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Abstract: The sea urchin Strongylocentrotus purpuratus (order Camarodonta, family
Strongylocentrotidae) can be found dominating low intertidal pool biomass on the southern
coast of Oregon, USA. In this case study, three adult sea urchins were collected from their shared
intertidal pool, and the bacteriome of their pharynx, gut tissue, and gut digesta, including their
tide pool water and algae, was determined using targeted high-throughput sequencing (HTS) of
the 16S rRNA genes and bioinformatics tools. Overall, the gut tissue demonstrated Arcobacter
and Sulfurimonas (Epsilonproteobacteria) to be abundant, whereas the gut digesta was dominated
by Psychromonas (Gammaproteobacteria), Propionigenium (Fusobacteria), and Flavobacteriales
(Bacteroidetes). Alpha and beta diversity analyses indicated low species richness and distinct
microbial communities comprising the gut tissue and digesta, while the pharynx tissue had higher
richness, more closely resembling the water microbiota. Predicted functional profiles showed
Kyoto Encyclopedia of Genes and Genomes (KEGG) Level-2 categories of energy metabolism,
membrane transport, cell motility, and signal transduction in the gut tissue, and the gut digesta
represented amino acid, carbohydrate, vitamin and cofactor metabolisms, and replication and repair.
Co-occurrence network analysis showed the potential relationships and key taxa, such as the highly
abundant Arcobacter and Propionigenium, influencing population patterns and taxonomic organization
between the gut tissue and digesta. These results demonstrate a trend of microbial community
integration, allocation, predicted metabolic roles, and taxonomic co-occurrence patterns in the S.
purpuratus gut ecosystem.

Keywords: Illumina; high-throughput sequencing (HTS), bacteriome; PICRUSt; 16S rRNA gene;
PhyloToAST; CoNet; QIIME; LEfSe; KEGG

1. Introduction

The purple sea urchin Strongylocentrotus purpuratus (order Camarodonta, family
Strongylocentrotidae) inhabits the rocky tide pools along the North-East Pacific from Alaska
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to Baja Mexico. S. purpuratus is primarily herbivorous, which tempers the growth of marine
vegetation and plays an important role in shaping the dynamic population patterns in their marine
ecosystem [1–6]. The low intertidal tide pools on the southern Oregon coast are dominated by
S. purpuratus and are interspersed with mosaics of tufted algae and invertebrate assemblages
representing multiple phyla [7]. The microhabitats of these tide pools are influenced by the feeding
activity of the inhabiting sea urchins [7]. The sea urchins present unique digestive physiology in a
straightforward model and offer an evolutionary context to fundamental biological and physiological
processes occurring in higher deuterostome organisms [8]. In general, the pharynx is enclosed within
the Aristotle’s Lantern, which is a pentamerally symmetric mastication apparatus of five tooth-like
structures that assist in scraping and releasing intracellular nutrients from algae [9]. The pharynx
tissue contains specialized mucus cells that contribute to the formation of a mucous envelope of
ingested feed [10], forming individual pellets of gut digesta [11]. This gut digesta pellet formation
has been considered an evolved digestive strategy of this organism, likely as a result of water flow
dynamics in the gut lumen environment [12]. The role of gut bacteria in host health and digestion
have been of interest beginning with the work of Lasker and Giese [9], who isolated gut bacteria from
the gut digesta of S. purpuratus, showing the potential for these bacteria to digest polysaccharides from
algal sources. In a separate study, bacteria isolated from the sea urchins S. intermedius and S. nudus
demonstrated a similar algynolytic activity [13]. The importance of gut bacteria in sea urchin host
health was further supported in S. droebachiensis, in which microbial suppression through antibiotics
showed a reduced capacity for host incorporation of essential amino acids [14].

The microbial communities of the sea urchin gut pellets also play an important role in the
biogeochemical cycles of the marine environment. In previous studies, it has been shown that
the microbial community composition and their metabolic processes in the gut digesta remains
stable following egestion into the environment [15–17]. For example, studies examining the chemical
composition of S. droebachiensis egesta through flash combustion have shown increased in lipid,
nitrogen, and organic carbon, and decreases in the carbon: nitrogen ratio, indicating the metabolic
importance of the bacterial communities in the degradation and transformation of the contents within
the pellets into a nutrient-rich food source for nearby marine organisms [17–20]. Additionally, it
has been suggested that urchin gut microbiota are responsible for differences in algal digestion
and synthesis of essential long chain fatty acids in both S. purpuratus and S. droebachiensis [20].
The pelleted egesta has also been considered as a mode for the dispersion of sea urchin gut
microbiota into their environment [17,21]. Most of the early studies of the potential role of microbial
communities in digestive processes of sea urchin gut ecosystem were conducted by culture-dependent
methods [9]. However, recent advancement of the culture-independent method of high-throughput
sequencing (HTS) of 16S rRNA genes from the metacommunity DNA has been shown to provide gut
microbial community composition with high taxonomic coverage, including their potential metabolic
functions [22,23]. Recently, the application of HTS on the V4 hypervariable segment of the 16S
rRNA gene of the gut bacteriome of Lytechinus variegatus from the U.S. Gulf of Mexico [15,16,24]
demonstrated distinct microbial community compositions between the gut tissue and gut digesta.
Specifically, representative taxa from class Epsilonproteobacteria (assigned as Arcobacter/Sulfuricurvum
through the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool
(BLAST)) dominated the gut tissue, whereas Gammaproteobacteria (namely Vibrio) were heightened
in the digesta [15]. Additionally, predictive functional profiling of these compartmentalized microbial
communities showed energy metabolisms such as oxidative phosphorylation, carbon fixation, nitrogen,
methane, and sulfur metabolisms to be heightened in the gut tissue, compared to carbohydrate, amino
acid, and lipid metabolisms in the digesta [16].

Such HTS technology and bioinformatics analyses applied to the gut ecosystem of the naturally
occurring sea urchin S. purpuratus can help establish a comprehensive microbial community
composition and provide crucial information into the gut bacterial taxa and likely functions performed
as they relate to host health and digestion. In this study, we have elaborated the microbial profiles of
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the gut tissue, pharynx tissue, and mucous enveloped gut digesta of S. purpuratus collected from their
natural rocky tide pool habitat on the coastline of Oregon, USA. In addition, samples of the tide pool
seawater and adjacent algal community were collected and also analyzed for comparison with the
gut tissue and digesta. We used HTS and bioinformatics tools to analyze the community composition,
patterns of microbial taxa allocation in the gut environment, and the predicted metabolic functions
of the bacterial microbiota in the gut ecosystem. These data were further refined using Phylogenetic
Tools for Analysis of Species-level Taxa (PhyloToAST v1.4.0) [25] alongside Quantitative Insights
into Microbial Ecology (QIIME v1.9.1) [26] to condense redundant taxonomic groups. This allowed
increased resolution of microbial taxonomic groups to the species level and enhanced beta diversity
inference. Additionally, the keystone taxa (herein “key” taxa) of the gut ecosystem were elaborated
through topological analysis of Co-occurrence Network inferences (CoNet v1.1.1) [27–29] based on
criteria described in Berry and Widder [30,31]. The results of this baseline case study demonstrate the
microbial composition and associated functional capacity within the compartmentalized gut system of
this evolutionarily and ecologically significant purple S. purpuratus sea urchin species.

2. Materials and Methods

2.1. Collection and Sample Preparation of S. Purpuratus

Adult S. purpuratus sea urchins (UR; n = 3) were collected from within the same natural rocky tide
pool habitat at Cape Arago, Oregon (43◦18′14.3”N 124◦24′05.1”W) in September 2016, from within
a 1 m2 sampling plot (Figure 1), under permit is: #20366 (Oregon Department of Fish and Wildlife).
Sea urchins were measured and sexed, which was followed by tissue dissection performed at the
Oregon Institute of Marine Biology (OIMB) in Coos County, Oregon. For each sea urchin, an incision
was made into the test area surrounding the Aristotle’s Lantern mastication structure using sterilized
instruments, and the test was cut radially to expose the internal digestive tissue. The pharynx, which
was enclosed by the Aristotle’s Lantern, was separated from the gut tissue and collected. The remaining
digestive tissue (gut tissue) was gently rinsed with sterile phosphate buffered saline water (1x PBS,
pH 7.4) (Fisher Scientific, Hampton, NH, USA), and the contents (gut digesta) were collected. The
whole gut tissue was collected separately from the voided gut digesta. Replicate seawater samples
(water; n = 3) (1 L) from each tide pool was vacuum filtered separately through 0.22 µm filter paper
(EMD Millipore Corporation, Danvers, MA, USA). The grazed-upon algal communities (algae; n = 3)
immediately surrounding the sea urchins were also collected as the general food source and used in
this study. A total of 15 samples (pharynx, n = 3; gut tissue, n = 3; gut digesta, n = 3; water, n = 3; and
algae, n = 3) were placed into 95% (v/v) ethanol [32], flash frozen in liquid nitrogen, and shipped to
the University of Alabama at Birmingham (UAB), where they were preserved at −20 ◦C until used.
Research performed under the Institutional Animal Care and Use Committee (IACUC-10043).
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Figure 1. Sample collection site of S. purpuratus (purple sea urchins) from their natural rocky tide pool
habitat along the coast of Oregon (43◦18′14.3”N 124◦24′05.1”W). (A) Satellite image of the collection
site (red marker) provided through Google Earth Pro (v.7.3.2.5491) (Data SIO, NOAA, US Navy NGA,
GEBCO, Image Landsat/Copernicus; US Dept. of State Geographer; image date: December 2015).
(B) Overview of the tide pool collection site (labeled as tide pool 1) showing naturally occurring sea
urchins. (C) Sea urchin congregates with the algal food source in view. Photographs by J.B Schram.

2.2. Community DNA Extraction, Illumina MiSeq Sample Preparation, and High-Throughput Sequencing

The metacommunity DNA from each sample was purified using the Fecal DNA isolation
kit (Zymo Research, Irvine, CA, USA; catalog no. D6010), and an amplicon library of the
metacommunity V4 hypervariable region (V4) of the 16S rRNA gene was created using
uniquely barcoded DNA oligonucleotide primers adapted from the Earth Microbiome Project
(www.earthmicrobiome.org) [33–35]. These primers consisted of the upstream nucleotide
sequence for hybridization to the Illumina MiSeq flow-cell surface (underlined), a “pad” region
(italicized), and a “linker” region (bolded). The forward primer (515F) for the V4 segment was:
5′-AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTGTGCCAGCMGCCGCGGTAA-3′.
The reverse primer for the V4 segment (modified from 806R) also
included a unique barcode (6 N’s) region and was as follows:
5′-CAAGAGAAGACGGCATACGAGATNNNNNNAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3′

(Eurofins Genomics, Inc., Huntsville, AL, USA) [35,36]. Polymerase chain reaction (PCR) amplification
was performed using the LongAmp Taq PCR Kit (New England Biolabs, Ipswich, MA, USA; catalog no.
E5200S) at a total reaction volume of 50 µL with the following reagents: 10 µL of 5× Reaction Buffer; 1.5 µL
of each dNTPs (200 µM); 2 µL of each oligonucleotide primer (1.5 µM); 1.5 µL of LongAmp®enzyme
(5 U); 30 µL of template DNA (2–5 ng/µL); and 3 µL of sterile H2O. The PCR proceeded with an initial
denaturation at 94 ◦C for 1 min followed by 32 cycles of amplification of which each cycle consisted of
denaturation at 94 ◦C for 30 sec, primer annealing at 50 ◦C for 1 min, and primer extension at 65 ◦C for
1 min, followed by the final extension at 65 ◦C for 3 min and a final hold at 4 ◦C. An amplicon fragment of
approximately 380 bases was visualized through an ultraviolet (UV) transilluminator (Photodyne, Inc.,
Los Angeles, CA, USA) and excised with a sterile scalpel following electrophoresis through a 1.0% (w/v)
Tris-borate-EDTA (TBE)/agarose gel [37]. The excised DNA fragments were purified using the QIAquick
Gel Extraction Kit (Qiagen Inc., Venlo, Limburg; catalog no. 28704). PicoGreen dye (Life Technologies,
Grand Island, NY, USA) was used to quantify each sample to adjust the concentration to 4 nM [35]. HTS
was performed using the Illumina MiSeq platform [35,36], incorporating the 250 base paired-end kits from
Illumina specific to the V4 region of the 16S rRNA gene.

2.3. Quality Assessment and Filtering

The raw sequence reads generated by HTS on the Illumina MiSeq platform were demultiplexed
and converted to FASTQ format [38]. The read quality was evaluated using FastQC [39], and quality
reads with 80% of bases at Q score >33 were retained for downstream analysis using the “fastx_trimmer”
command from the FASTX Toolkit [35,40]. Then, the paired-ends were merged using USEARCH [41],

www.earthmicrobiome.org


Microorganisms 2019, 7, 35 5 of 32

and pairs with <50 base overlap and/or over 20 mismatching nucleotides were filtered. Read quality
was again assessed after filtering using FASTQC, chimeric sequences were identified and removed
using USEARCH [41]. Additionally, with the newly established bioinformatics techniques presented
in the QIIME2 package (v2018.11) [42], an alternative approach to filtering and merging the paired-end
sequence data was implemented. To do this, a “denoising” strategy was used based on the Poisson
distribution through the Divisive Amplicon Denoising Algorithm program (DADA2, v1.10) [43,44].
This was performed utilizing the “qiime dada2 denoise-paired” module on the demultiplexed sequence
data, with a truncation set at 250 bases for the forward and reverse reads. The sequence reads
corresponding to each sample of this study have been deposited in NCBI SRA for public access
(Bioproject number PRJNA504890).

2.4. Taxonomic Distribution

The resultant quality assessed sequence files were processed using QIIME (v1.9.1) [26] along with
PhylotoAST (v1.4.0) [25] to condense redundant operational taxonomic units (OTUs) [45]. First, OTUs
were selected at a 97% sequence similarity threshold using the default UCLUST algorithm option in
QIIME (v1.9.1) [41]. Representative OTU sequences were then selected using the “most_abundant”
option, and taxonomy was assigned to the representative sequences at a 60% confidence threshold
using the Ribosomal Database Project (RDP) classifier [46], trained with the GreenGenes reference
database (v13.8) [47,48]. At this stage, OTUs occurring at less than 0.0005% average abundance across
all samples in the study were filtered [49–53]. Then by using the PhyloToAST (v1.4.0) workflow, the
species-level resolution was enhanced using the “assign_taxonomy_by_blast _result.py” command
to assign taxonomy through BLAST [45] to the GreenGenes (v13.8) database, and redundant OTUs
were merged through the “condense_workflow.py” command [25]. Variation in the read-depth was
accounted for by subsampling of the condensed OTU table using both the median and minimum read
count values across all samples as described in de Carcer et al. [54] through the “single_rarefaction.py”
command in QIIME (v1.9.1), and both subsampled OTU tables were assessed for downstream analysis.
Additionally, for the top 100 taxa determined in the rarefied OTU table, the representative sequences
were extracted and aligned to multiple databases using the SILVA ACT: Alignment, Classification and
Tree Service (www.arb-silva.de/aligner) [55]. For this analysis, the SSU (Small Sub-Unit) category
was selected, and a minimum similarity identity was set to 0.9, with 20 neighbors per query sequence.
Sequences below an identity threshold of 70% were discarded. For taxonomic identification, the least
common ancestor (LCA) method was used, and the databases selected included GreenGenes [47,48],
Ribosomal Database Project (RDP) [56], and SILVA [57]. Lastly, for the alternative QIIME2 (v2018.11)
method, the denoised and merged sequence data was used to generate representative sequences
with the “qiime feature-table tabulate-seqs” command. These representative sequences, herein
referred as amplicon sequence variants (ASVs), were assigned taxonomic identities through the
“qiime feature-classifier” command utilizing the “classify-sklearn” option [58] against the GreenGenes
(v13.8) database.

2.5. Alpha Diversity

The PhyloToAST (v1.4.0) condensed and minimum-count subsampled OTU table (herein, rarefied
OTU table) was used to determine the taxonomic distribution and alpha diversity metrics of each
sample. The rarefied OTU table was merged according to biological replicates and used to create
the relative abundance graph of phyla represented at >1% abundant, as well as the top 100 most
resolved taxonomic identities across all sample groups using Microsoft Excel Software (Seattle, WA,
USA). Taxa represented at >1% in the gut system (gut tissue and digesta) were also visualized, with
standard deviations calculated through STAMP (v2.1.3) [59]. Shannon [60–62], and Simpson [61,63]
diversity measurements were determined through the “alpha_diversity.py” command in QIIME
(v1.9.1). These values were plotted as a kernel density estimator-smoothed histogram using the
“diversity.py” command through PhyloToAST (v1.4.0), to show both the diversity value and the range
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of underlying data points (density) for each sample group. Kruskal–Wallis H-tests were performed for
the five groups to show the alpha diversity variation between groups at a significance value of p =
0.1 [64].

2.6. Beta Diversity

For beta diversity, the rarefied OTU table was used to determine the Bray–Curtis distance matrix
values [65]. These values were also used to calculate significant grouping among biological replicates
(n = 3) through an analysis of similarity (ANOSIM) and multivariate analysis of variance (Adonis) of
groups, both set at 999 permutations, determined through the QIIME (v.1.9.1) “compare_categories.py”
module utilizing the Vegan (v2.4.3) R package implementation of the statistical methods [66–68].
Additionally, this ANOSIM and Adonis analysis was performed on each OTU table generated in this
study (5 total), which included the unfiltered OTU table, filtered OTU table (<0.0005%), PhyloToAST
(v1.4.0) condensed OTU table, condensed median, and condensed minimum subsampled OTU
tables. Visualization of beta diversity trends was performed using Plymouth Routines in Multivariate
Ecological Research (PRIMER-6) software (Primer-E Ltd, Plymouth Marine Laboratory, Plymouth
UK, v6.1.2) [67]. In PRIMER-6, a 2D multidimensional scale (MDS) plot was generated using the
Bray–Curtis distance matrices, to show variation between each sample, along with an overlay of
Bray–Curtis similarity values [69]. A dendrogram was also generated based on clustering by group
average [69]. A 2D MDS and dendrogram cluster analysis was also performed on the top 100 OTUs
and the remaining rare OTUs, to show the contributions of both the heightened and rare taxa to the
observed sample community diversity and cluster patterns. In addition to the Bray–Curtis based
analyses described above, the rarefied OTU table was used to determine the weighted and unweighted
Unifrac distances [70], which was calculated through the “beta_diversity_through_plots.py” module
of QIIME (v1.9.1), and used to generate the 3D principle coordinates analysis (PCoA) plots through
the “PCoA.py” command in PhyloToAST (v1.4.0). These values were also used to calculate the
ANOSIM and Adonis metrics for group analyses as previously described, and uploaded into PRIMER-6
to generate the dendrogram based on group average. Heatmap analysis was performed using
the rarefied OTU table in R (v3.3.2), incorporating the heatmap.2 function from gplots (v3.0.1)
package [71]. In brief, the associated sample group dendrogram was created through the Vegan
(v2.4.3) package [68] using the Bray–Curtis distance metric of the grouped biological replicate count
data and clustered according to the group average algorithm. Microbial taxa represented at <1% of
the total dataset were filtered from the heatmap. A color palette was selected using the RColorBrewer
package [72], and the relative abundances were shown for each taxon across all sample groups (black
bar lines). Linear discriminant analysis (LDA) effect size (LEfSe) analysis was used to determine
the taxa contributing to the effect size between the compartmentalized gut microbial communities
of the gut tissue (n = 3) and digesta (n = 3) [73]. This analysis was performed through the Hutlab
Galaxy web application (huttenhower.sph.harvard.edu/galaxy/), and incorporated the non-parametric
Kruskal-Wallis sum-rank test for significant differential abundance set at a significance of p = 0.05 [64],
followed by LDA to estimate effect size at log(10) values [73,74]. The results were plotted to show
those taxa that demonstrated an LDA of ±3 for effect size.

2.7. Predicted Functional Analysis

The functional capacity associated with the microbial communities of the gut tissue and
digesta was determined using the Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt v1.1.2) package [75] and analyzed in STAMP (v2.1.3) [59]. For this analysis,
an OTU table was constructed by the “pick_closed_reference_otus.py” strategy to ensure representative
taxonomic information through the GreenGenes (v13.8) database as suggested in PICRUSt [47,48,75].
The resultant OTU table was normalized by copy number, and Kyoto Encyclopedia of Genes and
Genomes (KEGG) Orthology (KO) Ids were predicted along with the weighted Nearest Sequenced
Taxon Index (NSTI) values for the confidence of predictions using the “predict_metagenomes.py”
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command. The assigned functional categories were then collapsed into levels (KEGG-Level-2, and 3)
through the “categorize_by_function.py” command. The KEGG-Level-2 and 3 profiles were uploaded
into STAMP (v2.1.3) for two-group scatter plot analysis, to determine the metabolic categories that
are preferentially enriched in each group at two levels of hierarchical classification. Additionally,
LEfSe analysis [73] was performed on the KO Ids using an LDA score of ± 2.4, again utilizing the
non-parametric Kruskal–Wallis sum-rank test for significant differential abundance set at a significance
of p = 0.05 [64] and LDA for effect size using log(10) values [73,74], to demonstrate those categories
contributing most to functional profile dissimilarity.

2.8. Co-Occurrence Analysis of Microbial Taxa

Significant co-occurrence patterns occurring between the microbial communities of the gut tissue
and the gut digesta were determined using Co-occurrence Network inference (CoNet v1.1.1) [27–29].
To do this, the rarefied OTU data were uploaded into Cytoscape (v3.6.0) [76] through the CoNet
(v1.1.1) plugin with taxa assigned to sample type (gut tissue and gut digesta). Links between
higher level taxa were not explored and a parent-child exclusion was applied. Taxonomic entries
with a cumulative group sum of 200 and at least 2/3 of samples containing non-zero values
were kept [27–29,77]. Significant co-occurrences between taxa were determined by utilizing the
Pearson [78,79], Spearman [80], Bray–Curtis [65], Kullback–Leibler [81], and mutual information
similarity [82], with a 10−8 pseudo-count [27–29,77]. The 200 highest (most positive) and lowest (most
negative) edges were selected and merged by the union approach using the mean value [77]. The
multi-edge scores were shuffled row-wise at 100 permutations (for null distributions), followed by
bootstrapping at 100 permutations (for randomizations). The p-values of the multi-edges assigned
to node pairs were merged using the Brown method [83], with unstable edges filtered out, and
the corrected significance value (q-value) was determined with a threshold set at p < 0.05 for
significance [27–29].

The final network was constructed in Cytoscape (v3.6.0) using the radial layout algorithm in the
yFiles plugin (v1.0) [84], and topological parameters were determined by NetworkAnalyzer (v2.7) [85]
using an undirected approach. Node sizes were scaled to their group abundance, colored according to
phylum (class for Proteobacteria), and assigned a shape according to group membership (circle for gut
tissue, “-gut”; diamond for gut digesta; “-dig”). The edges were scaled by the q-value and colored
according to their positive (co-presence; green) and negative (co-exclusion; red) association. Based on
the topological features determined through NetworkAnalyzer (v2.7), those nodes tending to have a
high degree (number of edges), closeness centrality, and low betweenness centrality have been referred
to as key taxa as described by Berry and Widder et al. [30] [77,86,87]. These features were plotted as a
scatter plot (y = closeness centrality; x = betweenness centrality; node size is scaled to degree) through
Microsoft Excel Software (Seattle, WA, USA). The top 10 nodes based on their closeness centrality
values were selected as likely key taxa.

3. Results

3.1. Environmental Conditions and Sea Urchin Measurements

The tide pool location sea water conditions were determined to have a salinity of 30.19 ppt with
a 7.7 pH. The dissolved oxygen content of the tide pool water was determined to be 59% and the
temperature was determined to be 13.1 ◦C. The sea urchins of this study weighed between 38.98–53.35 g
and had a mean diameter of 5.1–5.6 cm, a height of 2.6–2.8 cm, and a spheroid volume of 38.4–41.6 cm3.
The sexes of the sea urchins for the study were determined as UR1 = F, UR2 = F, and UR3 = M.

3.2. Quality Assessment and Sample Statistics

The total sequences generated through Illumina MiSeq-based HTS of the bacterial 16S rRNA
gene of the 15 samples of the study generated a total of 1,714,746 forward and reverse reads (Table 1).
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Quality checking and trimming using the FASTX Toolkit, followed by merging of the forward and
reverse sequences resulted in 1,249,827 total reads. Grouping of biological replicate data (n = 3)
showed the following total sequence read counts: algae (340,438), gut digesta (221,684), gut tissue
(231,854), pharynx (194,640), and water (261,211). Clustering of sequences into OTUs and taxa
assignment revealed a total of 44,664 unique assignments. Filtering of rare OTUs occurring at less than
0.0005% reduced the number of OTUs to 4290 unique observations across all samples. Condensing
of redundant taxonomic IDs through PhyloToAST (v1.4.0) showed a total of 776 OTUs. Rarefication
of the condensed OTU table to the median read count value (77,806) and the minimum read count
value (49,641) both maintained 776 unique observations. Through the alternative strategy utilizing
DADA2 (v1.10) implemented in QIIME2 (v2018.11), a total of 1134 unique features were determined
(ASVs) representing a total of 467,866 reads across all samples, which were subsequently assigned to
371 taxonomic identities when collapsed to the species level (data not shown).

Table 1. Sequence reads, operational taxonomic unit (OTU) count, and alpha diversity of each sample of
the study. The table shows the sequence read count (1) before and (2) after quality checking and filtering
based on low quality reads using FASTX Toolkit, the (3) unique unfiltered (Unfilt.) OTU observances
following chimera removal, (4) the filtered (Filt.) OTUs after removal of rare OTUs (<0.0005% abundant
in all samples), (5) the resultant condensed (Cond.) OTU count following the merging of redundant
taxonomic information through Phylogenetic Tools for Analysis of Species-level Taxa (PhyloToAST)
(v1.4.0), (6) the OTU count following subsampling to the median (Med.) value (77,806), and (7) the
minimum (Min.) value (49,641). Also shown are the (8) Shannon and (9) Simpson diversity indices
corresponding to each sample determined using the condensed OTU table data.

Sample Raw
Reads

Trimmed
Reads

Unfilt.
OTUs

Filt.
OTUs

Cond.
OTUs

Cond. OTUs
Med.

Cond.
OTUs Min.

Shannon
Diversity

Simpson
Diversity

Algae 1 154,561 121,543 4985 1345 268 259 243 5.3590 0.9376

Algae 2 137,323 103,116 2973 855 226 220 204 4.7960 0.9340

Algae 3 160,926 115,779 4745 1383 329 325 302 4.9626 0.9156

Gut Digesta 1 76,329 60,871 2133 580 155 155 151 3.1936 0.8260

Gut Digesta 2 74,249 61,267 2144 599 119 119 113 2.4760 0.5991

Gut Digesta 3 123,640 99,546 3056 611 126 121 106 2.9289 0.7891

Gut Tissue 1 128,539 90,412 4384 1094 328 322 301 4.1236 0.8440

Gut Tissue 2 68,644 51,895 2311 898 273 273 273 3.8787 0.8436

Gut Tissue 3 123,735 89,547 4765 1418 403 397 368 4.8038 0.9250

Pharynx
Tissue 1 107,276 72,954 5663 1558 430 430 418 6.0719 0.9642

Pharynx
Tissue 2 86,515 58,281 4417 1488 431 431 430 5.9389 0.9632

Pharynx
Tissue 3 92,987 63,405 4918 1489 402 402 397 6.2246 0.9697

Water 1 123,154 81,885 4725 1679 504 504 487 5.2838 0.8797

Water 2 137,044 93,713 6127 1087 403 400 386 5.7289 0.9546

Water 3 119,824 85,613 5608 1406 400 400 377 4.2286 0.8211

Summary total =
1,714,746

total =
1,249,827

total =
44,664

total =
4290

total =
776 total = 776 total = 776 avg. =

4.6666
avg. =
0.8778

3.3. Taxonomic Distribution across Samples

Taxonomic distribution across all samples showed the gut tissue represented a uniquely
heightened amount of Epsilonproteobacteria in the order of Campylobacterales, namely family
Camplylobacteraceae (Arcobacter) (~20%) and Helicobacteraceae (Sulfurimonas) (~12%) as compared
to the other samples of the study (Figure 2A,B). Members of Firmicutes (Tissierella_Soehngenia) were
observed in the gut tissue and appeared to be present in the pharynx tissue and the environmental
samples, particularly the water. Also observed were Bacteroidetes (Flavobacteriales, ~2%), as well as
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Gammaproteobacteria (Psychromonas, ~7%), Deltaproteobacteria (Desulfotalea, ~5%), and Fusobacteria
(Propionigenium, ~5%), to lesser degrees of abundance.Microorganisms 2018, 6, x FOR PEER REVIEW  9 of 32 
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Figure 2. Taxonomic distribution of microbial communities in the gut ecosystem and rocky tide
pool environment of the sea urchin S. purpuratus. (A) The relative abundance of phyla (class for
Proteobacteria) represented at >1% are shown, with phyla <1% grouped as “Other.” (B) The top 100
taxa at the most resolvable level across all samples were also visualized, and taxa not included as the
top 100 were assigned as “Other.” OTUs were picked at 97% similarity threshold, filtered at <0.0005%,
condensed using PhyloToAST (v1.4.0), and subsampled to minimum OTU count (rarefied OTU table).
Taxonomic identities were determined by using the GreenGenes (v13.8) database, and the color code
corresponds to each taxon observed across the gut and environmental samples. Grouping of biological
replicates (n = 3) was supported by an analysis of similarity (ANOSIM) and multivariate analysis of
variance (Adonis) (p < 0.001). Relative abundance plot was created through Microsoft Excel Software
(Seattle, WA, USA).
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The dominant microbial taxa in the gut digesta were observed to be members of Psychromonas
(~40%), Propionigenium (~15%), and class Flavobacteriales (~25%). Compared to the gut tissue, these
taxa comprised a large relative abundance (~80%) of the bacterial microbiota observed in the gut digesta.
The gut digesta also included members of phylum Bacteroidetes (3%), class Gammaproteobacteria
identified as Vibrionaceae and Vibrio (~1 and ~2% respectively), and Desulfotalea (~5%) at noticeable
relative abundances (Figure 3).
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Figure 3. Comparison of the observed taxa between the gut tissue (n = 3) and gut digesta (n = 3) using
the rarefied OTU table data. Taxa observed at <1% were filtered from the graph. Standard deviation
and relative abundances were determined through STAMP (v2.1.3), and the graph was generated
through Microsoft Excel Software (Seattle, WA, USA).

The pharynx tissue presented many of the same bacterial taxa observed in the water and to a
lesser extent the algae samples. Of these shared taxa, Fusobacterium (~10%) was observed at the highest
abundance, which was followed by the families S27-7 (Bacteroidales) and Gemellaceae, and genus
Prevotella. The presence of these bacteria in the gut tissue and gut digesta were negligible (<1%).
However, the pharynx tissue also included members of Tissierella_Soehngenia (~6%), Sulfurimonas
(~3%), and Desulfotalea (~1%) which were observed in the gut tissue and digesta.

The algae samples showed Saprospiraceae (~15%), Rhodophyta (~10%), and Stramenopiles (~9%)
to be heightened, the presence of which was negligible in the other samples in the present study. We
also observed the genera Maribacter and Octadecabacter at equal capacities (~4%). All microbial taxa at
their most resolved level, including their group abundance identified in the rarefied OTU table used in
this study, have been elaborated (Table S1). Additionally, the unfiltered OTU table generated in this
study has also been elaborated (Table S2).

From the alternative strategy utilizing ASVs, the taxonomic distribution was in concert with the
OTU picking strategy, with only slight variations in relative abundance (Table S3). In the gut tissue,
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a slightly higher relative abundance of Arcobacter (~22%) and Sulfurimonas (~14%) was determined
through the ASV method compared to the OTU picking strategy. A variation in relative abundances
of heightened taxa was also observed in the gut digesta, where Psychromonas was more highly
represented at ~50%, whereas Propionigenium (~13%) and Flavobacteriales (~14%) were marginally
less abundant. The pharynx tissue was also consistent between the two strategies, with a slightly
higher abundance of Fusobacterium (12%) and Sulfurimonas (~7%). The ASV method was able to resolve
an extra phylogenetic level of one heightened feature in the pharynx tissue, which was classified
to phylum Gammaproteobacteria (~6%) through the OTU picking method, but was determined as
order Legionellales (~10%) through the ASV approach. For the water samples, Tissierella_Soengenia
(~32%) comprised the highest abundance, followed by Fusobacterium (~7%), and for the algae samples,
Saprospiraceae, Rhodophyta, and Stramenopiles were confirmed through the ASV method, at slightly
higher relative abundances compared to the OTU picking method. Additionally, the results of the
alignment of the representative sequences corresponding to the top 100 taxa determined in the rarefied
OTU table through SILVA ACT: Alignment, Classification and Tree Service (www.arb-silva.de/aligner)
have been elaborated (Table S4).

3.4. Alpha Diversity

Alpha diversity measures performed on the rarefied OTU table showed the highest Shannon
diversity in the pharynx tissues (avg = 6.08 ± 0.08 SEM), followed by the water (5.08 ± 0.44 SEM) and
algae (5.04 ± 0.17 SEM), with the gut tissue (avg = 4.27 ± 0.28 SEM) and gut digesta (avg = 2.87 ±
0.21 SEM) showing the lowest diversity. Simpson diversity showed a similar trend in the sea urchin
gut samples, with the pharynx tissue showing the highest diversity (avg = 0.976 ± 0.002 SEM), and
the gut tissue (0.871 ± 0.027 SEM) and gut digesta (0.738 ± 0.070 SEM) showing the lowest. The
water (0.885 ± 0.039 SEM) and algae (0.929 ± 0.007 SEM) microbial profiles were more diverse than
the gut tissue and digesta, but less diverse than the pharynx tissue (Table 1). Kruskal–Wallis H-test
analysis through PhyloToAST (v1.4.0) showed significant differences between the Shannon (p = 0.017)
and Simpson (p = 0.027) alpha diversity values across the 5 groups of the study. The kernel density
smoothed histograms plotted using PhyloToAST (v1.4.0) visualized the alpha diversity values, with
density representing the intra-sample variation in the group (high density = low variation between the
diversity of samples in the group). For both Shannon (Figure 4A) and Simpson (Figure 4B) diversity,
the highest density corresponded to the pharynx tissue samples, indicating low intra-sample variation
in the group. Shannon diversity showed the broadest diversity value range in the water (Figure 4A),
and Simpson showed the broadest range in the gut digesta (Figure 4B). For Shannon diversity, the gut
digesta and gut tissue samples had distinct histogram peaks. For Simpson diversity, the range of alpha
diversity measures for the gut digesta was broader, indicating a minimal density peak, and the gut
tissue showed a low but noticeable peak (Figure 4A,B).

www.arb-silva.de/aligner
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points). Relevant p-values are listed in each graph. Plots were generated using the “diversity.py” 
command through PhyloToAST (v1.4.0). 

Figure 4. Per-group alpha diversity measurements calculated across all samples in the study.
(A) Shannon and (B) Simpson alpha diversity histograms were smoothed by kernel density estimation.
The Kruskal–Wallis H-tests were performed for the five groups and showed a significance value of
p = 0.017 for the Shannon and p = 0.027 for Simpson diversity measurements, indicating significant
differences between each group’s alpha diversity. The X-axis shows the diversity value of Shannon
(values much greater than 0 are more diverse) and Simpson (values closer to 1 are more diverse).
The histogram values of each sample were smoothed through kernel estimation to show the range
of sample data points within each group. The Y-axis depicts the density function, which denotes the
distribution of data points falling within this range (higher peak represents more clustered data points).
Relevant p-values are listed in each graph. Plots were generated using the “diversity.py” command
through PhyloToAST (v1.4.0).

3.5. Beta Diversity

Microbial taxonomic distribution patterns determined through Bray–Curtis metrics across all
samples revealed the gut tissues to cluster together at >50% and the gut digesta >60% (Figure 5A).
These two sample groups maintained a Bray–Curtis similarity >40%. The pharynx tissues group
demonstrated low intrasample variation (Bray–Curtis similarity >60%) and had a microbial community
structure that was the most similar to the water samples (Bray–Curtis similarity >40%, Figure 5B). The
algae samples clustered together at a value >60% but were least similar to the other samples of the study.
The observed cluster patterns were strengthened when only the top 100 OTUs were plotted through
2D MDS (Figure S1A,B). For the rare taxa (the taxa not included in the top 100 OTUs), although low
intrasample variation was observed, the gut tissue group was clustered nearer the pharynx and water
samples (Figure S1C,D). Although the general trends of within- and between-group sample similarity
were supported through the weighted (Figure S2A,B) and unweighted (Figure S3A,B) Unifrac 3D
PCoA and dendrogram analysis, there were slight variations in cluster patterns between the two
Unifrac approaches. Through the weighted Unifrac method, the gut tissue and gut digesta microbial
communities clustered closer together as compared to the unweighted method, which showed the
gut tissue samples to more closely resemble the pharynx. However, in concert with the Bray–Curtis
method, both methods demonstrated the pharynx tissue to more closely resemble the water samples,
and the algae samples maintained a divergent cluster pattern away from the other samples of the study.
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Figure 5. Beta diversity analysis of microbial communities observed across all samples in the study
using Bray–Curtis similarity metrics determined for the rarefied OTU table. (A) A 2D multidimensional
scale (MDS) plot analysis was performed to show sample cluster patterns based on observed OTUs,
with a 40% and 60% Bray-Curtis similarity overlay, and the stress value (2D Stress = 0.04) was indicated.
(B) Dendrogram analysis was also performed and each sample’s cluster patterns were based on group
average. The OTU table was pretreated via standardization by the total and log transformation prior to
Bray-Curtis analysis. Figure legends are shown in the 2D MDS plot. Data was generated and plotted
through PRIMER-6 software (Primer-E Ltd, Plymouth Marine Laboratory, Plymouth UK, v6.1.2).

ANSOIM and Adonis analysis supported biological replicate grouping and demonstrated the
highest grouping similarity corresponding to the OTU data that was rarefied to the minimum count
value (ANOSIM R = 0.94; Adonis R2 = 0.76). However, significant grouping patterns of biological
replicate groups were observed when the analysis was performed on each OTU table generated
in this study (unfiltered, filtered, condensed, median rarefied, and minimum rarefied OTU tables)
with p = 0.001 for ANOSIM and Adonis (Table 2). Additionally, ANOSIM and Adonis performed on
the rarefied OTU table using the weighted (ANOSIM R = 0.92; Adonis R2 = 0.77) and unweighted
(ANOSIM R = 0.88; Adonis R2 = 0.73) Unifrac statistic also supported significant biological replicate
grouping, with p = 0.001 determined using both methods, with the weighted method showing a
slightly higher value for both statistics.

Table 2. Grouping statistics performed on each OTU table generated in the study. Results show
both ANOSIM and Adonis measurements of the initial OTU table (unfiltered; Unfilt.), followed by
filtering of those taxa represented at <0.0005% in the study (filtered; Filt.), condensing (Cond.) using
PhyloToAST (v1.4.0) and rarefying to the median (Med.) and minimum (Min.) of the condensed OTU
table file. Analysis was performed on grouped biological sample replicates (pharynx, n = 3; gut tissue,
n = 3; gut digesta, n = 3; water, n = 3; and algae, n = 3).

Diversity
Measure Unfilt. OTUs Filt. OTUs Cond. OTUs Cond. OTUs Med. Cond. OTUs Min

ANOSIM R = 0.93185 R = 0.93185 R = 0.94074 R = 0.94074 R = 0.94222

Adonis R2 = 0.69518 R2 = 0.71145 R2 = 0.74894 R2 = 0.74951 R2 = 0.75688

Similarity trends between sample groups were elaborated by heatmap analysis, which also
depicted the relative abundance associated with each taxon contributing to the group diversity across
the grouped biological replicate samples (Figure 6). Dendrogram analysis across grouped biological
replicates for the heatmap analysis revealed the gut digesta and gut tissue to have a more similar
microbial ecology composition, and likewise for the water and pharynx groups. The algal food source
was the least similar to the other samples of the study, confirming the similarity trends observed
in the 2D MDS plot analysis (Figure 5A). LEfSe analysis of the gut tissue and digesta at an LDA
score of ±3 showed the taxa contributing most to the dissimilarity (effect size) of the gut tissue to be
Arcobacter, Sulfurimonas, and Tissierella_Soehngenia, whereas the gut digesta revealed Psychromonas,
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Flavobacteriales and Vibrio (Figure 7). The effect size of Propionigenium, which was noticeably abundant
in the gut tissue (5.7% ± 4.8%) and digesta (14.9% ± 9.6%), was not observed in LDA analysis, likely
due to overlapping standard deviation values (as observed in Figure 3).
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Figure 6. Heatmap of the top 53 taxa at the highest resolution, determined using the rarefied OTU
table and generated using R (v3.3.2). The heatmap.2 function from the gplots (v3.0.1) package (www.
rdocumentation.org/packages/gplots) was used. Sample dendrogram was generated using Vegan
(v2.4.3), employing the Bray-Curtis metric of the grouped biological replicate count data. Color palette
selected using the RColorBrewer package and set from “sky blue” for less abundant, to “blue” for more
abundant (shown in color key). Relative abundance values of each taxon are also indicated through a
trace line (black). The associated table includes the most resolvable taxonomic assignment according
to the GreenGenes (v13.8) database, which is color-coded to the phylum level assignments (class for
Proteobacteria) as indicated in the key and corresponding to the relative abundances in the Figure 2A
relative abundance graphs. The figure has been generated using scalable graphics and, therefore,
regions of interest can be viewed at a higher resolution digitally by increasing the magnification.

www.rdocumentation.org/packages/gplots
www.rdocumentation.org/packages/gplots
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Figure 7. Linear discriminant analysis (LDA) effect size (LEfSe) performed on the microbial community
relative abundance data at the of the gut tissue (n = 3) and gut digesta (n = 3). Grouped data were
first analyzed using the Kruskal–Wallis test with a significance set to 0.05 to determine if the data was
differentially distributed between groups, and those taxa that were differentially distributed were
used for LDA model analysis to rank the relative abundance difference between groups. The LDA for
significance was set to ±3, and the log(10) transformed score is shown to demonstrate the effect size.
Data were analyzed and prepared through Hutlab Galaxy provided through the Huttenhower lab. The
gut tissue group is shown as green, and the gut digesta group as red.

3.6. Predicted Functional Capacity

The predicted functional capacity of the microbial communities of the digestive system was
performed using PICRUSt (v1.1.2), showing an average NSTI value of 0.139 (range from 0.105 - 0.179).
Scatter plot analysis using STAMP (v2.1.3) of the KEGG-Level-2 categories showed a preferential
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abundance of energy metabolism in the gut tissue, as well as membrane transport, cell motility,
and signal transduction (Figure 8A). For the gut digesta, amino acid metabolism, carbohydrate
metabolism, metabolism of cofactors and vitamins, and replication and repair categories were observed.
KEGG-Level-3 observances showed a preferential abundance of oxidative phosphorylation, carbon
fixation, methane, and nitrogen metabolisms in the gut tissue, and categories related to the transporter
and motility-related categories (2-component system, chemotaxis, bacterial motility proteins, and
flagellar assembly) (Figure 8B). The gut digesta displayed categories related to pyrimidine metabolisms,
as well as peptidases and amino acid enzymes, including arginine and proline metabolisms. Other
categories that were enriched in the digesta included starch and sucrose metabolism, pentose phosphate
pathway, glycolysis/gluconeogenesis, and ubiquinone and turpenoid-quinone biosynthesis necessary
for electron transport. The KEGG-Level-2 and 3 categories identified through PICRUSt (v1.1.2) were
listed in Table S5. Additionally, the LEfSe analysis of KO Ids (highest metabolic resolution) contributing
most to the effect size difference between the gut tissue and gut digesta were determined and listed
along with their associated metabolic definitions (Figure 9 and Table S6).
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Figure 8. Scatter plot analysis of the predicted KEGG Orthology (KO) metabolic functions determined
through Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt
v1.1.2) performed on the gut tissue (n = 3) and gut digesta (n = 3). Biological replicates were grouped,
and analysis was performed for the (A) KEGG-Level-2 and (B) KEGG-Level-3 hierarchical functional
categories. The linear regression value calculated for the two groups is shown for each scatter plot
graph. Preferentially enriched categories for the gut tissue are shown as red, and for the gut digesta
as brown. Those categories with clearly preferentially abundant categories have been labeled. Data
were analyzed and visualized using STAMP (v2.1.3) analytical software. The node labels have been
generated using scalable graphics, and therefore regions of interest can be viewed at a higher resolution
digitally by increasing the magnification.
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3.7. Co-Presence, Co-Exclusion, and Key Taxa in the Gut Environment 

The resultant network generated through CoNet (v1.1.1) in Cytoscape (v3.6.0) yielded 71 nodes 
and 294 edges elucidating possible interactions occurring between taxa representing the distinct 
microbial communities of the sea urchin gut environment (Figure 10A). Analysis of network 
properties using NetworkAnalyzer (v2.7) showed an average network centralization of 0.128, the 
characteristic path length of 2.856, average number of neighbors at 8.282, with a network density of 
0.118 and network heterogeneity of 0.452. Scatter plot analysis demonstrated the trends of closeness 
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Figure 9. Linear discriminant analysis (LDA) effect size (LEfSe) performed on the KEGG Orthology
(KO) metabolic functions determined through PICRUSt (v1.1.2) for the gut tissue (n = 3) and gut digesta
(n = 3). The KO Ids were determined through the “predict_metagenomes.py” command in PICRUSt
(v1.1.2). Grouped data were analyzed using the Kruskal–Wallis with a significance set to 0.05, and the
significantly differentially distributed KO Ids were used for LDA model analysis ranking the relative
abundance significance, at an LDA threshold showing entries ranking at± 2.4. The log(10) transformed
score is shown as the effect size. Data were analyzed and prepared through Hutlab Galaxy provided
through the Huttenhower lab. The gut tissue group is shown as green, and the gut digesta group as
red. The KO Id labels have been generated using scalable graphics, and therefore regions of interest
can be viewed at a higher resolution digitally by increasing the magnification.

3.7. Co-Presence, Co-Exclusion, and Key Taxa in the Gut Environment

The resultant network generated through CoNet (v1.1.1) in Cytoscape (v3.6.0) yielded 71 nodes
and 294 edges elucidating possible interactions occurring between taxa representing the distinct
microbial communities of the sea urchin gut environment (Figure 10A). Analysis of network properties
using NetworkAnalyzer (v2.7) showed an average network centralization of 0.128, the characteristic
path length of 2.856, average number of neighbors at 8.282, with a network density of 0.118 and
network heterogeneity of 0.452. Scatter plot analysis demonstrated the trends of closeness centrality
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plotted against betweenness centrality, along with the nodes scaled to the degree (Figure 10B). The
top 10 candidate key taxa based on the topological qualities of taxonomic nodes described in Berry
and Widder et al. [30] were ranked by their closeness centrality, and showed Propionigenium, Moritella,
SB-1 (Bacteroidetes), Desulfobacteraceae and Desulfovibrio in the gut digesta, and Rhodobacteraceae,
Rhodophyta, Vibrionaceae, Arcobacter and Bacilli in the gut tissue (Table 3). Of these taxa, the gut
digesta showed Propionigenium to have the highest degree of associations with the gut tissue taxa (17
total), with the majority of these associations shown as co-presence (14 total). The gut tissue showed
Rhodobacteraceae to have the highest degree (9 total), and most of these associations were co-exclusion
(8 total). The gut tissue also showed the highly abundant Arcobacter to be a likely key taxon, revealing
a degree of 9, with the majority of these associations as co-presence (7 total).Microorganisms 2018, 6, x FOR PEER REVIEW  20 of 32 
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Figure 10. Co-occurrence patterns between taxonomic entries of the gut tissue and gut digesta,
determined through Co-occurrence Network inference (CoNet v1.1.1), and analyzed through Cytoscape
(v3.6.0). Taxonomic entries with a cumulative row sum of 200 or above with 2/3 of samples showing
non-zero value entries were used through an ensemble approach that incorporated the Pearson,
Spearman, Bray–Curtis, Kullback–Leibler, and mutual information metrics. The top and bottom 200
edges were selected and merged by the union method. (A) The network analysis shows the edges
represented by the q-value (merged with the Brown method at p < 0.05 for each metric) and are shown
as green (co-presence) and red (co-exclusion), with the nodes representing taxa were scaled according
to relative abundance and colored according to the phyla (class for Proteobacteria) assignments. The
final network was arranged using the yFiles (v1.0) Cytoscape (v3.6.0) add-on radial layout, and
taxonomic entries shown at the highest resolution are denoted with the sample type (circle for gut
tissue, “-gut”; diamond for gut digesta; “-dig”). The network has been generated using scalable
graphics, and therefore nodes of interest can be viewed at a higher resolution digitally by increasing
the magnification. (B) Scatter plot analysis was performed using topological metrics determined by
NetworkAnalyzer (v2.7), to demonstrate patterns of key (keystone) species between taxonomic entries
of the gut tissue and gut digesta based on closeness and betweenness centrality, as well as the degree
(number of co-presence and co-exclusion edges). Linear regression between closeness and betweenness
centrality was shown as logarithmic (R2 value = 0.7145), and the top 10 entries ranked by closeness
centrality are depicted. Note, the taxa Rhodophyta and Rhodobacteraceae had the same closeness
and betweenness centrality measurements, and their corresponding plot is indistinguishable. Linear
regression determined through Microsoft Excel Software (Seattle, WA).
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Table 3. Candidate key taxa resulting from CoNet (v1.1.1) analysis between the gut tissue and gut
digesta microbial communities. The group assignment is shown (gut tissue, n = 3; gut digesta, n = 3),
along with the phylum and taxon at the highest resolution. The average abundance (Av. Ab.) was
determined for each taxon based on the respective group (gut tissue or digesta as indicated). The
entries were ranked according to closeness centrality (Clos. Cent.), highest to lowest (a feature of
keystoneness), and then by degree (edges; Deg.), highest to lowest. Also shown is the betweenness
centrality (Bet. Cent.), and the total, positive (co-presence; Pos. Deg.) and negative (co-exclusion; Neg.
Deg.) degree values.

Sample
Type Phylum Taxon Av. Ab. Clos.

Cent.
Bet.

Cent. Deg. Pos.
Deg.

Neg.
Deg.

Gut Digesta Fusobacteria Propionigenium 14.89% 0.39 0.13 17 14 4

Gut Digesta Proteobacteria
(Gammaproteobacteria) Moritella 0.15% 0.44 0.17 16 10 6

Gut Digesta Bacteroidetes SB-1 0.38% 0.39 0.06 14 3 11

Gut Digesta Proteobacteria
(Deltaproteobacteria) Desulfobacteraceae 0.24% 0.38 0.04 14 2 12

Gut Digesta Proteobacteria
(Deltaproteobacteria) Desulfovibrio 0.24% 0.41 0.11 13 6 7

Gut Tissue Proteobacteria
(Alphaproteobacteria) Rhodobacteraceae 0.34% 0.41 0.05 9 1 8

Gut Tissue Cyanobacteria Rhodophyta 0.22% 0.41 0.05 9 1 8

Gut Tissue Proteobacteria
(Gammaproteobacteria) Vibrionaceae 0.36% 0.41 0.09 9 5 5

Gut Tissue Proteobacteria
(Epsilonproteobacteria) Arcobacter 20.59% 0.38 0.04 9 7 2

Gut Tissue Firmicutes Bacilli 0.16% 0.38 0.06 8 6 2

4. Discussion

Overall, the S. purpuratus gut ecosystem exhibited high abundances of Arcobacter and Sulfurimonas
in the gut tissues. These taxa belong to phylum Epsilonproteobacteria, and specifically within the order
Campylobacterales, members of which are known to be chemolithoautotrophic [88]. Both Arcobacter
and Sulfurimonas have been implicated as marine sulfur-oxidizing bacteria, with members of Arcobacter
forming oxidized sulfur filaments in response to geothermally produced sulfide in hydrothermal
vents [89,90], and Sulfuromonas has been observed to oxidize sulfur in anoxic deep-sea hydrothermal
sediments [91,92]. Additionally, Epsilonproteobacteria have been reported in the gut systems of
marine organisms, with Arcobacter previously observed in the deep-sea vent-dwelling shrimp Rimicaris
exoculata [93] and the marine Chilean oyster Tiostrea chilensis [94], and Sulfurimonas in the stomach
of the hydrothermal vent crab Xenograpsus testudinatus [95] and as symbionts in marine gastropod
mollusks Alviniconcha [96,97]. These bacteria have been implicated as potential symbionts, assisting
in the oxidation of sulfur in the highly sulfidic environments [98]. Previous studies using Illumina
MiSeq HTS of the V4 region of the collective 16S rRNA genes conducted on the gut environment
of the sea urchin L. variegatus from the Gulf of Mexico similarly revealed Campylobacterales to be
near-exclusively abundant in the gut tissue [15,16], of which further analysis of the highly-represented
Campylobacterales sequence showed a ~90-91% similarity match to Arcobacter/Sulfuricurvum through
NCBI BLAST [15].

In contrast to the gut tissue, the microbial composition of gut digesta was dominated by
Psychromonas (phylum Gammaproteobacteria). This halophilic genus is known to occur in cold
marine environments (~4 ◦C) [99], and members are capable of hydrolyzing starch and other insoluble
sugars [100–103], as well as producing ω-3 polyunsaturated fatty acids [99]. It has recently been
shown that the totalω-3 fatty acids of the gut contents (23.26 ± 6.88; mean ± SD) of experimentally
fed S. purpuratus are higher than the total ω-3 fatty acids of their algal diets (13.41 ± 6.32); the
dominant driver of this pattern was from the ω-3 eicosapentaenoic acid (EPA; 20:5ω-3) [20], but
the mechanism for this enrichment was unknown. The psychrophilic capabilities of Psychromonas
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are consistent with the temperature of the Oregon Pacific Coast seawater temperature from which
S. purpuratus was sampled, which was recorded at 13.1 ◦C, within the range of optimum growth
Psychromonas spp. [100]. Also observed in the gut digesta were Propionigenium of phylum Fusobacteria,
members of which are anaerobic, are capable of fermenting succinate to propionate [104] and
have been implicated in carbohydrate metabolisms that include cellulose, producing short-chain
fatty acids [105]. Propionigenium is involved in a myriad of host health benefits, including its
association in the modulation of the lifespan of the Turquoise Killifish (Nothobranchius furzeri) [105].
Order Flavobacteriales of phylum Bacteroidetes were also observed, which have been identified
in the intestines of shrimp Litopenaeus stylirostris raised in aquaculture and clear waters [106].
Importantly, members of Flavobacterales have been investigated with consideration of their metabolic
capability to break-down alginate from brown seaweeds common in both temperate and polar
coastal environments [107]. Lastly, the genus Desulfotalea of Deltaproteobacteria was observed at
approximately equal relative abundances in the gut digesta and gut tissue (~5% in each). Certain
members of Desulfotalea are adapted to extremely cold environments, and these bacteria are capable of
sulfur reduction [108,109].

Shannon and Simpson’s diversity measured for all samples showed the microbial communities
of the gut environment to have low diversity, whereas the pharynx and environmental samples
had a high diversity value. Such high microbial diversity in the marine environment indicates a rich
microbial community and is expected due to the fluctuations of abiotic conditions and nutrients, spatial
dispersion of microbes through the marine environment, and dynamic host-species populations that
shape the microbiota to the environment [21]. The reduction of species richness from the environment
to the gut tissue and digesta indicated a more preferential microbial community comprised of specific
taxa in the gut system.

Compartmentalization of microbial community profiles in the gut environment of S. purpuratus
was demonstrated through Bray-Curtis based 2D MDS plot and dendrogram cluster analysis and was
supported through heatmap and ANOSIM/Adonis analysis. Grouping based on sample type was
found to be significant through ANOSIM/Adonis statistics, indicating the consistency of microbial
taxa across biological replicates representing each group (pharynx, gut tissue, gut digesta, water,
and algae). 2D MDS plot analysis supported this low intra-sample variation within groups, and
dendrogram analysis showed the gut tissues to cluster nearer the gut digesta, and the pharynx nearer
the water samples. 2D MDS plot and dendrogram analysis of the top 100 OTUs strengthened the
trends observed when using the rarefied OTU table. Additionally, an intra-sample variation of the
rare taxa was not markedly transformed when determined through 2D MDS plot and dendrogram
analysis. However, analysis using rare taxa slightly altered the cluster patterns of groups, showing the
gut tissue to cluster nearer the water and pharynx, suggesting shared rare microbial taxa between these
groups. Interestingly, although the weighted and unweighted Unifrac approaches did support the
significant within-group similarities observed through Bray–Curtis based 2D MDS and dendrogram
analysis, the between-group cluster patterns were slightly transformed. For weighted Unifrac, which
measures the distance between samples using the relative abundances and phylogenetic relationships
of the presented microorganisms [70], the gut tissue and digesta samples clustered closer together.
However, through the unweighted method, which considers the presence/absence of taxa and their
phylogeny [70], the gut tissue clustered with the water and pharynx samples. Such differences
suggest an underlying phylogenetic relatedness between those bacterial microbiota colonizing the gut
system based on their abundance. For all ordination analyses performed in this study, the microbial
communities of the algae remained the least similar to all samples of the study.

Heatmap analyses supported the 2D MDS plot and dendrogram analysis, showing the
contribution of Epsilonproteobacteria (Arcobacter and Sulfurimonas) to the unique microbial profile of
the gut tissue, and Psychromonas in the gut digesta. LEfSe analysis demonstrated the significant effect
size of certain key bacterial microbiota contributing to microbial community dissimilarity of the gut
tissue and digesta, showing Arcobacter, Sulfurimonas, and Tissierella_Soehngenia in the gut tissue, and
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Psychromonas, Flavobacteriales, and Vibrio in the gut digesta. Although Propionigenium was found to be
more heightened in the gut digesta (14.9% ± 9.6%) than the gut tissue (5.7% ± 4.8%), this taxon did
not contribute to a high LDA score. This is likely due to the overlapping standard deviation of the
relative abundance values of this taxon (Figure 3). Thus, these beta diversity analyses demonstrate
the contribution of all taxonomic groups (heightened and rare taxa) in shaping both intra-sample
and group-wise microbial profile similarity in the sea urchin S. purpuratus, as well as the specific taxa
contributing to the unique cluster patterns and effect size of the compartmentalized gut tissue and
digesta bacteria.

Public repositories of taxonomic information, such as the GreenGenes (v13.8) database used in
this study, often possess repetitive entries, resulting in OTU tables with many redundant taxonomic
assignments [25]. By using PhyloToAST (v1.4.0), such bias in the in the representation of 16S rRNA
gene and associated taxonomic information can be improved, by binning highly similar taxonomic
OTU sequences and assigning taxonomy to a higher resolution (genus/species when possible) through
BLAST. Other strategies to improving the diversity measures of OTU tables generated from a targeted
HTS approach have been proposed, such as the LULU algorithm that utilizes a post-clustering strategy
to curate an OTU table based on co-occurrence patterns to help eliminate spuriously generated OTUs
from the final dataset [110]. In this study, the initial OTU table generated following quality checks
resulted in 44,664 unique assignments. However, condensing of redundant taxonomic IDs through
PhyloToAST (v1.4.0) reduced the number of unique observations to 776, without any loss of read-count
data when compared to the filtered OTU table. Additionally, subsampling of the condensed OTU
table to the minimum read count (49,641) increased the beta diversity significance between biological
replicate groups. Thus, the combined use of PhyloToAST (v1.4.0) and subsampling to the minimum
value, enhanced the resolution of taxa, as well as increased the robustness of the beta analyses measures.

The popularity of targeted high throughput sequencing of microbial 16S rRNA genes has spurred
the development of multiple bioinformatics tools, techniques, and approaches, designed to ensure
the quality and reliability of the generated results. Traditionally, following the quality assessment and
filtering of raw sequence read data, OTUs are chosen based on clustering highly similar sequences at a
designated threshold, such as the 97% pairwise similarity described in our analysis, and commonly
used as a proxy for species based on the 16S rRNA gene [111,112]. This OTU picking approach
will often generate an initially high amount of unique observations, spuriously inflate the alpha
diversity, and skew beta diversity measures, due to PCR and/or sequencing errors generating a high
number of very rare OTUs [49]. Therefore, an additional filtration step is often necessary, such as
the removal of OTUs occurring at <0.0005% average abundance across all samples as applied in our
study and others [50,51], and described for Illumina MiSeq generated sequence read data [49,52].
Alternative approaches to this strategy include a current practice of selecting ASVs as the operational
units, which are generated by coupling a denoising step on the raw data that employs a parametric
error model to define the frequency of observed sequence variants as it relates to real biological
sequence data [43,44]. One such ASV selection tool, DADA2 (v1.10) as implemented in the recently
developed QIIME2 package (v2018.11), utilizes a Poisson model to determine these repeated sequence
variants [43,44], and was used as an alternative approach to our OTU method. For our OTU-based
approach, the initial unfiltered OTU table generated a high number of unique observances, which
were further filtered to eliminate potential spurious sequence reads, and then condensed through
a BLAST approach with PhyloToAST (v1.4.0) and rarefied to the minimum sequence value. As
previously stated, this produced 776 unique OTUs with 49,641 reads across all samples. After using
DADA2 (v1.10) through QIIME2 (v2018.11), a total of 1134 unique ASVs with an average read count
of ~31,191 were generated across all samples, producing a quantitatively comparable sequence read
count to the rarefied OTU table used in our downstream analyses. Additionally, following taxonomic
assignment of the representative sequences generated for both the OTUs and ASVs using GreenGenes
(v13.8), a similar relative abundance distribution was determined at comparable levels of phylogenetic
resolution. Some exceptions included the additional resolution of one OTU assigned as phylum
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Gammaproteobacteria in the pharynx tissue, which was further resolved to order Legionellales through
the ASV method. However, the similarities of relative abundance are consistent with the most current
literature comparing the two strategies [52]. Lastly, it should be noted that although DADA2 denoising
may be advantageous in determining real biological sequences associated with rare taxa, this may
come at the cost of determining “false positives” as described elsewhere [52].

Predicted functional profiles generated for the gut tissue and digesta at KEGG-Level-3 showed
enrichment of metabolic qualities related to energy metabolisms, including oxidative phosphorylation,
carbon fixation, methane, and nitrogen metabolisms in the gut tissue. The gut tissue also included
heightened motility-related categories, suggesting a potential role of these functional attributes in
the colonization of the gut tissue lumen [113], potentially through abiotic factors driving microbial
colonization into the more oxygenated sea urchin gut tissue surface [114]. In the gut digesta,
KEGG-Level-3 categories related to protein metabolisms (e.g., peptidases and amino acid enzymes,
arginine and proline metabolisms) and carbohydrate metabolisms (e.g., starch and sucrose metabolism,
pentose phosphate pathway, glycolysis/gluconeogenesis, and ubiquinone and other terpenoid-quinone
biosynthesis) suggest a potential role of these bacteria in the digestive physiology of the purple
sea urchin. These results are consistent with previous culture-dependent studies of sea urchin
gut bacteria in digestion [9] and reflect potential anaerobic metabolisms likely to be performed in
this mucous-sequestered niche [115]. LEfSe analysis at the KO Id level indicated the categories
that contributed most to the differences between the distinct microbial communities of the gut
system and supported the observed KEGG-Level-2 and 3 categories. The gut tissue presented seven
categories related to membrane transporters, such as multiple sugar transport system permease
proteins, cobalt/nickel transport system ATP-binding proteins and ferrous iron transport protein A,
including ABC transport proteins such as the sulfonate/nitrate/taurine transport system permease
protein category. Categories related to nitrogen metabolism, and specifically nitrate reduction, were
also observed as heightened. Such nitrate reductive activity occurring in the sea urchin gut has
been previously suggested to occur by the gut microbiota of sea urchins [14,116,117]. The gut digesta
represented categories related to amino acid metabolism related to threonine and histidine biosynthesis,
vitamin metabolisms such as Menaquinone (vitamin K2) production, and categories related to
carbohydrate metabolism in the pentose phosphate pathway. These categories support the trends
observed in the scatter plot analysis and offer insight into the functional qualities that accompany the
life strategies of the gut microbes that may drive their distribution in the compartmentalized gut system.
Lastly, although the calculated NSTI values (avg. = 0.139) for the data in this study indicated adequate
confidence in the functional predictions of non-human-associated microbial communities based on
taxonomic inference alone [75], a shotgun metagenomics approach targeting the metacommunity DNA
of a microbiome sample would offer more reliable insight into those genes likely involved in host
health and digestion.

We used CoNet (v1.1.1) analysis to identify theoretical modeling of relationships occurring
between taxa in the distinctly compartmentalized gut tissue and gut digesta microbial
communities [27–29]. Although taxa that were noticeably abundant in this study were represented
(such as Propionigenium in the gut digesta and Arcobacter in the gut tissue), there were many
low-abundance taxa representing likely key taxa. For example, Moritella (Gammaproteobacteria,
<1% in the gut digesta) were observed to have a high closeness centrality relative to betweenness
centrality and a high degree of edges (16 total) with 10 positive associations to taxa in the gut digesta.
Interestingly, two taxa identified as Desulfobacteraceae and Desulfovibrio to the highest resolution were
included in the top 10 likely key taxa in the gut digesta, were sulfur-reducing bacteria (<1% in the gut
digesta) and represented a total degree of 14 and 13 respectively, with the majority of these indicated
as co-exclusion relationships. These taxa belong to the phylum Deltaproteobacteria and represent
species known to utilize sulfate as electron acceptors [118]. In the gut tissue, Rhodobacteraceae
(Alphaproteobacteria) and order Rhodophyta (classified in phylum Cyanobacteria according to the
GreenGenes v13.8 database) revealed the same pattern of degree (nine each), closeness and betweenness
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centrality measures. Additionally, Arcobacter, which was highly abundant in the gut tissue (~ 20%),
was identified as a key taxon with a degree of nine (with seven positive associations). This genus is
comprised of species capable of utilizing elemental sulfur, hydrogen sulfide, and thiosulfate as terminal
electron acceptors [119], alluding to a biogeochemical basis for the observed ecological relationships as
suggested previously [120]. However, the relationship between microbial taxa of the gut tissue and gut
digesta, including the role or key status of particular microbial taxa will require further verification.

In summary, the results of this study provide insight into the gut bacterial microbiota of S.
purpuratus grown in situ, specifically elaborating (1) the taxonomic distribution, (2) the predicted
functional categories assigned to the gut-associated bacterial communities, and (3) key taxa
likely involved in maintaining the distribution patterns of gut microbiota through co-occurrence
relationships in this evolutionarily and ecologically significant deuterostome. The gut environment
demonstrated an allocation of microbial communities in the gut tissue, with a heightened abundance
of Epsilonproteobacteria (namely Arcobacter and Sulfurimonas), and in the gut digesta, a higher
abundance of Gammaproteobacteria (such as the psychrophilic genus Psychromonas). This trend of
microbial compartmentalization has been previously observed in the laboratory [15,24] and naturally
occurring [16] L. variegatus sea urchin bacteriome from the Gulf of Mexico. In those studies, certain
microbial taxa were found to be consistent between the gut systems of both laboratory-raised and
naturally occurring organisms, with the naturally occurring organisms showing slightly higher species
diversity and richness in the gut system. More specifically, a near-exclusive abundance of Arcobacter
(Epsilonproteobacteria) was observed in the gut tissue, whereas Vibrio (Gammaproteobacteria), a genus
common to halophilic temperate marine environments, was most dominant in the gut digesta. Other
bacterial microbiota found consistent in the gut digesta of L. variegatus included Propionigenium and
taxa assigned as family Rhodobacteraceae. For both the laboratory-raised and naturally occurring sea
urchins, beta diversity analysis of the pharynx showed cluster patterns that diverged from the gut tissue
and digesta and more closely resembled that of their environment. Interestingly, many of the same
trends of microbial integration in L. variegatus were also observed in the naturally occurring sea urchin
S. purpuratus gut system of this study. This included an abundance of Epsilonproteobacteria such as
Arcobacter and Sulfurimonas in the gut tissue, Gammaproteobacteria such as Psychromonas and Vibrio,
as well as other common species such as Propionigenium in the gut digesta, and a pharynx microbial
community resembling the environment. Such selective enrichment and compartmentalization of
bacteria in both S. purpuratus and L. variegatus despite geographical separation support an essential
role of specific bacterial taxa to their hosts’ health and digestion, and could be further supported by
future studies establishing the gut microbiome of laboratory-raised counterparts and/or sea urchins
collected at different time-points and locations. Lastly, whether this trend of bacterial enrichment into
the sea urchin gut system is the result of (1) naturally occurring microbes in adjacent seawater finding
a suitable habitat in the urchin gut environment to flourish, or (2) a host-mediated selective integration
of key bacterial microbiota, remains to be verified. However, the similarities identified in taxa across
geographical scales suggests that this could be an interesting avenue for future study.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/7/2/35/s1:
Figure S1: 2D multidimensional scale (MDS) plot and dendrogram analysis performed using the Bray–Curtis
metrics calculated for the top 100 and rare taxa across all samples of the study; Figure S2: 3D principle coordinates
analysis (PCoA) plot and dendrogram analysis performed using the weighted Unifrac metrics calculated for the
rarefied OTU table data across all samples of the study; Figure S3: 3D principle coordinates analysis (PCoA) plot
and dendrogram analysis performed using the unweighted Unifrac metrics calculated for the rarefied OTU table
data across all samples of the study; Table S1: The OTU table data to most resolvable level of the merged biological
replicate samples of this study (pharynx, n = 3; gut tissue, n = 3; gut digesta, n = 3; water, n = 3; and algae, n = 3)
with taxonomy assigned using the GreenGenes (v13.8) database; Table S2: The unfiltered OTU table data of all
samples of this study with taxonomy assigned using the GreenGenes (v13.8) database; Table S3: The QIIME2
(v2018.11) ASV table data generated through DADA2 (v1.10) for all samples in this study with taxonomy assigned
using the GreenGenes (v13.8) database; Table S4: Top 100 representative sequences aligned to multiple databases;
Table S5: Results of the predicted functional profiles determined through PICRUSt (v1.1.2) and analyzed through
STAMP (v2.1.3) of the Kyoto Encyclopedia of Genes and Genomes (KEGG) Level-2 and KEGG-Level-3 categories
(gut tissue, n = 3; gut digesta, n = 3); Table S6: Description of each functional category determined through LEfSe
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analysis (LDA threshold at ± 2.4) of the KEGG Ortholog (KO) Ids determined through PICRUSt (v1.1.2) analysis
of the gut tissue and gut digesta microbial communities.
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