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Abstract: Staphylococcus pseudintermedius is a commensal bacterium frequently isolated from canine
skin and recognized as a zoonotic agent especially for dog-owners. This study focused on (a) the
antibiotic-resistance phenotypes; (b) the ability to produce biofilm (slime); and (c) the dissemination of
virulence factors in S. pseudintermedius strains. Seventy-three S. pseudintermedius strains were screened
for antibiotic-resistance against 22 different molecules by means of Kirby-Bauer assay. The ability
to produce biofilm was investigated using the microtiter plate assay (MtP) and the amplification of
icaA and icaD genes. Virulence factors such as cytotoxins (lukI), enterotoxins (seC), and exfoliative
toxins (siet, expA, and expB) were evaluated. The antibiotic-resistance profiles revealed 42/73 (57%)
multi-drug resistant (MDR) strains and 31/73 (43%) not-MDR. All the MDR strains and 8/31 (27%) of
not-MDR resulted in biofilm producers. Leukotoxin LukI was found in 70/73 (96%) of the isolates.
Moreover, the enterotoxin gene seC was detected in 47/73 (64%) of the strains. All the isolates carried
the siet gene, whereas expA and expB were found in 3/73 (4%) and 5/73 (7%), respectively. In conclusion,
S. pseudintermedius should be considered a potential zoonotic and human agent able to carry different
virulence determinants and capable of producing biofilm which facilitates horizontal gene transfer.
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1. Introduction

Staphylococcus pseudintermedius (SP) is one of the youngest members of the Staphylococcus genus,
being described and recognized only in 2005 [1], with the first reported case in humans in 2006 [2] and
the first molecular identification protocol in 2009 [3]. It is an opportunistic pathogen also known as
one of the leading cause of skin, ear, and post-surgical infections in domestic animals, especially in
dogs [4–6]. Even if infections in humans are less common than those reported in pets, the description of
S. pseudintermedius as a human pathogen is being increasingly reported [7–9], however little is known
about its pathogenesis and distribution, and in human medicine is still misdiagnosed as S. aureus [10].
A progressive expansion in resistance to commonly prescribed antimicrobial agents has been observed
in the past years, in particular with the emergence and the global spread of multi drug resistant (MDR)
bacteria with particular regards for the Methicillin Resistant S. pseudintermedius (MRSP) clones that
dramatically complicate the treatment of these infections [7,11].

The ability to form biofilm is one of the major virulence determinants studied nowadays in bacteria
because it facilitates the adherence to biotic and/or abiotic surfaces [12]. Biofilm-related infections are
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fastidiously faced because sessile bacteria are generally much more tolerant to antibiotics compared to
the equivalent planktonic forms and can easily resist to host immune responses [13]. To form a biofilm,
bacteria require at least two features: a) Adherence to a surface, and b) the possibility to accumulate it in
order to form a multi-layered complex structure. The ability to form a biofilm resides in the formation
of an extracellular matrix known as polysaccharide intercellular adhesion molecule (PIA), that is
encoded by the ica operon, including four distinct genes (A, B, C, and D) [7,12,14]. The biofilm forming
ability of S. pseudintermedius has been reported by different authors but nowadays is still not fully
understood; in a recent study Stefanetti et al [11,15], up to 96% of canine SP strains was able to produce
biofilm. Moreover, ica-independent biofilm formation has been reported in staphylococci [16–18].

The aim of the present study is to analyze the possible correlation between antibiotic-resistance,
ability to form biofilm, and dissemination of virulence determinant in different isolated strains of SP.

2. Materials and Methods

2.1. Bacterial Isolation and Identification

The 73 S. pseudintermedius strains included in this study were collected between 2016 and 2018
at the Microbiology Laboratory of the Department of Veterinary Medicine (Università degli Studi
di Milano). Clinical samples were cultivated on Trypticase Soy Agar (TSA) +5% defibrinated sheep
blood agar (Microbiol, Uta, Sardinia, CA, Italy) and incubated aerobically at 37 ◦C for 24 h. Following
morphological analysis, the suspected staphylococcal colonies were sub-cultured on Mannitol Salt
Agar (MSA; Microbiol, Uta, Sardinia, CA, Italy) for genus identification and incubated at 37 ◦C for
24 h. To confirm the isolation of S. pseudintermedius, standard phenotypic techniques were used such
as Gram stain, catalase test, and coagulase test. Finally, the amplification of the nuc gene (Table 1)
described by Sasaki in 2010, was used to genetically confirm the isolates at species level [19]. All the
strains were stored at −20 ◦C in 25% glycerol.

2.2. DNA Extraction

Pure cultures stocks in glycerol were thawed at room temperature and grown on blood agar
plates at 37 ◦C for 24 h. A single colony was picked up and grown in Brain Heart Infusion Broth (BHI,
Scharlau, Spain) at 37 ◦C for 8 h. One mL aliquot was used for DNA extraction using the previously
described boiling method [20]. DNA was quantified and checked for its purity using the NanoDropTM
2000 Spectrophotometer (Thermo Fisher Scientific, Monza (MB), Lombardy, Italy).

2.3. Molecular Typing

In order to better characterize the S. pseudintermedius strains, two commonly used typing techniques
were used: MultiLocus Sequence Typing (MLST) and SCCmec Typing.

Genetic diversity of the strains was determined by MLST of seven genes (tuf, cpn60, pta, purA, fdh,
ack, sar); the primers used as well as the amplification conditions were the same as those previously
described by Solyman et al. 2013 [21]. MLST sequences were aligned with sequences present in
the NCBI nucleotide database in order to set out the allele number. Sequence types (STs) were
assigned according to the literature [22] and using Staphylococcus pseudintermedius MLST database
(https://pubmlst.org/spseudintermedius/).

SCCmec types I–VI were assigned, among MRSP strains only, using a specific set of multiplex
PCR assays as reported by different authors, using the same set of primers and amplification conditions
previously described [23,24].

https://pubmlst.org/spseudintermedius/
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Table 1. Primers, amplicon size, and amplification conditions.

Genes Sequence (5’-3’) Amplicon Size (bp) PCR Conditions References

Antibiotic-resistance
genes

mecA
F AAAATCGATGGTAAAGGTTGGC

532 95 ◦C × 4 min, 30 × (95 ◦C × 1 min, 58 ◦C × 1 min, 72 ◦C × 1
min) 72 ◦C × 7 min, 4 ◦C

[25]R AGTTCTGCAGTACCGGATTTGC

blaZ
F TGACCACTTTTATCAGCAACC

750R GCCATTTCAACACCTTCTTTC

tetK
F GTAGCGACAATAGGTAATAGT

360

94 ◦C × 3 min, 30 × (94 ◦C × 30 s, 55 ◦C × 30 s, 72 ◦C × 30 s)
72 ◦C × 7 min, 4 ◦C

[26]

R GTAGTGACAATAAACCTCCTA

tetM
F AGTGGAGCGATTACAGAA

158R CATATGTCCTGGCGTGTCTA

aacA-aphD F TAATCCAAGAGCAATAAGGGC
227R GCCACACTATCATAACCACTA

Biofilm genes
icaA

F ACTGTTTCGGGGACAAGCAT
134

94 ◦C × 3 min, 35 × (94 ◦C × 15 s, 60 ◦C × 20 s, 72 ◦C × 20 s)
72 ◦C × 7 min, 4 ◦C [14]R ATTGAGGCTGTAGGGCGTTG

icaD
F CGTTAATGCCTTCTTTCTTATTGCG

166
94 ◦C × 3 min, 35 × (94 ◦C × 15 s, 56 ◦C × 20 s, 72 ◦C × 20 s)

72 ◦C × 7 min, 4 ◦CR ATTAGCGCACATTCGGTGTT

Quorum-sensing genes

pan-agr F ATGCACATGGTGCACATGC

94 ◦C × 3 min, 35 × (94 ◦C × 15 s, 56 ◦C × 20 s, 72 ◦C × 20 s)
72 ◦C × 7 min, 4 ◦C

[27]
agrI R GTCACAAGTACTATAAGCTGCGAT
agrII R GTATTACTAATTGAAAAGTGCCATAGC
agrIII R CTGTTGAAAAAGTCAACTAAAAGCTC
agrIV R CGATAATGCCGTAATACCCG

Virulence factors

luk-F
F CCTGTCTATGCCGCTAATCCA

572 94 ◦C × 3 min, 35 × (94 ◦C × 1 min, 57 ◦C × 1 min, 72 ◦C × 1
min) 72 ◦C × 7 min, 4 ◦C

[28]R AGGTCATGGAAGCTATCTCGA

luk-S
F TGTAAGCAGCAGAAAATGGGG

503R GCCCGATAGGACTTCTTACAA

seC
F GGCGGCAATATTGGCGCTCG

271
95 ◦C × 2 min, 30 × (95 ◦C × 1 min, 55 ◦C × 1 min, 72 ◦C ×

2 min) 72 ◦C × 5 min, 4 ◦C
[29]

R TTACTGTCAATGCTCTGACC

nuc F TRGGCAGTAGGATTCGTTAA
926

95 ◦C × 2 min, 30 × (95 ◦C × 30 s, 52 ◦C × 30 s, 72 ◦C × 30 s)
72 ◦C × 2 min, 4 ◦C

[19]
R CTTTTGTGCTYCMTTTTGG

siet
F ATGGAAAATTTAGCGGCATCTGG

359
94 ◦C × 3 min, 30 × (94 ◦C × 30 s, 56 ◦C × 30 s, 72 ◦C × 1

min) 72 ◦C × 5 min, 4 ◦C
[30]

R CCATTACTTTTCGCTTGTTGTGC

expA F GTKTTAATTGGWAAAAATACA
413

94 ◦C × 3 min, 30 × (94 ◦C × 1 min, 42 ◦C × 1 min, 72 ◦C × 1
min) 72 ◦C × 4 min, 4◦C

[31]
R ATNCCWGAKCCTGAATTWCC

expB F GGGCATGCACATATGATGAAGCC
820

95 ◦C × 3 min, 30 × (95 ◦C × 1 min, 53 ◦C × 1 min, 72 ◦C × 1
min) 72 ◦C × 4 min, 4 ◦C

[32]
R CCAGATCTATCTTCTGATTCAGC
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2.4. Determination of Antibiotic-Resistance Profile

2.4.1. Kirby-Bauer Disk Diffusion Method

Susceptibility to a panel of 22 antimicrobial agents was determined by the Kirby-Bauer disk
diffusion test according to the Guidelines of the Clinical Laboratory and Standards Institute (CLSI,
2015). Disks of 22 different antibiotics were used as reported below (in brackets the concentration in µg):
Oxacillin (OX, 5), Amoxicillin + Clavulanic acid (AMX, 30 [20/10]), Amoxicillin (AML, 30), Carbenicillin
(CAR, 100), Cephalexin (CL, 30), Cefovecin (CVN, 30), Ceftiofur (EFT, 30), Ceftriaxone (CRO, 30),
Clindamycin (DA, 10), Lincomycin + Spectinomycin (MY, 15 [5/10]), Doxycycline (DO, 5), Enrofloxacin
(ENR, 5), Marbofloxacin (MAR, 5), Pradofloxacin (5, 5), Amikacin (AK, 30), Gentamicin (CN, 30),
Neomycin (N, 30), Tobramycin (TOB, 10), Kanamycin (K, 30), Rifampicin (RD, 30), Azithromycin
(AZM, 15), Erythromycin (E, 30). The results were recorded as susceptible, intermediate, or resistant
by the measurement of the inhibition halo diameter.

2.4.2. Amplification of Antibiotic-Resistance Genes (ARg)

The primers used for the detection of five different antibiotic-resistance genes (ARg) were taken
from the literature [25,26,33], synthesized by Eurofins Genomics, and listed in Table 1. Predicted
amplicon size and primers specificity were defined using BLAST search available through the National
Center for Biotechnology Information website (www.ncbi.nlm.nih.gov) and coupled with BioEdit
freeware software. To check specificity on DNA from genotypically defined isolates, single PCRs for
each primer pair were performed before the Multiplex PCR assay.

For tetK, tetM, and aacA-aphD genes, the protocol described by Strommenger in 2003 was
followed [26]. Multiplex PCR amplifications were carried out with AccuPrimeTM Taq DNA Polymerase
system (Invitrogen, Italy) following the manufacturer′s instruction in a 25 µL volume comprising
approximately 40 ng of DNA, 10 pmol of each of 6 primers, 2.5 µL of 10× AccuPrimeTM PCR Buffer II,
4 nM of MgCl2 (final concentration), 0.3 U of AccuPrimeTM Taq DNA Polymerase, and nuclease-free
water (NFW) to reach the final volume.

For mecA and blaZ genes, the protocol used was described by Kang in 2014 [25]. Multiplex
amplifications were carried out using the same kit previously described. The PCR products were
resolved on a 1.5% agarose gel (GellyPhoreLE, EuroClone, Italy).

2.5. Biofilm Analysis

2.5.1. Identification of Biofilm-Forming Strains

The identification of biofilm-forming strains was carried out by the microtiter plate (MtP) assay, as
previously described [34,35]. Briefly, after growing in BHI broth at 37 ◦C for 24 h, pure staphylococcal
cultures were 1:100 diluted in fresh Trypticase broth (Oxoid, Italy) + 1% glucose (TSBg) and seeded in
96 well-plates (Corning, USA). After 24 h of incubation at 37 ◦C, planktonic bacteria were washed out
and biofilm was stained with Crystal violet (Carlo Erba, Italy). Negative controls consist of TSBg only.
Each strain was analyzed in triplicate on the same plate and three independent plates were used. The
absorbance (570 nm) of negative controls was used to set the optical density cut-off (ODc) as three
standard deviations above the mean OD of the negative control. Strains were classified as follows: Not
adherent OD ≤ ODc; weakly adherent ODc < OD ≤ 2 × ODc; moderately adherent ODc < OD ≤ 4 ×
ODc; strongly adherent OD > 4 × ODc.

2.5.2. Amplification of Biofilm-Associated Genes and Agr-Typing

To confirm data from MtP assay, the detection of two pivotal genes of ica locus (icaA and icaD) was
performed by conventional qualitative PCR (see Table 1) using primer according to literature [14]. Taking
into account that the ability to produce biofilm could be associated with a specific antibiotic-resistance
profile [7,36], the agr locus was analyzed with two duplex PCRs for the determination of agr type (I-IV),

www.ncbi.nlm.nih.gov
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as previously reported [27]. For the two duplex PCRs, the already described AccuPrimeTM Taq DNA
Polymerase system (Thermo Fisher Scientific, Monza (MB), Lombardy, Italy) was used.

2.6. Virulence Factors Carriage

To establish the pathogenicity of the isolated strains, specific virulence factors (lukS-F, seC, siet,
expA and expB) were searched by qualitative PCR. Their specific thermal cycling conditions and primer
pairs are listed in Table 1.

2.7. Statistical Analysis

Statistical significance was determined by GraphPad Prism v6 (GraphPad Software®, La Jolla
CA, USA) using Fisher′s exact test. Data were analyzed by contingency tables (2-by-2 layout). A
p-value < 0.05 was considered significant. The agreement between the MtP assay and PCR detection of
icaA and icaD genes was calculated using Cohen’s Kappa values for dichotomous data in Microsoft
Excel. The strength of the accordance was interpreted according to Landis and Koch (1977), who
classified agreement in the following categories: 0–0.2 as poor; 0.21–0.4 as fair; 0.41–0.6 as moderate,
0.61–0.8 as good; 0.81–1 as very good [37].

3. Results

3.1. Molecular Identification of S. pseudintermedius, MLST, and SCCmec Typing

All the isolates were from dogs with clinical deep pyoderma, a single 926 bp fragment was
derived from the amplification of themonuclease gene (nuc) confirming, at species level, the phenotypic
isolation of 73 S. pseudintermedius strains.

The 73 isolates were assigned to three different STs with the following prevalences: ST 71 56/73
(77%), ST 258 12/73 (16.4%), and ST 106 5/73 (6.6%).

SCCmec types were assigned to 35/76 (48%) strains that resulted positive to mecA gene detection
and classified as methicillin-resistant S. pseudintermedius (MRSP), resulting in two different types, as
reported in Table 2.

Table 2. Molecular characterization of the 35 methicillin-resistant S. pseudintermedius (MRSP) isolates.

MLST SCCmec Types No. of Isolates (%)

ST 71 II-III 24 (68.5%)
ST 258 IV 9 (25.7%)
ST 106 IV 2 (5.7%)

3.2. Overall Antibiotic-Resistance

The antibiotic-resistance of all 73 S. pseudintermedius isolates is shown in Figure 1. Kirby-Bauer assay
demonstrated that 42/73 (57.5%) of SP isolates were MDR, exhibiting resistance against macrolides
(97%), fluoroquinolones (86%), and β-lactams (72%). The most in-vitro effective molecules were
amikacin (100% susceptible), rifampicin (93% susceptible), and partially gentamicin (45% susceptible).
The remaining 31 not-MDR strains had a low prevalence of resistance for all the antibiotics with the
exception of clindamycin which had a rate of resistance of 35% (11/31). Table 3 shows the prevalence of
ARg by using Multiplex PCRs.
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Figure 1. Overall prevalence of antibiotic-resistance among multi-drug resistant (MDR) and not-MDR
isolates. The Chi-squared test showed statistical differences among the two groups for the majority of
antibiotic molecules tested except for amikacin and rifampicin. (***: p-value < 0.001).

Table 3. Distribution of antibiotic-resistance and virulence factors genes.

Genes not MDR Strains MDR Strains p-Value

Antibiotic-resistance
genes

mecA 0 35/42 (83%) <0.0001
blaZ 7/31 (23%) 42/42 (100%) <0.0001
tetK 2/31 (6.4%) 13/42 (31%) 0.0171
tetM 0 22/42 (50%) <0.0001

aacA-aphD 5/31 (16.6%) 32/42 (76%) <0.0001

Biofilm genes icaA 30/31 (97%) 29/42 (69%) 0.0026
icaD 30/31 (97%) 41/42 (97%) >0.05

Virulence factors

luk-I 30/31 (97%) 40/42 (95%) >0.05
seC 14/31 (45%) 31/42 (74%) 0.016
nuc 31/31 (100%) 42/42 (100%) >0.05
siet 31/31 (100%) 42/42 (100%) >0.05

expA 0 3/42 (7%) >0.05
expB 0 5/42 (12%) >0.05

3.3. Biofilm Formation Assay

Figure 2A shows the difference in terms of number of non-biofilm producing strains among
not-MDR and MDR strains. Between these two groups, there is a clear difference in terms of the
ability to produce biofilm (Figure 2B). The MDR bacteria were all able to produce exopolysaccharide,
resulting in 20/43 (46.5%) strong biofilm producers, 20/43 (46.5%) moderate, and 2/43 (4.6%) weak
producers. In the not-MDR group, only 1/31 (3.22%) strains was strong producer, 9/31 (29%) strains
were categorized as moderate producers, and 17/31 (55%) resulted in weak biofilm producers. The
remaining 4/31 (13%) did not show slime production. At the molecular level, the presence of icaA
and icaD genes was demonstrated by the amplification of the corresponding amplicons. Both the icaA
and icaD genes were detected in 30/31 (97%) not-MDR strains, while 28/42 (66.6%) of MDR bacteria
had both the targeted genes. Among the remaining 14 strains, one was negative for both these genes
(but still able to produce biofilm) and the remaining 13 were all positive for icaD only. Neither one of
these genes was detected in 2/73 (2.7%) isolates (details are reported in Supplementary Table S1). The
agreement between the microplate assay and the amplification of ica locus genes was not significant
(k < 0.01). The determination of agr-typing showed that all the 73 SP strains belong to the agr type I.
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Figure 2. Biofilm forming ability in not-MDR and MDR Staphylococcus pseudintermedius (SP) strains.
(A) All the MDR strains are able to produce biofilm and these data are statistically significant compared
to the not MDR group in which 4 strains resulted in non-biofilm producers. (B) The majority of MDR
strains were strongly biofilm producers (20/42), whereas not-MDR strains were mostly categorized as
weak slime producers. (*: p-value between 0.05 and 0.01; ***: p-value < 0.001).

3.4. Virulence Factors

Table 2 shows the distribution of all the genes analyzed in this study. Among the virulence factors,
Chi-squared test showed differences in icaA and seC genes between MDR and not-MDR bacteria, for all
the other virulence determinants, no differences were found (Figure 3).
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4. Discussion

Antibiotic-resistance remains one of the most important problems to face within treatment and
control of S. pseudintermedius related infection in human and in veterinary medicine. SP is nowadays
considered a potential zoonotic agent able to colonize also humans and is regarded as one of the
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increasing skin and soft tissue-related pathogens [9,38,39]. MDR strains are defined when “resistant to
at least 1 agent in 3 or more antimicrobial categories” [40]. In this study, 57.5% (42/73) of the strains
had MDR phenotype, also confirmed by the detection of AR genes. The majority of the resistant
strains 35/42 (83%) resulted positive for mecA gene, associated with oxacillin resistance; this result is
in concordance with a previous study which revealed a 100% of mecA gene amplification in MRSP
strains [41]. A large portion of isolates showed a pattern of resistance against β-lactams, macrolides,
and fluoroquinolones.

A total of three STs (ST 71, ST 258 and ST 106) were detected among the 73 SP strains. This
result is not totally concordant with the literature in which different authors found a higher genetic
diversity in the analyzed population (in terms of STs assigned) [42,43]. ST 71 is predominant and was
assigned to 56/73 (77%) strains; this particular sequence type remains the most abundant in Europe,
while ST 68 is predominant in United States, and ST 45/ST 112 in Asia [21–44]. In Europe, between
2012–2013 and 2015–2016, the prevalence of ST 71 rapidly decreased from 65.3% to 55.2%, whereas
the emergence of ST 258, originally derived from Northern Europe, was described (from 1.1% to
5.78%) [43]. ST 71 was highly resistant to antibiotics, showing multiple resistances against commonly
veterinary-licensed antibiotics (e.g., tetracyclines). On the other hand, ST 258 was reported to be more
frequently susceptible to antibiotics (e.g., enrofloxacin, gentamicin) [43,44].

In this study, all the MRSP strains (35/73; 48%) resulted in MDR, and the majority (68.5%) were
classified as ST 71. SCCmec typing showed two chromosomal cassettes types: II-III present in all ST 71,
and IV detected in the other MRSP strains belonging to STs 258/106 (Table 2).

A clear correlation was found between antibiotic-resistance and the ability to produce biofilm,
suggesting that MDR staphylococci are more prone to produce large quantities of slime. This particular
result is in accordance with other studies and could be reasonably explained by the presence of
transposons which are the mobile element that easily can be exchanged between strains [11,12,14].

The majority (94.5%) of the 73 isolates were biofilm producers, and this result is in agreement
with the current literature on biofilm in Staphylococcus clinical isolates [14,45]. Moreover, a genetic
approach revealed the concomitant presence of either icaA or icaD in 79.5% (58/73) of the strains
studied, while 18% (13/73) of the isolates presented the amplification of icaD and only two strains were
negative for both these two genes but still able to produce biofilm. Authors suggest that the presence
of icaD only (found in 42/43 MDR strains) is sufficient to produce exopolysaccharide, as demonstrated
for S. epidermidis [12]. These findings are discordant with a previous study [14] in which the author
suggested that biofilm formation occurred only when both icaA and icaD are expressed, but however
concordant with another study [15] which reported the absence of correlation between the presence
of both ica genes and biofilm formation (ica-independent biofilm producers strains). These results
suggest the importance of combined, phenotypic, and genetic methods for checking biofilm formation
in S. pseudintermedius.

The prevalence of agr groups in our clinical isolates is very different to that described by Little et
al. [7], with agrI being the unique group found in our collection, while any of the strains were assigned
to one of the other three (agr II, III and IV). Following the suggestions of the author, in this contest, it is
not possible to correlate the ability to produce biofilm with the corresponding agr group. Little et al.
(2019) stated that strains harboring agrI were more prone to produce biofilm and to be MDR [7]. Our
findings indicate a major ability for MDR bacteria to be strong biofilm producers.

Among the virulence determinants analyzed in this study, only the prevalence of specific
enterotoxin seC was found statistically significant between MDR and not-MDR strains (p-value: 0.016).
The prevalence of individual genes was similar to the literature [28,29].
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Table S1: Phenotypic and genetic determination of biofilm-forming ability.
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