16:1 ω7c 16:1 ω6c, 16:1 ω4c, 16:1 ω3c, 17:1 ω9c, 17:1 ω8c, 17:1 ω7c, 17:1 ω6c, 17:0 cyclo
ω7c, 17:1 ω5c, 17:1 ω4c, 17:1 ω3c, 16:0 2OH, 18:1 ω8c, 18:1 ω7c, 18:1 ω6c, 18:1 ω5c, 18:1 ω3c, 19:1 ω9c, 19:1
ω8c, 19:1 ω7c, 19:1 ω6c, 19:0cyclo ω9c, 19:0 cyclo ω7c, 19:0 cyclo ω6c, 20:1 ω9c, 20:1 ω8c, 20:1 ω6c, 20:1 ω4c,
20:0 cyclo ω6c, 21:1 ω9c, 21:1 ω8c, 21:1 ω6c, 21:1 ω5c, 21:1 ω4c, 21:1 ω3c, 22:1 ω9c, 22:1 ω8c, 22:1 ω6c 22:1
ω5c, 22:1 ω3c, 22:0 cyclo ω6c, 24:1 ω9c, 24:1 w7c

Actinomycetes 16:0 10-methyl, 17:1 ω7c 10-methyl, 17:0 10-methyl, 18:1 ω7c10-methyl, 18:0 10-methyl, 19:1 ω7c 10-methyl,
20:0 10-methyl

Fungi 18:1ω9c, 18:2 ω6c, 23:0

Protozoa 19:3ω6c, 20:3ω6c, 20:4ω6c, 20:5ω3c

AM Fungi 16:1 ω5c

Anaerobic 13:0 DMA, 15:0 DMA, 16:2 DMA, 16:1 w9c DMA, 16:1 w7c DMA, 17:0 DMA, 18:2 DMA, 18:1 w9c DMA,
18:1 w7c DMA, 18:0 DMA

The classification of the microbiome was based on the literature [29].

The number of various characteristic fatty acid biomarkers obtained by transformation
was calculated, and the data were preliminarily processed using Excel 2016 (Microsoft,
Redmond, WA, USA). The data were normalized for mean distribution before further
analysis. One-way ANOVA and Duncan’s test were performed using SPSS19.0 (Released
2010. IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY, USA: IBM Corp.) and
the total number or ratio of bacterial, fungal, Gram-positive and Gram-negative markers
were analyzed using Origin 2018 (OriginLab Corporation, Northampton, MA, USA). RDA
analysis and heat maps were produced using R3.2 (Vegan package). The diversity index
calculated as follows [30,31]:

I. Shannon–Wiener (H): H = ∑(Pi)(lnPi);
II. Simpson (D): D = 1 − Σpi2.

* Pi = Ni/N, where Ni is the number of characteristic fatty acids in treatment; n1 is the
number of individuals with the first characteristic fatty acid biomarker; n2 is the number of
individuals with the second characteristic fatty acid biomarker; n is the number.

Of individuals with the nth characteristic fatty acid biomarker.

III. Margalef (M): M = (S − 1)/lnN;
IV. Menhinick (E): E = S/

√
N;

V. Brillouin (B): B = N − 1 lg(N!/n1!n2!. . .n!).

* where N represents the number of total characteristic fatty acids in the experiment, and S
is the total number of characteristic fatty acid markers.

3. Results
3.1. Changes in Soil Physico-Chemical Properties in Different Land Use Types

The soil physico-chemical properties (i.e pH, TN, TOC, NH4
+-N, and SWC) changed

significantly in three different land use types (wetland, forest and cropland), except for the
content of soil NO3

−-N (Table 2). The content of TN in soil was highest in cropland and
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the lowest in forest; the content of NH4
+-N in cropland soil was significantly higher than

that in wetland and forest, but there was no difference between wetland and forest; the
contents of TOC and SWC in wetland soils were significantly higher than those of in forest
and cropland; while the soil pH in forest was significantly higher than that in wetland
and cropland.

Table 2. Soil physicochemical properties of the different land use types.

Site pH TN (g/kg) TOC (g/kg) NH4
+N (mg/kg) NO3−N (mg/kg) SWC (%)

Forest 7.49 ± 0.35 a 1.89 ± 0.40 c 19.22 ± 1.99 b 16.85 ± 1.83 b 0.27 ± 0.05 a 0.23 ± 0.00 b
Wetland 5.61 ± 0.37 b 3.56 ± 0.39 b 40.63 ± 1.03 a 10.65 ± 0.92 b 0.15 ± 0.02 a 0.43 ± 0.13 a

Cropland 5.95 ± 0.12 b 4.63 ± 0.56 a 20.34 ± 1.67 b 55.53 ± 5.62 a 0.22 ± 0.12 a 0.16 ± 0.02 b

Values are given as mean ± standard error (n = 3); different letters represent significant differences between
treatments (p < 0.05). TN: total nitrogen; TOC: total organic carbon; SWC: soil water content. NH4

+N: ammonium
nitrogen; NO3

−N: Nitrate nitrogen.

3.2. Abundance of Soil Microbial PLFA in Different Land Use Types of the Sanjiang Plain

Seven soil microbial taxa (i.e., Gram-positive bacteria, Gram-negative bacteria,
bacteria, actinomycetes, anaerobes, AM fungi) were dominant in all land use types
(Figure 2). Moreover, the accumulative concentration of all PLFA biomarkers combined
were wetland > forest > cropland.
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Figure 2. Stacked histograms of the number of different soil microbial PLFA markers in three different
land use types of Sanjiang plain.

Land use change significantly changed the abundance of soil bacteria, fungi, bacte-
ria/fungi, GP, GN, GP/GN, actinomycetes and anaerobes (Figure 3). The abundance of
soil bacteria was wetland > forest > cropland; the abundance of soil fungi was
forest > wetland > cropland; the ratio of soil bacteria to soil fungi was cropland > wetland
> forest; the abundance of GP and GN was wetland > forest > cropland, but the ratio of GP
to GN was cropland > wetland > forest; the abundance of actinomycetes was wetland and
forest > cropland; the abundance of anaerobes was wetland > forest > cropland.
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Figure 3. Totals of detected PLFAs (ng/g) of characteristic soil microbial communities from different
wetlands in the Sanjiang Plain. (A): Accumulative PLFA biomarkers indicative of unspecified
bacteria and fungi, respectively, and bacteria/fungi ratio. “⋆” represents the ratio of bacteria to
fungi. (B): Accumulative PLFAs for Gram-positive bacteria (GP) and Gram-negative bacteria (GN)
bacteria and their ratio.“⋆” represents the ratio of Gram-positive bacteria to Gram-negative bacteria.
(C): Accumulative PLFAs levels indicative of actinomycetes, and (D) of anaerobes. The different
letters (a–c) represent significant differences between treatments.

3.3. Soil Microbial Alpha Diversity Indices of the Different Land Use Types

The soil microbial alpha indices (i.e., Shannon–Wiener, Simpson, Margalef, Men-
hinick, and Brillouin) were calculated based on PLFA values (Table 3). All soil mi-
crobial alpha indices of cropland were significantly lower than those of the two other
land use types (Table 3, p < 0.05). The Shannon–Wiener, Simpson, Margalef and Bril-
louin indices showed that forest > wetland > cropland, while the Menhinick showed that
forest = wetland > cropland (Table 3).

Table 3. Soil Microbial alpha diversity indices of the three different land use types, based on
PLFA data.

Diversity Index Forest Wetland Cropland

Shannon–Wiener (H) 3.29 ± 0.07 a 3.21 ± 0.02 a 2.23 ± 0.08 b
Simpson (D) 0.95 ± 0.01 a 0.94 ± 0.00 a 0.78 ± 0.07 b
Margalef (M) 4.68 ± 0.11 a 4.64 ± 0.23 a 3.34 ± 0.09 b
Menhinick (E) 0.35 ± 0.01 a 0.35 ± 0.02 a 0.28 ± 0.04 b
Brillouin (B) 3.23 ± 0.05 a 3.12 ± 0.06 a 2.65 ± 0.05 b

Different letters in the same row indicate significant differences between different land use types Note: different
lowercase letters (a,b) represent comparisons at the 0.05 significance level.
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3.4. Relationship between Soil Microbial Structure and Soil Chemical Properties

Redundancy analysis was used to analyze the correlation with the soil microbial
structure composition and the soil properties of the three land use types (Figure 4). The
soil microbial community structure of wetland positively correlated with TOC (r2 = 0.918,
p = 0.004), but negatively correlated with moisture content (r2 = 0.905, p = 0.001) (Figure 4).
The soil microbial community structure of cropland, contrarily, positively correlated with
moisture content, but negatively correlated with TOC (r2 = 0.905, p = 0.001). The soil
microbial community structure of forest positively correlated with soil pH and NO3

−-N.
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A Venn diagram can be used to count the number of common and unique PLFAs in
multiple samples and can intuitively show the compositional similarity and difference
between environmental samples at different classification levels. As shown in Figure 5,
the numbers of core PLFAs and unique PFLAs in the nine soil samples were 55 and 9,
respectively. Among them, the forest soil sample contained a total of 61 PLFAs, and the
number of unique PLFAs was 3. The total number of PLFAs in the wetland soil sample was
63, and the number of unique PLFAs was 4. The total number of PLFAs in the cropland soil
sample was 60, and the unique PLFAs was 2.

We considered the correlation between soil physicochemical properties and the abun-
dance of seven dominant microbial taxa based on the relative abundance profiles of microor-
ganisms and recorded the results in a correlation heat map (Figure 6). Soil microorganisms
showed different correlations with soil physicochemical properties. The most obvious dif-
ference in the heatmaps is the correlation between soil moisture content, which positively
correlated with the abundance of soil actinomycetes, anaerobes, bacteria, Gram-positive
bacteria and Gram-negative bacteria, while soil pH and NH4

+N negatively correlated
with the abundance of soil anaerobes, bacteria, Gram-positive bacteria and Gram-negative
bacteria. TN was negatively correlated with fungi and actinomycetes, but not significantly
correlated with most other microorganisms.
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4. Discussion
4.1. Changes of Soil Physicochemical Properties under Different Land use Types in Sanjiang Plain

This study showed significant differences in soil physico-chemical properties between
the three land use types (Table 2, p < 0.05). Anthropogenic fertilization in cropland and
different natural hydrological conditions in forest and wetland may have contributed to
this result. For example, TN in soil showed cropland > wetland > forest (Table 2), and in
terms of water content, wetland was significantly higher than the other two land uses. The
pH of wetland (5.61) and cropland (5.95) was slightly acidic, while forest (7.49) was slightly
alkaline. TOC in wetland was significantly higher than in the other two land use types,
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while NH4
+N was highest in cropland. The highest TOC content in the wetland may be due

to the accumulation of organic matter over the years, but the abundant microorganisms in
wetlands are unable to use these nutrient deposits [3], which is consistent with our findings.
And the other two land use types have a longer air exposure time, which provides better
conditions for organic carbon uptake and utilization by plants and microorganisms in them,
in agreement with the findings of [32]. Our results showed that the TN content was highest
in the cropland, which may be due to the application of fertilizer to increase the nitrogen
content of the soil and the accumulation of crop residues by annual ploughing compared
to the other two land use types, which allows for the accumulation of organic nitrogen
content in the soil, and there are many researchers who have confirmed our view [33,34].

4.2. Effects of Different Land use Types on Soil Microbial Composition in Sanjiang Plain

We expressed microbial biomass in terms of PLFA quantities (ng/g). Bacterial biomass
was highest in wetlands, and fungal biomass was highest in forests, but bacterial and
fungal biomass were both lowest in cropland compared to forest and wetland (Figure 3a).
Actinobacteria biomass of forest and wetland was similar, but significantly higher than
that of cropland (Figure 3c). The biomass of Gram positive, Gram negative and anaerobes
were all highest in wetland soil, while they were lowest in cropland (Figure 3b). In terms of
differences in microbial biomass across land use types, the findings of Wang et al. [34] and
Wang et al. [35] are consistent with our findings. However, other studies are contradictory
to ours [3,36,37]. This may be related to soil moisture and soil nutrients. Hydrological
conditions such as soil moisture and aeration could affect the abundance of microbial
communities. Soil moisture content may affect microbial growth and metabolism, leading
to changes in soil microbial communities [36,38]. Another reason may be the difference
in the life cycles of the main fungi studied in this study, and the season of sampling and
the weather (e.g., temperature and humidity) may also affect the structure of the microbial
community as well as the physico-chemical properties of the soil, and this should be taken
into account in future studies.

In this study, it was found that the main factors affecting the soil microbial community
structure were different in the three land use types. Among them, TOC, water content, and
NH4

+N significantly affected soil microbial community structure in cropland and wetland
soils, and pH significantly affected soil microbial community structure in forests. This is
mainly due to the long-term high moisture content and anaerobic state of wetland soil,
leading to slowly decomposing soil organic carbon and a high accumulation of organic
carbon content, and cropland has a high nutrient content in the soil due to external fer-
tilization. Many studies have shown that soil water content, TOC, and NH4

+N affect the
microbial community structure [39–42], which is in agreement with our findings. However,
Clairmont et al. [39] found that the soil microbial community structure was also influenced
by aboveground vegetation composition, and this should be taken into account in future
studies of soil microbial communities.

4.3. Effects of Different Land Use Types on Soil Microbial Diversity

This results showed that soil microbial community composition and diversity changed
significantly in the three different land use types. The α-diversity indices of forests and
wetlands were significantly higher than those of cropland, which is consistent with the
previous findings [3,37]. The environmental conditions of cropland soils are affected by
disturbances such as agricultural tillage, and their soils are rich in nutrients but have a
single above-ground vegetation type and low abundance of deadfall inputs, so the diversity
of soil microorganisms in cropland is lower than that of the other two land use types. Lynn
et al. [43] found that soil microbial diversity in wetlands is higher than that in cropland
because land use interferes with ecological stability, which reduces the soil microbial
diversity. Suleiman et al. [44] also found that deforestation leads to a decrease in soil
microbial diversity, which is consistent with our findings.
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The application of PLFA techniques to characterize soil microbial communities in
different land use types has certain disadvantages: (1) Not all characteristic fatty acids
of soil microbes are known, and, therefore, the specific fatty acids that can be detected
cannot always be accurately associated with the soil microbes that produce them. (2) PLFA
techniques rely on labeling fatty acids and determining the structure of the microbial
community based on the location of the fatty acids. Changes in the location of the marker or
inaccurate labeling can affect the results. (3) PLFA technology cannot detect changes in the
metabolism and function of soil microbial communities due to changes in the environment.
However, PLFA is complementary to other techniques (e.g., high-throughput sequencing
and biology technologies).

5. Conclusions

Phospholipid fatty acid (PLFA) analysis was used to quantitatively determine the
types and contents of soil microbial PLFA in different land use types in the Sanjiang Plain.
The results showed that the soil microbial community structure varied significantly in three
land use types, with wetlands having the highest soil microbial community diversity and
cropland having the lowest soil microbial community diversity and microbial abundance.
Soil pH, water content, TOC and available nitrogen content were the main environmental
factors affecting soil microbial community composition. Changes in land use types caused
by human activities can lead to significant differences in microbial community structure due
to changes in soil physico-chemical properties. This result can be used to predict the effects
of land use changes on soil microbial communities. Future studies should incorporate other
techniques (e.g., high-throughput sequencing) to more deeply investigate the changes in
soil microbial communities and functions due to land use changes.
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