Peatland Pond Microbiome and Biogeochemical Responses to Solar Radiation Extremes in a High-Altitude Wetland, Salar de Huasco, Chile
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site, In Situ Analyses, and Sample Collection
2.2. Nutrients and GHG Analyses
2.3. Experiments Carried out to Evaluate GHG Exchange and Nutrient Recycling in the Pond Area
2.4. Photosynthetic Activity, In Vivo Chlorophyll a Fluorescence Measurement, and Parameters
2.5. Total DNA Extraction and 16S rDNA Amplification
2.6. Bioinformatic Processing of Illumina 16S rDNA Sequences and Biostatistical Analysis
2.7. Statistical Analysis
3. Results
3.1. Environmental, Biogeochemical, and Light Changes
3.2. Microbial Composition in the Water and Sediments of the Pond and Its Variability During Morning and Afternoon
3.3. Functional Shifts of Specific Microorganisms
4. Discussion
4.1. Interaction Between Extreme Environmental Conditions and Biogeochemistry of a High-Altitude Pond
4.2. Microbial Communities Compartmentalization and Shifts During the Day
4.3. Peatland Pond Systems as Natural Laboratories to Identify Key Biogeochemical Budgets and Microbial Communities Changes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruiz-González, C.; Simó, R.; Sommaruga, R.; Gasol, J.M. Away from Darkness: A Review on the Effects of Solar Radiation on Heterotrophic Bacterioplankton Activity. Front. Microbiol. 2013, 4, 131. [Google Scholar] [CrossRef]
- Celis-Plá, P.S.M.; Rearte, T.A.; Neori, A.; Masojídek, J.; Bonomi-Barufi, J.; Álvarez-Gómez, F.; Ranglová, K.; Carmo da Silva, J.; Abdala, R.; Gómez, C.; et al. A New Approach for Cultivating the Cyanobacterium Nostoc Calcicola (MACC-612) to Produce Biomass and Bioactive Compounds Using a Thin-Layer Raceway Pond. Algal Res. 2021, 59, 102421. [Google Scholar] [CrossRef]
- Neale, P.J.; Williamson, C.E.; Banaszak, A.T.; Häder, D.-P.; Hylander, S.; Ossola, R.; Rose, K.C.; Wängberg, S.-Å.; Zepp, R. The Response of Aquatic Ecosystems to the Interactive Effects of Stratospheric Ozone Depletion, UV Radiation, and Climate Change. Photochem. Photobiol. Sci. 2023, 22, 1093–1127. [Google Scholar] [CrossRef]
- Qin, S.; Yuan, H.; Hu, C.; Oenema, O.; Zhang, Y.; Li, X. Determination of Potential N2O-Reductase Activity in Soil. Soil Biol. Biochem. 2014, 70, 205–210. [Google Scholar] [CrossRef]
- Lu, S.; Liu, X.; Liu, C.; Cheng, G.; Shen, H. Influence of Photoinhibition on Nitrification by Ammonia-Oxidizing Microorganisms in Aquatic Ecosystems. Rev. Environ. Sci. Bio/Technol. 2020, 19, 531–542. [Google Scholar] [CrossRef]
- Rain-Franco, A.; Muñoz, C.; Fernandez, C. Ammonium Production off Central Chile (36°S) by Photodegradation of Phytoplankton-Derived and Marine Dissolved Organic Matter. PLoS ONE 2014, 9, e100224. [Google Scholar] [CrossRef]
- Smith, J.M.; Chavez, F.P.; Francis, C.A. Ammonium Uptake by Phytoplankton Regulates Nitrification in the Sunlit Ocean. PLoS ONE 2014, 9, e108173. [Google Scholar] [CrossRef]
- Pérez, V.; Hengst, M.; Kurte, L.; Dorador, C.; Jeffrey, W.H.; Wattiez, R.; Molina, V.; Matallana-Surget, S. Bacterial Survival under Extreme UV Radiation: A Comparative Proteomics Study of Rhodobacter Sp., Isolated from High Altitude Wetlands in Chile. Front. Microbiol. 2017, 8, 1173. [Google Scholar] [CrossRef]
- Albarracín, V.H.; Kurth, D.; Ordoñez, O.F.; Belfiore, C.; Luccini, E.; Salum, G.M.; Piacentini, R.D.; Farías, M.E. High-up: A Remote Reservoir of Microbial Extremophiles in Central Andean Wetlands. Front. Microbiol. 2015, 6, 1404. [Google Scholar] [CrossRef]
- Xu, J.; Morris, P.J.; Liu, J.; Holden, J. PEATMAP: Refining Estimates of Global Peatland Distribution Based on a Meta-Analysis. CATENA 2018, 160, 134–140. [Google Scholar] [CrossRef]
- Oyague Passuni, E.; Cooper, D. Peatlands of the Central Andes Puna, South America. Wetl. Sci. Pract. 2020, 37, 255–260. [Google Scholar] [CrossRef]
- Dorador, C.; Molina, V.; Hengst, M.; Eissler, Y.; Cornejo, M.; Fernández, C.; Pérez, V. Microbial Communities Composition, Activity, and Dynamics at Salar de Huasco: A Polyextreme Environment in the Chilean Altiplano. In Microbial Ecosystems in Central Andes Extreme Environments; Farías, M.E., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 123–139. ISBN 978-3-030-36192-1. [Google Scholar]
- Molina, V.; Eissler, Y.; Fernandez, C.; Cornejo-D’Ottone, M.; Dorador, C.; Bebout, B.M.; Jeffrey, W.H.; Romero, C.; Hengst, M. Greenhouse Gases and Biogeochemical Diel Fluctuations in a High-Altitude Wetland. Sci. Total Environ. 2021, 768, 144370. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, P.; Acosta, E.; Dorador, C.; Sommaruga, R. Large Differences in Bacterial Community Composition among Three Nearby Extreme Waterbodies of the High Andean Plateau. Front. Microbiol. 2016, 7, 976. [Google Scholar] [CrossRef]
- Eissler, Y.; Castillo-Reyes, A.; Dorador, C.; Cornejo-D’Ottone, M.; Celis-Plá, P.S.M.; Aguilar, P.; Molina, V. Virus-to-Prokaryote Ratio in the Salar de Huasco and Different Ecosystems of the Southern Hemisphere and Its Relationship with Physicochemical and Biological Parameters. Front. Microbiol. 2022, 13, 938066. [Google Scholar] [CrossRef]
- Molina, V.; Dorador, C.; Fernández, C.; Bristow, L.; Eissler, Y.; Hengst, M.; Hernandez, K.; Olsen, L.M.; Harrod, C.; Marchant, F.; et al. The Activity of Nitrifying Microorganisms in a High-Altitude Andean Wetland. FEMS Microbiol. Ecol. 2018, 94, fiy062. [Google Scholar] [CrossRef]
- Dorador, C.; Vila, I.; Imhoff, J.F.; Witzel, K.P. Cyanobacterial Diversity in Salar de Huasco, a High Altitude Saline Wetland in Northern Chile: An Example of Geographical Dispersion? FEMS Microbiol. Ecol. 2008, 64, 419–432. [Google Scholar] [CrossRef]
- Eissler, Y.; Gálvez, M.J.; Dorador, C.; Hengst, M.; Molina, V. Active Microbiome Structure and Its Association with Environmental Factors and Viruses at Different Aquatic Sites of a High-Altitude Wetland. Microbiologyopen 2019, 8, e00667. [Google Scholar] [CrossRef]
- Molina, V.; Hernández, K.; Dorador, C.; Eissler, Y.; Hengst, M.; Pérez, V.; Harrod, C. Bacterial Active Community Cycling in Response to Solar Radiation and Their Influence on Nutrient Changes in a High-Altitude Wetland. Front. Microbiol. 2016, 7, 1823. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, A. Heat and Dissolved Oxygen Exchanges between the Sediment and Water Column in a Shallow Salty Lagoon. J. Geophys. Res. Biogeosci. 2014, 119, 596–613. [Google Scholar] [CrossRef]
- Gray, M.A.; Pratte, Z.A.; Kellogg, C.A. Comparison of DNA Preservation Methods for Environmental Bacterial Community Samples. FEMS Microbiol. Ecol. 2013, 83, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Atlas, E.L.; Gordon, L.I.; Hager, S.W.; Park, P.K. A Practical Manual for Use of the Technicon AutoAnalyzer in Seawater Nutrient Analyses (Revised); Tech. Rep. 215; Department of Oceanography, School of Science, Oregon State University: Corvallis, OR, USA, 1971. [Google Scholar]
- McAuliffe, C. Gas Chromatographic Determination of Solutes by Multiple Phase Equilibrium. Chem. Technol. 1971, 1, 46–51. [Google Scholar]
- Philippe, G.; Jean-Marc, A.; Vincent, U.; Jean-Claude, B. Estimation of Nitrifying Bacterial Activities by Measuring Oxygen Uptake in the Presence of the Metabolic Inhibitors Allylthiourea and Azide. Appl. Environ. Microbiol. 1998, 64, 2266–2268. [Google Scholar] [CrossRef]
- Hatzenpichler, R.; Lebedeva, E.V.; Spieck, E.; Stoecker, K.; Richter, A.; Daims, H.; Wagner, M. A Moderately Thermophilic Ammonia-Oxidizing Crenarchaeote from a Hot Spring. Proc. Natl. Acad. Sci. USA 2008, 105, 2134–2139. [Google Scholar] [CrossRef]
- Jansson, B.M.; Malandrin, L.; Johansson, H.E. Cell Cycle Arrest in Archaea by the Hypusination Inhibitor N1-Guanyl-1,7-Diaminoheptane. J. Bacteriol. 2000, 182, 1158–1161. [Google Scholar] [CrossRef] [PubMed]
- Löscher, C.R.; Kock, A.; Könneke, M.; Laroche, J.; Bange, H.W.; Schmitz, R.A. Production of Oceanic Nitrous Oxide by Ammonia-Oxidizing Archaea. Biogeosciences 2012, 9, 2419–2429. [Google Scholar] [CrossRef]
- Rearte, T.A.; Celis-Plá, P.S.M.; Neori, A.; Masojídek, J.; Torzillo, G.; Gómez-Serrano, C.; Silva Benavides, A.M.; Álvarez-Gómez, F.; Abdala-Díaz, R.T.; Ranglová, K.; et al. Photosynthetic Performance of Chlorella Vulgaris R117 Mass Culture Is Moderated by Diurnal Oxygen Gradients in an Outdoor Thin Layer Cascade. Algal Res. 2021, 54, 102176. [Google Scholar] [CrossRef]
- Schreiber, U.; Bilger, W.; Neubauer, C. Chlorophyll Fluorescence as a Nonintrusive Indicator for Rapid Assessment of In Vivo Photosynthesis. In Ecophysiology of Photosynthesis; Springer: Berlin/Heidelberg, Germany, 1995; pp. 49–70. [Google Scholar]
- Parada, A.E.; Needham, D.M.; Fuhrman, J.A. Every Base Matters: Assessing Small Subunit RRNA Primers for Marine Microbiomes with Mock Communities, Time Series and Global Field Samples. Environ. Microbiol. 2016, 18, 1403–1414. [Google Scholar] [CrossRef]
- Apprill, A.; McNally, S.; Parsons, R.; Weber, L. Minor Revision to V4 Region SSU RRNA 806R Gene Primer Greatly Increases Detection of SAR11 Bacterioplankton. Aquat. Microb. Ecol. 2015, 75, 129–137. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing Large Minimum Evolution Trees with Profiles Instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Ginestet, C. Ggplot2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. Ser. A Statistics Soc. 2011, 174, 245–246. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Package ‘Vegan’—Community Ecology Package; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Andersen, S.K.; Kirkegaard, R.H.; Karst, S.M.; Albertsen, M. Ampvis2: An R Package to Analyse and Visualise 16S rRNA Amplicon Data; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Kolde, R. Pheatmap: Pretty Heatmaps; R Foundation for Statistical Computing: Vienna, Austria, 2022; pp. 1–8. [Google Scholar]
- Oliveros, J.; Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams. Available online: https://bioinfogp.cnb.csic.es/tools/venny/ (accessed on 29 April 2022).
- Thiel, V.; Tank, M.; Bryant, D.A. Diversity of Chlorophototrophic Bacteria Revealed in the Omics Era. Annu. Rev. Plant Biol. 2018, 69, 21–49. [Google Scholar] [CrossRef]
- Anderson, M.J.; Willis, T.J. Canonical Analysis of Principal Coordinates: A Useful Method of Constrained Ordination for Ecology. Ecology 2003, 84, 511–525. [Google Scholar] [CrossRef]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E Ltd.: Plymouth, UK, 2008. [Google Scholar]
- Kindt, R.; Kindt, M.R. Package “Biodiversity R”. Package for Community Ecology and Suitability Analysis; R Foundation for Statistical Computing: Vienna, Austria, 2019; Volume 2, pp. 11–12. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Gao, J.; Gu, F.; NH, A.; Ruan, H.; He, G. Investigation on Culturable Microflora in Tibetan Kefir Grains from Different Areas of China. J. Food Sci. 2012, 77, M425–M433. [Google Scholar] [CrossRef]
- Pérez, V.; Dorador, C.; Molina, V.; Yáñez, C.; Hengst, M. Rhodobacter Sp. Rb3, an Aerobic Anoxygenic Phototroph which Thrives in the Polyextreme Ecosystem of the Salar de Huasco, in the Chilean Altiplano. Antonie Van Leeuwenhoek 2018, 111, 1449–1465. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, Y.; Liu, H.; Li, Y.; Zhang, Z.; Yu, Y. Prokaryotic Taxonomy and Functional Diversity Assessment of Different Sequencing Platform in a Hyper-Arid Gobi Soil in Xinjiang Turpan Basin, China. Front. Microbiol. 2023, 14, 1125137. [Google Scholar] [CrossRef]
- Bonetti, G.; Trevathan-Tackett, S.M.; Carnell, P.E.; Macreadie, P.I. Implication of Viral Infections for Greenhouse Gas Dynamics in Freshwater Wetlands: Challenges and Perspectives. Front. Microbiol. 2019, 10, 1962. [Google Scholar] [CrossRef] [PubMed]
- Cubillos, C.F.; Aguilar, P.; Moreira, D.; Bertolino, P.; Iniesto, M.; Dorador, C.; López-García, P. Exploring the Prokaryote-Eukaryote Interplay in Microbial Mats from an Andean Athalassohaline Wetland. Microbiol. Spectr. 2024, 12, e00072-24. [Google Scholar] [CrossRef] [PubMed]
- Duarte, C.M.; Losada, I.J.; Hendriks, I.E.; Mazarrasa, I.; Marbà, N. The Role of Coastal Plant Communities for Climate Change Mitigation and Adaptation. Nat. Clim. Change 2013, 3, 961–968, Erratum in Nat. Clim. Change 2016, 6, 802. [Google Scholar] [CrossRef]
- Cui, S.; Liu, P.; Guo, H.; Nielsen, C.K.; Pullens, J.W.M.; Chen, Q.; Pugliese, L.; Wu, S. Wetland Hydrological Dynamics and Methane Emissions. Commun. Earth Environ. 2024, 5, 470. [Google Scholar] [CrossRef]
- Paquis, P.; Hengst, M.B.; Florez, J.Z.; Tapia, J.; Molina, V.; Pérez, V.; Pardo-Esté, C. Short-Term Characterisation of Climatic-Environmental Variables and Microbial Community Diversity in a High-Altitude Andean Wetland (Salar de Huasco, Chile). Sci. Total Environ. 2023, 859, 160291. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, T.L. The Trouble with Oxygen: The Ecophysiology of Extant Phototrophs and Implications for the Evolution of Oxygenic Photosynthesis. Free Radic. Biol. Med. 2019, 140, 233–249. [Google Scholar] [CrossRef]
- Koblížek, M. Ecology of Aerobic Anoxygenic Phototrophs in Aquatic Environments. FEMS Microbiol. Rev. 2015, 39, 854–870. [Google Scholar] [CrossRef]
- Szabó-Tugyi, N.; Vörös, L.; V-Balogh, K.; Botta-Dukát, Z.; Bernát, G.; Schmera, D.; Somogyi, B. Aerobic Anoxygenic Phototrophs Are Highly Abundant in Hypertrophic and Polyhumic Waters. FEMS Microbiol. Ecol. 2019, 95, fiz104. [Google Scholar] [CrossRef]
- Ward, B.B.; Jensen, M.M. The Microbial Nitrogen Cycle. Front. Microbiol. 2014, 5, 553. [Google Scholar] [CrossRef]
- Grossart, H.-P. Ecological Consequences of Bacterioplankton Lifestyles: Changes in Concepts Are Needed. Environ. Microbiol. Rep. 2010, 2, 706–714. [Google Scholar] [CrossRef]
- Crombie, A.T.; Wright, C.L.; Carrión, O.; Lehtovirta-Morley, L.E.; Murrell, J.C. Isoprene Production by Sphagnum Moss Is Balanced by Microbial Uptake, as Revealed by Selective Inhibitors. Environ. Microbiol. 2025, 27, e70114. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Purdy, K.J.; Eyice, Ö.; Shen, L.; Harpenslager, S.F.; Yvon-Durocher, G.; Dumbrell, A.J.; Trimmer, M. Disproportionate Increase in Freshwater Methane Emissions Induced by Experimental Warming. Nat. Clim. Change 2020, 10, 685–690. [Google Scholar] [CrossRef]
- Arsenault, J.; Talbot, J.; Brown, L.E.; Holden, J.; Martinez-Cruz, K.; Sepulveda-Jauregui, A.; Swindles, G.T.; Wauthy, M.; Lapierre, J.F. Biogeochemical distinctiveness of peatland ponds, thermokarst waterbodies, and lakes. Geophys. Res. Lett. 2022, 49, e2021GL097492. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eissler, Y.; Yanez-Montalvo, A.; Celis-Plá, P.S.M.; Cornejo-D’Ottone, M.; Trabal, A.; Dorador, C.; Piccini, C.; Falcón, L.I.; Romero, C.; Aguilar-Muñoz, P.; et al. Peatland Pond Microbiome and Biogeochemical Responses to Solar Radiation Extremes in a High-Altitude Wetland, Salar de Huasco, Chile. Microorganisms 2025, 13, 1990. https://doi.org/10.3390/microorganisms13091990
Eissler Y, Yanez-Montalvo A, Celis-Plá PSM, Cornejo-D’Ottone M, Trabal A, Dorador C, Piccini C, Falcón LI, Romero C, Aguilar-Muñoz P, et al. Peatland Pond Microbiome and Biogeochemical Responses to Solar Radiation Extremes in a High-Altitude Wetland, Salar de Huasco, Chile. Microorganisms. 2025; 13(9):1990. https://doi.org/10.3390/microorganisms13091990
Chicago/Turabian StyleEissler, Yoanna, Alfredo Yanez-Montalvo, Paula S. M. Celis-Plá, Marcela Cornejo-D’Ottone, Andrés Trabal, Cristina Dorador, Claudia Piccini, Luisa I. Falcón, Carlos Romero, Polette Aguilar-Muñoz, and et al. 2025. "Peatland Pond Microbiome and Biogeochemical Responses to Solar Radiation Extremes in a High-Altitude Wetland, Salar de Huasco, Chile" Microorganisms 13, no. 9: 1990. https://doi.org/10.3390/microorganisms13091990
APA StyleEissler, Y., Yanez-Montalvo, A., Celis-Plá, P. S. M., Cornejo-D’Ottone, M., Trabal, A., Dorador, C., Piccini, C., Falcón, L. I., Romero, C., Aguilar-Muñoz, P., & Molina, V. (2025). Peatland Pond Microbiome and Biogeochemical Responses to Solar Radiation Extremes in a High-Altitude Wetland, Salar de Huasco, Chile. Microorganisms, 13(9), 1990. https://doi.org/10.3390/microorganisms13091990