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Abstract: Despite efforts to control toxigenic Fusarium species, wilt and head-blight infections are
destructive and economically damaging diseases that have global effects. The utilization of biological
control agents in disease management programs has provided an effective, safe, and sustainable
means to control Fusarium-induced plant diseases. Among the most widely used microbes for
biocontrol agents are members of the genus Bacillus. These species influence plant and fungal
pathogen interactions by a number of mechanisms such as competing for essential nutrients,
antagonizing pathogens by producing fungitoxic metabolites, or inducing systemic resistance in
plants. The multivariate interactions among plant-biocontrol agent-pathogen are the subject of
this study, in which we survey the advances made regarding the research on the Bacillus-Fusarium
interaction and focus on the principles and mechanisms of action among plant-growth promoting
Bacillus species. In particular, we highlight their use in limiting and controlling Fusarium spread and
infestations of economically important crops. This knowledge will be useful to define strategies for
exploiting this group of beneficial bacteria for use as inoculants by themselves or in combination with
other microbes for enhanced crop protection.
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1. Introduction

Crop losses due to plant diseases pose a major threat to food security worldwide. The impact
of losses ranges from a modest reduction of plant-growth measurements to more serious damage
leading to plant death and reduced yield [1,2]. To prevent or control such pathogenic organisms and
their infestations, many approaches have been undertaken, including the development of resistant
varieties through plant breeding, the production of genetically modified resistant plants, and the
use of chemical inputs such as fungicides. However, all have limitations. Development of resistant
varieties requires time and moreover, resistance is not universal or permanent because the pathogen
often evolves to overcome host plant resistance. Consequently, in the absence of effective and
economically feasible alternatives, growers still rely heavily on easy-to-use conventional chemical
pesticides and fungicides [3,4]. However, the utilization of these chemicals is strongly correlated
with environmental contamination and disturbances in the natural balance of the soil microflora [4].
In addition, the presence of pesticide and fungicide residues on food may have adverse effects on
human health, which has also raised significant concerns. Hence, with growing consumer awareness
about low cost and sustainable agricultural methods, the need for effective biological control agents
(BCA) is clear [5,6].

Among a variety of bacterial genera, species of Bacillus, Pseudomonas, and Streptomyces have been
widely used as BCA [7,8]. However, plant-growth promoting (PGP) members of the genus Bacillus
offer advantages over other microorganisms, owing to their ubiquity, ability to form endospores,
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and tolerance to fluctuating pH, temperature, and osmotic conditions [9], as well as their lack of
pathogenicity [10–12]. Bacillus spp. colonize and establish robust interactions with roots by forming
biofilms [13]. They promote plant growth by increasing nutrient uptake through siderophores and
organic acids involved in P-solubilization, producing phytohormones, acting as bacterial antagonists,
or inducing plant resistance against pathogens, as well as lysing fungal mycelia via hydrolytic enzyme
synthesis and secretion [14].

Soil-borne phytopathogens are serious constraints to plant growth and productivity [15].
Most soil-borne pathogens can survive in the soil for extended periods of time where they remain dormant
until they find a suitable host [16]. Fusarium species are globally important pathogens of agricultural
plants and livestock, and also humans [17]. By inducing necrosis, wilting, and producing mycotoxins,
Fusarium fungi are responsible for massive economic losses of many staple cereal food crops worldwide.
In this review, we will focus on two of the most devastating species, Fusarium oxysporum, which causes
vascular wilt, root rot, and damping-off in many plants [18] and also F. graminearum, which causes
head blight on barley and wheat and infects many other cereal grasses as well [19].

Our aim is to highlight the sustainable strategies available for the control of Fusarium using
beneficial Bacillus species and the mechanisms whereby they achieve disease control. We analyze the
recent literature on the utilization of Bacillus species and their products in reducing crop damage by
Fusarium species.

2. F. oxysporum and Vascular Wilt

The genus Fusarium, a well-known soil-borne plant pathogen, consists of a large number of
plant-associated fungal species that have serious damaging effects on infected plants, such as eliciting
chlorosis, necrosis, premature leaf drop, browning of the vascular system, and wilting, all of which
subsequently cause significant yield losses. Fusarium species demonstrate a high level of host specificity,
and, based on the plant species and cultivars they infect, are classified into more than 120 formae speciales
and races [20]. Included in the genus are wilt pathogens such as F. oxysporum, F. solani, F. graminearum,
and F. verticillioides.

One of the most economically destructive Fusarium species is F. oxysporum Schlecht. emend. Synd.
et Hans, which infects more than 150 different plant hosts [21], including tomato (Lycopersicon spp.;
F. oxysporum f. sp. lycopersici), banana (Musa spp.; F. oxysporum f. sp. cubense), cabbage (Brassica spp.;
F. oxysporum f. sp. conglutinans), cotton (Gossypium spp.; F. oxysporum f. sp. vasinfectum), flax (Linum spp.;
F. oxysporum f. sp lini), watermelon (Citrullus spp.; F. oxysporum f. sp. niveum), muskmelon (Cucumis
spp.; F. oxysporum f. sp. melonis), onion (Allium spp.; F. oxysporum f. sp. cepae), pea (Pisum spp.;
F. oxysporum f. sp. pisi), gladiolus (Gladiolus spp.; F. oxysporum f. sp. gladioli), and tulip (Tulipa spp.;
F. oxysporum f. sp. tulipae) [20,22]. De Sain and Rep [23] reported that F. oxysporum secreted small,
cysteine-rich proteins that contribute to its virulence. Additionally, the presence and absence of
individual pathogenicity-related Secreted In Xylem (SIX) genes and sequence variation within the SIX
genes can be used to discriminate between different formae specialis and races of F. oxysporum [24].

Recent reports of the close association between a polyphagous beetle and a new, but yet
undescribed Fusarium species, have elicited major concern because this new interaction has resulted
in an increase in avocado dieback disease in Los Angeles and Orange Counties, California [25].
The presence of Fusarium-induced dieback in urban landscapes throughout southern California is
a potential threat to both industry and natural environments not only because of possible spread
to commercial avocado fields, but also to native trees [26]. Mendel et al. [27] described a similar
infestation that caused significant damage to commercial avocado orchards in Israel in 2009.

Pathogenic F. oxysporum isolates infect their hosts through the roots. They invade the xylem
vessels and eventually result in lethal wilting of the infected plant. Wilting results from the restriction
of movement of water in the vascular bundles [28], but the pathogenesis and invasion of plants by
F. oxysporum in part is brought about by the toxic metabolites produced by the fungus.
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In addition to eliciting major crop diseases, F. oxysporum in clinical settings causes systemic
fusariosis in immunocompromised individuals [29]. López-Berges et al. [30] studied the velvet protein
complex-based regulation of beauvericin mycotoxin production in F. oxysporum f. sp. lycopersici strain
4287. Of the four major components of the complex, deletion of velA, velB, and to a minor extent velC,
caused distortions in the shape and size of microconidia, whereas velA and laeA were shown to be
required for full virulence of F. oxysporum on tomato plants and immunodepressed mice. These data
confirmed the critical contribution of the velvet protein complex in the expression of the gene cluster
for beauvericin, a mycotoxin that functions as a virulence determinant.

3. F. graminearum, Killer of Cereals

Fusarium graminearum (teleomorph Gibberella zeae (Schwein.) Petch), the causative agent of
Fusarium head blight (FHB) and crown rot (CR) on cereal crops is responsible for substantial economic
losses every year [31]. Fusarium head blight is worldwide one of the most devastating fungal diseases
affecting major cereal crops including wheat, barley, and maize [32,33]. The pathogen poses a two-fold
threat: first, infested cereals show significantly compromised seed quality and yield, and second,
the scabby grain is often contaminated with mycotoxins, which could cause serious human and
livestock health damage [34,35].

4. Major Fusarium Disease Determinants: Mycotoxins

Fusarium fungi are widespread in the cereal-growing areas of the world and produce a range of
mycotoxins, whose distributions are also varied [36]. Mycotoxins are secondary chemical metabolites
synthesized by a variety of fungi. Numerous mycotoxins produced by Fusarium species with the ability
to cause diseases in plants and animals have been described [37].

Although fusaria are found in all cereal-growing regions, they exhibit significant geographical
differences in their natural distribution, and so do their corresponding mycotoxins, the levels of which
are influenced by a number of factors with environmental conditions, crop production, and storage
methods being the major determinants [38]. Toxins produced by F. oxysporum include fusaric
acid, beauvericin (BEA), moniliformin, naphthazarins, and sambutoxin [39]. Important mycotoxins
produced by other Fusarium species that are hazardous to human and animal health include
fumonisins, the trichothecenes (T2-toxin, nivalenol, and deoxynivalenol) and zearalenone [40].
Hernandes et al. [41] demonstrated that filtered Fusarium oxysporum extract induced an inflammatory
reaction and programmed cell death in rat skin. Similarly, de Melo and Piccinin [42] reported the toxic
activity of F. oxysporum where the fungal culture extracts provoked reactions that produced withering
in cucumber cells and plantlets, leading to cell death.

Strains of the F. graminearum species complex (FGSC) cause head blight and spike disease, which
is of significant economic importance. The reduced grain quality comes about from the accumulation
of a diversity of F. graminearum mycotoxins. This pathogen typically produces one of the three
potential trichothecene profiles: (i) deoxynivalenol (DON) and 3-acetyldeoxynivalenol (the 3ADON
chemotype); (ii) DON and 15-acetyldeoxynivalenol (the 15ADON chemotype); or (iii) nivalenol (NIV),
its acetylated derivatives, and low levels of DON (the NIV chemotype) [43]. Deoxynivalenol (DON),
also known as vomitoxin, is the most frequently detected trichothecene and contaminant in grain
samples. It causes multiple effects on eukaryotic cells with inhibition of protein synthesis being the
primary one [44,45]. Maier et al. [46] reported that the mycotoxin DON was the major infection causing
agent for F. graminearum disease in wheat spikes.

5. Management of Fusarium Wilt

Fusarium wilt has been a problem for many years and numerous strategies have been proposed
to control this fungal pathogen [47]. However, attempts to control the disease have shown limited
success, mainly due to the emergence of new pathogenic races [48]. The documented methods
employed for controlling wilt infections are: cultural, biological, i.e., resistance development,



Microorganisms 2017, 5, 75 4 of 13

and chemical such as the use of fungicides [49] and/or natural products [50]. Control of Fusarium
infections is usually accomplished by applying benomyl, prochloraz, carbendazim, fludioxonil,
bromuconazole, or azoxystrobin [51]. Everts et al. [52] tested the efficacy of three soil-applied
fungicides, prothioconazole, acibenzolar-S-methyl, and thiophanate-methyl, each of which reduced
Fusarium wilt of field-grown watermelon. Nevertheless, the best control option for Fusarium wilt
disease, when available, is using resistant cultivars. Fusarium wilts are difficult to manage without
incorporating durably resistant cultivars. A number of other options that can help reduce the severity
of the disease exist, but they are not always effective by themselves. They include: soil fumigation with
1,3-dichloropropene + chloropicrin [53], chloropicrin [54], methyl isothiocyanate [54,55], propylene
oxide [56], and sodium azide [56]. Other strategies used are the avoidance of infected fields, cover
cropping [57], crop rotation, and the use of other agro-chemicals.

The difficulties in controlling Fusarium wilt have stimulated renewed interest in biological
control and the use of beneficial plant growth-promoting bacteria (PGPB) as a disease management
alternative. For this purpose, plant root-colonizing, beneficial bacteria and fungi including species
of Pseudomonas (Pseudomonas fluorescens, P. putida) [58], Bacillus (Bacillus subtilis, B. polymyxa,
and B. amyloliquefaciens) [59], non-pathogenic Fusarium [60], and Actinobacteria [61] have been selected.
However, Bacillus species are preferred not only for their ability to form stress-resistant endospores,
but also for their safety in handling.

Another approach to improve the reliability and level of performance is to combine biocontrol
agents in strain mixtures [62]. Lutz et al. [63] proposed using mixtures of antagonistic bacteria and
fungi, and this approach has proven to be more effective than single strain treatments against a variety
of plant diseases. Dunlap et al. [64] found that mixing biocontrol Bacillus subtilis OH 131.1 with
Cryptococcus flavescens (telomorph: Filobasidiella) led to more effective control of Fusarium head blight
infection in wheat under both greenhouse and field settings. A study by Zalila-Kolsi et al. [65] reported
the use of a tripartite combination of B. amyloliquefaciens, B. subtilis, and Paenibacillus polymyxa that
led to the highest protection rate of wheat against F. graminearum, when compared to the strains used
individually. This result indicates that combining compatible BCAs could be a strategic approach in
controlling plant diseases.

For developing a successful plant disease management program, examination of the sum total
of interactions that occur between plant and pathogen, and the subsequent elimination of those
interactions, or favoring those that tip the balance in favor of the plant is essential. Reduction of
pathogen viability, i.e., population density, and/or functionality, and the ability to infect the host
effectively are the keys to a successful antagonist. Fruitful management of Fusarium wilt diseases of
vegetable crops needs to be multi-faceted and should include such strategies as breeding or introducing
genes for host resistance, growth of cover crops that improve soil organic matter, enhancement of plant
nutrition, and avoidance of diseased transplants.

6. Biocontrol Attributes of Various Bacillus Species

Beneficial bacteria (particularly those belonging to Bacillus and the closely related genus
Paenibacillus) that reside in close association with plant roots are of particular interest for their antifungal
and plant protective properties [66]. Some Bacillus spp. directly antagonize fungal pathogens by
competing for niches and essential nutrients [67], or by producing fungitoxic compounds [68], and also
by inducing systemic acquired resistance [69]. Siderophore production by bacteria is another attribute
that promotes plant growth in two ways: (1) by supplying iron to plants; and (2) depriving the
fungal pathogens of this essential nutrient. Heidarzadeh and Baghaee-Ravari [70] reported that a
siderophore-producing B. pumilis strain was an effective BCA for Fusarium wilt of tomato. Production of
extracellular enzymes by biocontrol bacteria that causes lysis of the phytopathogenic fungal cell
wall is a well-documented phenomenon [71]. DasGupta et al. [72] performed scanning electron
microscopic studies that demonstrated alteration and distortion in the hyphal cell walls of F. oxysporum
f. sp. ciceri in response to chitinase and β-1,3-glucanase produced by Paenibacillus lentimorbus B30488.
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In vitro studies showed that chitinase produced by B. subtilis caused lysis of the postharvest yam
pathogen F. oxysporum [73]. This result was further validated by in vivo experiments where B. subtilis
application inhibited the incidence of F. oxysporum by 83% in wound cavities of yam tubers. Moreover,
Zhao et al. [74] found that B. subtilis strain SG6 exhibited strong antagonism against F. graminearum
in dual culture plate assays and inhibited sporulation in the pathogen. These studies were further
complemented by SEM and TEM analyses that revealed evidence of pathogen cell wall lysis by
the biocontrol strain. Spectrometric analysis of the bacterial culture supernatant showed that the
antimicrobial peptides (AMP), fengycin and surfactin, were present.

Recently, Veliz et al. [4] reviewed the literature on the importance of chitinases in pathogen control
and the use of chitinolytic microorganisms as an effective solution in controlling fungal diseases.
Gomaa [75] showed the efficacy of seed treatment of chitinase purified from Bacillus thuringiensis
NM101-19 in controlling Fusarium infection in soybean. Studies report some other mechanisms
employed for biocontrol. Yuan et al. [76] reported that Bacillus amyloliquefaciens NJN-6 produces
numerous volatile compounds (VOCs) that restrict growth and spore germination of F. oxysporum f.
sp. cubense. Bacillus fortis IAGS162 earlier had been shown to induce systemic resistance in tomato
plants against Fusarium wilt disease [77]. Additional findings by Akram et al. [78] identified phenyl
acetic acid (PAA) produced by B. fortis IAGS162 as the major factor responsible for efficient bacterial
colonization in the plant rhizosphere and the subsequent suppression of Fusarium wilt disease. Recently,
B. simplex, an emerging PGPB, has been shown to inhibit the growth of three different Fusarium strains.
This strain and a newly identified B. subtilis strain also promoted legume plant growth especially when
coinoculated with Rhizobium [79].

6.1. Bacillus Peptide Antibiotics

Several species of genus Bacillus are known to produce antibiotics, of which the peptide antibiotics
form a dominant class. Based on their biosynthetic pathway, these metabolites can be grouped into
two main categories, the ribosomally synthesized peptides (including bacteriocins) and small peptides
synthesized enzymatically by non-ribosomal pathways [80].

Lanthipeptides (Class I) are a group of post-translationally modified peptides characterized by the
presence of lanthionine (Lan) or methyllanthionine (MeLan) bridges. Currently, they are classified into
four subclasses, but only gene clusters of two of the subclasses of lanthipeptides have been identified in
Bacillus spp. strains [81,82]. On the basis of classification provided by Abriouel et al. [81], bacteriocins
can be classified into post-translationally modified and non-modified peptides (Class II; also divided
into subclasses) as summarized in Figure 1. Large peptides, such as the megacins (derived from
B. megaterium), make up Class III.
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6.2. Non-Ribosomal Biosynthesized Peptides

The non-ribosomal synthesis of peptide antibiotics takes place through a multistep mechanism
that includes the selection and condensation of amino acid residues such as cyclic lipopeptides (iturin
group) and macrolactones (surfactins, fengycins, and plipastatins) [83]. Large multienzymes known as
Non-Ribosomal Peptide Synthetases (NRPS), which are composed of modularly arranged catalytic
domains [84], catalyze their biosynthesis. Structural representations of non-ribosomally synthesized
peptide antibiotics are illustrated in Figure 2.
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In the context of biocontrol of wilt diseases, the three families of Bacillus lipopeptides, surfactins,
iturins, and fengycins, have been extensively studied for their antagonistic activity [68]. Recently,
Geissler et al. [86] established a high-performance thin-layer chromatography (HPTLC) method
for the identification and simultaneous quantification of the cyclic lipopeptides surfactin, iturin
A, and fengycin, in Bacillus culture samples. Sandrin et al. [87] reported strong antifungal
activity of iturins and fengycins against fungal pathogens, whereas surfactins were not found to
be very toxic by themselves. Nevertheless, they promoted the antagonistic potential of iturin
A [88]. Surfactins have been suggested to assist in the formation of stable biofilms on host
surfaces, thereby protecting the beneficial bacteria from antibiosis and competition exerted by other
microorganisms [89]. Vitullo et al. [90] demonstrated the antifungal activity of purified surfactin from
B. amyloliquefaciens, which suggested an important role of this molecule in the biocontrol of F. oxysporum.
Bacillus amyloliquefaciens S76-3 isolated from diseased wheat spikes has strong antagonistic activity
against F. graminearum [91]. Reverse-phase high performance liquid chromatography and electrospray
ionization mass spectrometry analyses revealed that strain S76-3 produces three classes of cyclic
lipopeptides, including iturin, plipastatin, and surfactin. However, only the iturins and plipastatin
were responsible for biocontrol effectiveness.
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Blacutt et al. [92] reported the presence of fengycin and surfactin lipopeptides in culture
supernatants of B. mojavensis RRC101 that inhibited the growth of F. verticillioides. Microscopic analysis
revealed hyphal distortions, vacuolization, and lysis of F. verticillioides on exposure to fengycin.
Li et al. [93] reported that the encounter between B. amyloliquefaciens SQR9 and F. oxysporum resulted in
an increased production of bacillomycin and fengycin, whereas when exposed to Rhizoctonia solani and
F. solani, the production of surfactin increased in B. amyloliquefaciens SQR9, but fengycin production
decreased. Zihalirwa Kulimushi et al. [94] observed much higher iturin and fengycin production in
B. subtilis 98S on co-culturing it with Pythium and Fusarium, but a similar observation was not recorded
in the presence of Botrytis [68]. Thus, it appears that activation of different suites of lipopeptides
depends on the interacting fungal challenger and is likely to be strain-specific.

The presence of AMP biosynthetic genes has been linked to the antagonism of plant pathogens
in several Bacillus strains, particularly the genes ituC, bmyB, fenD and srfAB [95]. The simultaneous
production of different AMPs is important for an effective control of plant diseases and also is a key
factor determining the broad range of antagonistic activity in Bacillus species. The dominance of
these genes in Bacillus strains associated with plants strengthens the competitive role of surfactin,
iturin, bacillomycin, fengycin and bacilysin in the improving the fitness of strains in fluctuating
environmental conditions. The use of AMP gene markers may assist in the selection of putative BCA
of plant pathogens [96].

Additional recent investigations have shed light on the fact that these lipopeptides can also
influence the ecological fitness of the producing strain in terms of root colonization and their
long-term persistence in the rhizosphere [94]. They also play a key role in the beneficial interaction of
Bacillus species with plants by stimulating host defence mechanisms [97]. Choudhary and Johri [98]
summarized various aspects of research on Bacillus plant growth-promoting rhizobacteria (PGPR)
eliciting ISR, which leads to significant reductions in plant diseases coupled with enhancement in
overall plant health.

Degradation of pathogen’s virulence factors by biocontrol bacteria is another promising
strategy for controlling pathogen proliferation and subsequent disease infestations. For example,
Guanhua et al. [99] studied the capability of Bacillus licheniformis CK1 on degrading zearalenone,
thereby reducing its adverse effect on post-weaning female piglets.

7. Conclusions

During the past decades, chemical fungicides have been the main strategy to manage Fusarium
infections. However, because of their non-targeted and negative effects on humans and the
environment, beneficial bacteria are increasingly being tested as substitutes for the environmentally
damaging chemicals. Beneficial strains of Bacillus rank high for their potential as BCA in part, not only
for their PGPR traits, but also because they are spore-forming bacteria, which makes them easy to
formulate and preserve as inoculants. With their ability to produce a range of metabolites that stimulate
plant growth and reduce pathogen attack, either by suppressing fungal growth or inducing the plant
immune system against pathogens, members of Bacillus and allied genera are preferred over other
types of BCA. An overview of the multivariate influence of Bacillus on the interaction of pathogenic
Fusarium and plant health is illustrated in Figure 3.

This literature survey highlights the need for a cost-effective, commercial Bacillus-based
biofungicide that is effective against the major Fusarium species that cause disease. We have drawn
attention to some of the key features of the biocontrol aspects of several Bacillus beneficial strains
and have focused on the two major Fusarium pathogens. However, numerous Bacillus species that
may be used as BCA and as biofertilizers are still being discovered and so far, remain untested.
More research into the diversity of Bacillus strains and their mechanisms of biocontrol is needed
to achieve an understanding of the interactions of these bacteria, particularly with other beneficial
microbial inoculants.
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Finally, consortia of microbial populations are more likely to harness more benefits in terms
of reducing plant disease, improving crop growth, and maintaining environmental health through
sustainable agriculture. More studies need to be pursued to test this hypothesis.Microorganisms 2017, 5, 75 8 of 13 
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