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Phylogenomic Analyses of Bradyrhizobium Reveal
Uneven Distribution of the Lateral and Subpolar
Flagellar Systems, Which Extends to Rhizobiales
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Abstract: Dual flagellar systems have been described in several bacterial genera, but the extent of
their prevalence has not been fully explored. Bradyrhizobium diazoefficiens USDA 1107 possesses
two flagellar systems, the subpolar and the lateral flagella. The lateral flagellum of Bradyrhizobium
displays no obvious role, since its performance is explained by cooperation with the subpolar
flagellum. In contrast, the lateral flagellum is the only type of flagella present in the related
Rhizobiaceae family. In this work, we have analyzed the phylogeny of the Bradyrhizobium genus
by means of Genome-to-Genome Blast Distance Phylogeny (GBDP) and Average Nucleotide Identity
(ANI) comparisons of 128 genomes and divided it into 13 phylogenomic groups. While all the
Bradyrhizobium genomes encode the subpolar flagellum, none of them encodes only the lateral
flagellum. The simultaneous presence of both flagella is exclusive of the B. japonicum phylogenomic
group. Additionally, 292 Rhizobiales order genomes were analyzed and both flagellar systems are
present together in only nine genera. Phylogenetic analysis of 150 representative Rhizobiales genomes
revealed an uneven distribution of these flagellar systems. While genomes within and close to the
Rhizobiaceae family only possess the lateral flagellum, the subpolar flagellum is exclusive of more
early-diverging families, where certain genera also present both flagella.

Keywords: Bradyrhizobium; Rhizobiales; phylogenomic; phylogenetic; flagellar systems

1. Introduction

Many of the diverse lineages that integrate the Bacteria domain have a free-living planktonic
state as an important part of their lifestyles. Furthermore, in planktonic state, bacteria synthesize
extracellular structures known as flagella that are used for chemotactic motility. Flagellar systems
are widely distributed among bacteria, conferring significant adaptive advantages [1]. Flagella are
composed of a basal body that anchors the flagellar structure to the cell surface, a long filament
protruding from the cell body, and a hook that serves as a connector between the basal body and
the filament. The basal body contains the flagellar motor, consisting of a stator (MotAB or PomAB,
according to the motive force) anchored to the cytoplasmic membrane and peptidoglycan, and a rotor
that moves the extracellular substructure. This rotor is composed of the MS-ring (FliF), the C-ring
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(FliGMN) and the rod (FIgBCFG). FlgH and FlgI also belong to the rod and form the bushings, called
the L and P rings that are found in the outer membrane and in the peptidoglycan layer, respectively.
The bushings surround the drive shaft and keep it in place. The hook (FIgE) connects the filament to
the basal body and FlgL and FlgK establish the hook-filament junction. The filament that projects out
of the cell, often reaching up to 10-20 times the cell’s length, is composed of thousands of flagellin
monomers (FliC, Fla or LafA) [2,3]. All the components of this structure are synthesized inside the
cell and therefore must be secreted through the export apparatus (FIhAB and FliIPRQ). Furthermore,
the above-described flagellar core genes belong to a complex system that requires around 50 proteins
for their assemblage, regulation, and function, being an expensive organelle from the energetic
standpoint [4,5]. Indeed, a substantial amount of protein synthesis is required to maintain the flagellar
system throughout the cell cycle, and considerable energy is dedicated to motor rotation.

Position, number, and identity of the flagellar filaments around the cell differ among bacterial species.
Flagellar filaments can be subpolar or polar if positioned near or at the cell pole, respectively; or peritrichous
when they are located around the cell [6]. Moreover, different genetic arrangements occur in flagellar
systems, since all the genes can be located in a single cluster or they can be scattered in different clusters
along the genome. Several works indicate that a number of species of diverse genera present two sets of
flagellar genes, therefore they putatively encode dual flagellar systems [1,7-10]. Among aquatic bacteria,
dual flagellar systems have been reported in strains or species of Vibrio, Aeromonas, Rhodospirillum,
Rhodobacter and Shewanella [7-9,11,12]. Microorganisms from other environments, such as strains of
the gut inhabitant Escherichia coli [13] or strains of certain species of the soil bacteria Azospirillum,
Bradyrhizobium, and Pseudomonas are also described as possessing two flagellar systems [10,14,15].
An irregular distribution of flagella is frequently found among different species or strains [13,15-18].
Considering the energetic demands for flagellar synthesis and functioning, the existence of dual
flagellar systems in these bacteria is noteworthy and requires deeper analysis of their evolution and
adaptive value.

Bradyrhizobium diazoefficiens USDA 110" possesses two flagellar systems [10,19,20]. The genes
for the subpolar flagellum are distributed in four major clusters and several orphan genes along the
chromosome, while all genes encoding the lateral flagellum are located in a 35-kb cluster [21]. However,
a preliminary survey gave no indications of the possible acquisition of this cluster by Horizontal Gene
Transfer (HGT) [22]. Previous works demonstrate that the flagellar systems of B. diazoefficiens USDA
110" have distinctive characteristics. The subpolar flagellum, which is constitutively expressed, is
required to swim in liquid and to swarm over wet surfaces [23]. In addition, it is chemotactically active
and behaves as an adhesin on glass surfaces. The lateral flagella are expressed in liquid medium,
consuming a considerable portion of cellular energy and being induced by the carbon source and the
presence of agar or the viscosity of the medium [22,24]. It does not contribute to swimming speed, but
is partially responsible for swarming [22,23]. Mutants lacking the subpolar flagellum are impaired in
colonization of soybean roots or in competition for nodulation, while the role of the lateral flagellum
on this bacteria-plant interaction remains unclear [19]. In nature, some Bradyrhizobium species such as
B. elkanii possess only the subpolar flagellum, yet they live in the same soil environment and nodulate
the same plant host as B. diazoefficiens or B. japonicum, which possess both flagellar systems [22,25].
These facts add more puzzlement to the question of the adaptive value of lateral flagella in this genus,
which has been found as the dominant and most ubiquitous in soils worldwide [26,27].

To date, few studies have focused on analyzing the distribution of flagellar systems in bacteria [1,9].
To shed more light on these questions regarding dual flagellar systems, here we studied the
phylogenetic distribution of the lateral and subpolar flagella and analyzed their synteny throughout
Bradyrhizobium and the Rhizobiales order of alpha-proteobacteria.
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2. Materials and Methods

2.1. Datasets and Phylogenomic Analysis of Bradyrhizobium

Bradyrhizobium genomes were downloaded from the NCBI ftp server [28] and the JGI IMG
database [29] on October 2017, resulting in a total of 128 genomes listed in the Supplementary
Table S1. Phylogenomic analyses were conducted by (i) calculating intergenomic distances using the
Genome-to-Genome Blast Distance Phylogeny (GBDP) algorithm via the Genome-to-Genome Distance
Calculator (GGDC) 2.1 web service [30,31] and (ii) by using blast-implemented Average Nucleotide
Identity (ANIb) [32] using a public available script [33]. Resulting sets of intergenomic distances
obtained by GBDP and distances based on ANIb as previously described [34,35] (Supplementary
Data S1) were converted into distance matrices and imported into MEGA 7 software [36] to build the
Neighbor-Joining phylogenomic trees. Rhizobium lupini HPC(L) and Mesorhizobium ciceri WSM1271
genomes were used as outgroups.

Clustering of GBDP and ANIb intergenomic distances from the Bradyrhizobium genus into
phylogenomic groups was examined with OPTSIL clustering software version 1.5 [37]. Here, and also
as previously proposed [34,38], an F = 0.5 (i.e., average-linkage clustering) was chosen and T values
were examined to detect the best clustering threshold based on reference partitions that yielded the
highest Modified Rand Index (MRI) values. Species-level clusters were also examined using the
established thresholds for both, GBDP and ANIb analyses.

2.2. Phylogenetic Analysis of Rhizobiales Order Genomes

All-against-all orthologous amino acid searches with DIAMOND version 0.9.22.123 [39]
implementation were performed using OrthoFinder version 2.2.6 [40] on 150 representative proteomes
belonging to the Rhizobiales order of alpha-proteobacteria (Supplementary Table S1) and Caulobacter
vibrioides CB15 as outgroup. The resulting set of 104-core, single copy orthologous amino acid
sequences was aligned using Clustal Omega [41] and concatenated to form the super-matrix for
phylogenetic analysis. Gblocks version 0.91b [42] was used to remove poorly aligned columns
and divergent regions, using a minimum block length of two amino acids and allowing gap
positions in all sequences. Maximum likelihood (ML) phylogenetic trees were built using the
Pthreads-parallelized RAXML package [43] version 8.2.10. The LG model of amino acid evolution [44]
combined with gamma-distributed substitution rates and empirical amino acid frequencies were used.
Fast bootstrapping with subsequent search for the best tree [45] and the autoMRE criterion [46] were
also applied. Maximum parsimony (MP) tree searches were performed with PAUP* software [47]
version 4.0a, using 100 rounds of random sequence addition and subsequent TBR branch swapping,
saving no more than 10 best trees per round and collapsing potential zero-length branches during the
tree search. MP bootstrap support was calculated with PAUP* using 1,000 replicates with 10 rounds of
heuristic search per replicate.

2.3. Phylogenetic Analysis of the Flagellar Systems

Phylogenetic multilocus sequence analysis (MLSA) of the lateral flagellum in the Bradyrhizobium
genus was performed using 35 conserved and complete coding DNA sequences (CDSs; lafR, bl16847,
flgN, fig], fliR, flhA, fliQ, figD, fIbT, flaF, flgL, figK, flgE, fliK, motB, bl16863, fliF, fliL, flgH, b116870, figl,
flgA, figG, fliE, flgC, figB, flhB, fliG, fliN, bl16880, fliM, motA, flgF1, flil and bll6886 as in B. diazoefficiens
USDA 1107 genome BA000040.2 from position 7,544,342 to 7,577,700). Homologous sequences of these
CDSs were retrieved from the genomic annotation, if available or by blast searches, aligned, processed
and concatenated as described above, following the order in which they appear in B. diazoefficiens
USDA 110T. The ML phylogenetic tree was built with RAXML as previously specified but using the
GTR model of nucleotide substitution [48] combined with the gamma model of rate heterogeneity and
optimization of substitution rates with the BFGS algorithm optimization. Rapid bootstrapping and
subsequent ML search combined with autoRME criterium were used as specified above.
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MLSA of both, the subpolar and lateral flagellar systems present in the genomes of the Rhizobiales
order, was performed with 13 orthologous conserved amino acid sequences between these flagella
(FIliR, FIhA, FliQ, FIiF, FliP, FlgH, Flgl, FlgG, FliE, FlgC, FlgB, FIhB, FliG) identified with OrthoFinder
as described above. Genomes without this complete protein set or duplications were removed from
the analysis. Concatenation of sequences, alignment and ML and MP tree searches were conducted as
previously described.

2.4. Lateral and Subpolar Flagellar Systems Identification and Synteny

Genome annotations from all the genomes used in this study were obtained from the NCBI RefSeq
database when possible; a RAST annotation pipeline [49] was used. Lateral and subpolar flagellar
apparatus were screened in each of these genomes by means of genomic annotation searches and blastn
and blastp from the blast+ software version 2.2.28 [50], using as reference the B. diazoefficiens USDA
110T genomic sequence (BA000040.2) from position 7,545,799 to 7,552,767 containing the genes fliR,
fIhA, fliQ, figD, fIbT, flaF, flgL and fIgK of the lateral flagellar apparatus, and from positions 6,375,374
to 6,380,905 containing the genes fIhB, fliR, fliQ, fliE, flgC, figB, fliO and fliP of the subpolar flagellum,
which are distinctive of both flagella across all genomes analyzed. In the case of phylogenetically
distant genomes, genomic sequences of both flagellar systems identified in close related genomes were
used as blast queries.

Syntenic organization of the lateral flagellar system was examined using the genomic annotations
in all the genomes analyzed and represented by a self-written Perl script.

3. Results and Discussion

3.1. Phylogenomic Analysis of the Bradyrhizobium Genus

The Bradyrhizobium genus has been described as a taxonomically complex group due to its high
16S rRNA gene conservation [51,52], although MLSA studies suggested the existence of two major
groups within this genus [53,54]. Nowadays, the number of sequenced genomes allows the use of
phylogenomics to achieve a deeper knowledge of Bradyrhizobium lineages. Phylogenomic GBDP
and ANIb-based analysis of 128 Bradyrhizobium genomes and further clustering of all Bradyrhizobium
intergenomic distances (Supplementary Data S1) with OTPSIL revealed the presence of 13 groups
within the genus (Figure 1, Supplementary Figure S1). These 13 phylogenomic groups (PG) are in
full agreement according to the Modified Rand Index (MRI = 1) with the reference partition using
a distance threshold T = 0.153 within the GBDP distances, which equals 28.1% digital DNA-DNA
hybridization (dADDH). The same 13 PGs with a MRI = 0.993 were obtained by clustering intergenomic
distances calculated with ANIb using T = 0.15 (Supplementary Data S2), which equals an ANIb of
85%. The fact that both phylogenomic methods yielded similar clustering results, highlights the
robustness of the PGs identified in this study. Furthermore, these distance thresholds (0.153 and 0.15
for GBDP and ANIb, respectively) are similar to those reported in a phylogroup identification study
in Pseudomonas [34]. Of these 13 Bradyrhizobium PGs, only four contain sequenced type-strains, and
according to the oldest species description: B. japonicum (PG 1), B. elkanii (PG 2), B. oligotrophicum
(PG 4) and B. jicamae (PG 8) (Figure 1). The PGs presented here are in agreement with previous 16S
rRNA PCR-based analysis along with MLSA of housekeeping genes of the Bradyrhizobium genus,
which showed two major groups [54-57], namely Group I (GI) and Group II (GII). On the one hand,
Gl is consistent with our PG1, both including the species B. japonicum, B. diazoefficiens, B. linoningense,
B. yuanmingense, B. daqgigense, B. stylosanthis, B. arachidis, B. manausense and B. neotropicale. On the
other hand, GII includes more early-diverging species, such as B. elkanii. B. pachyrhizi, B. embrapense,
B. tropiciagri, B. viridifuturi, B. retamae, B. icense, B. valentinum, B. paxllaeri and B. jicamae, all of which
correspond with PGs 2 to 13 according to our results. The only discrepancy between both analyses lies
in B. oligotrophicum, which is placed within the GI according to previous analysis [57], while in our
study, it is an independent group.
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Figure 1. Phylogenomic tree based on GBDP intergenomic distances of 128 Bradyrhizobium genomes
and clusters at phylogenetic groups (PGs) level and species level (SPs). Rhizobium lupini HPC(L)
and Mesorhizobium ciceri WSM1271 were used as outgroups. Only genomes clustered within the PG1
(B. japonicum) harbor both, the lateral and subpolar flagellar systems (red typing), while genomes
of the remaining PGs (2 to 13) and some within the PG1 only harbor the subpolar flagellar system
(black typing). Bold and T indicate type strain. Phylogroups and species clusters according to GBDP

intergenomic distance-based clustering.

Furthermore, when using the standard species thresholds of dDDH and ANI [30,32], there are
81 species clusters according to 70% dDDH and 77 species clusters according to an ANIb of 96% within
the 128 Bradyrhizobium genomes analyzed (Figure 1, Supplementary Figure S1 and Data S2). In the case
of GBDP, total correlation with the reference partition (i.e., MRI = 1) was achieved, while ANIb yielded
a less optimal clustering result (MRI = 0.965). The 81 species-level clustering established by 70% dDDH
was found at 96.6% ANIb (MRI = 0.948). This result was not unexpected as inconsistencies within
ANIDb results have been previously shown [34]. In any case, both methods evidence incorrect and
misleading species naming throughout the Bradyrhizobium genus. Among these, the most notorious
are B. japonicum strains is5, in8p8, USDA 4, 22, USDA 124 and Is-1 and B. elkanii strains CCBAU
05737, USDA 94, USDA 3254, USDA 3259, WSM2783 and WSM1741. These strains do not belong
to the species they have been assigned to, as dDDH and ANIb values are clearly below the species
threshold compared with the type strains of these species (B. japonicum USDA 6! and B. elkanii USDA
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76", Supplementary Data S1). B. japonicum strains is5, in8p8, 22 and Is-1 were assigned to the species
level based on 16S rRNA [58]. In the case of B. elkanii strains USDA 94, USDA 3254 and USDA
3259 and B. japonicum USDA 4 and USDA 124, it has been previously suggested that they do not
belong to these species based on MLSA results [59]. However, phylogenomics and specifically GBDP
and ANlI-based analysis provide a more accurate in silico species delimitation that can replace the
conventional DNA-DNA hybridization “gold standard” [30,32].

3.2. Lateral and Subpolar Flagellar Systems in the Bradyrhizobium Genus

The genetic organization of the genes encoding each flagellar system of B. diazoefficiens USDA
110" has been previously elucidated [10,19,21,22]. While genes of the subpolar flagellar system are
distributed in at least four major clusters and several orphan genes, those of the lateral flagellar
system are contiguous in the genome of B. diazoefficiens USDA 110T. Although this strain is not the
only Bradyrhizobium species in which these two flagellar systems have been reported [22,25], to our
knowledge, no extensive analysis in this genus regarding the distribution of flagellar systems has been
done to date.

Phylogenomic GBDP-based analysis of 128 Bradyrhizobium genomes and the search for both
flagellar systems have revealed that while all the genomes harbor the genes for the subpolar flagellar
system, only 70 genomes present both flagellar systems (Figure 1, Supplementary Table S2). These
genomes are phylogenetically linked, being all included within the B. japonicum PG (PG1). On the other
hand, strains from PGs 2 to 13 only harbor the subpolar flagellar system. Interestingly, five genomes
within the B. japonicum phylogroup (B. japonicum strains USDA 135 and 22, B. diazoefficiens NK6 and
unclassified isolates Gha and Ghvi) do not contain genes for the lateral flagellum (Figure 1). These
results, and the linkage of all the genes in a genetic cluster, might suggest that the lateral flagellar
system could have been acquired by horizontal gene transfer (HGT), although certain genomes might
have lost it afterwards. However, no evidence of HGT was found in the genomic sequences, such
as signatures of direct repeats or GC% changes, perhaps because these traces can be diluted over
time. Furthermore, B. diazoefficiens USDA 1107 is known to contain multiple genomic islands [60].
Nonetheless, none of the genes of the lateral or subpolar flagella are found within these previously
identified genetic islands.

Phylogenetic MSLA of 35 concatenated CDSs of the lateral flagellar system in Bradyrhizobium
genomes shows high agreement with the GBDP phylogenomic tree (Supplementary Figure S2).
Furthermore, syntenic organization of the lateral flagellar genes in a genetic cluster is conserved
throughout sequenced type-strains of the B. japonicum PG (B. diazoefficiens USDA 1107, B. japonicum
USDA 6", B. arachidis LTMG 267957, B. stylosanthis BR 446", B. dagigense CGMCC 1.109477T,
B. yuanmingense CCBAU 100717, B. neotropicale BR 10247 and B. manausense BR3351%), although
duplication events in genes encoding lateral flagellins (lafA) are observed (Figure 2a). A variable
number of flagellin genes has been previously observed across different Bradyrhizobium species and
even outside this genus [19,21,61,62]. This level of conservation is also maintained within all genomes
from the B. japonicum PG (Supplementary Figure S3). However, although there is synteny in the
genomic region upstream, and the lateral flagellar cluster is consistent among all the type-strain
genomes (Figure 2b), the downstream genomic region has undergone extensive rearrangements as
only synteny of a transcriptional regulator and an ABC transporter cluster is found. In some genomes
(B. japonicum USDA 6" and B. yuanmingense CCBAU 100717), this cluster is found several kilobases
apart from the end of the lateral flagellar cluster (Figure 2b). In the case of the draft genomes B. arachidis
LMG 26795 and B. dagigense CGMCC 1.109477, this cluster could not be found due to high genome
fragmentation. Thus, the high degree of synteny maintenance within the lateral flagellar system and
the upstream region, together with the lack of this flagellum in early-diverging groups, might suggest
a unique HGT event as the origin of the lateral flagellar system in Bradyrhizobium, followed by a strictly
vertical evolution. However, further analyses are required in order to test support the lateral flagellum
HGT acquisition hypothesis.
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Figure 2. Synteny of the lateral flagellar system and genetic context among type strains of the
B. japonicum PG. (a) Synteny of the lateral flagellar system showing high conservation and flagellins
duplication events. White arrows indicate hypothetical proteins. (b) Synteny of the genetic context
surrounding the lateral flagellar system (red square, not to scale). The upstream region synteny of the
lateral flagellum is maintained across type strains while downstream region has suffered extensive
genomic reorganizations. Black arrows represent hypothetical proteins and/or coding sequences with
no homologous sequences in the genetic context among the genomes represented. NCBI accs. no. and
coordinates of the regions shown are specified under the species name.

Regarding the subpolar flagellar system, the available data show a high dispersion of genes
through the chromosome in all the Bradyrhizobium genomes analyzed, which prevents the syntenic
elucidation of the subpolar flagellum as a whole. In any case, the arrangement of genes within some
clusters allows the distinction between each different flagellum.

3.3. Lateral Flagellar System Outside Bradyrhizobium

In order to find the closest lateral flagellar systems outside Bradyrhizobium, 31 protein sequences
of the lateral flagellum were used as queries in blastp against the whole non-redundant (nr) NCBI
protein database. The results show the highest sequence homology with Rhodopseudomonas palustris
BisA53 and Tardiphaga sp. OK245 (Supplementary Table S3), genera belonging to Rhizobiales order of
alpha-proteobacteria. The lateral flagellar system of R. palustris BisA53 has been previously reported to
be closely related to that of B. diazoefficiens USDA 110" [22]. Interestingly, among 14 Rhodopseudomonas
sequenced genomes, only two genomes (R. palustris strains BisA53 and BisB18) contain both, the
lateral and subpolar flagellar systems, while the remaining genomes (R. palustris strains HaA2, JSC-3b,
CGAO009, BAL398, BisB5, TIE-1, DX-1,420L and ELI 1980, R. pseudopalustris DSM 123T and unclassified
isolates AAP120 and B29) only harbor the subpolar flagellum. On the other hand, Tardiphaga is another
genus from the Rhizobiales order with only three sequenced genomes and they all have both, the
lateral and the subpolar flagellar systems. Furthermore, syntenic organization of the lateral flagellum
between these two genera and Bradyrhizobium is highly maintained, although a flagellin duplication in
Bradyrhizobium has occurred (Figure 3a), which suggests a common origin of the lateral flagella.
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Figure 3. Synteny of the lateral flagellar system across representative Rhizobiales genomes and
closest relatives outside Rhizobiales. (a) Synteny of the lateral flagellar systems of Bradyrhizobium,
Rhodopseudomonas and Tardiphaga type strain species genomes. (b) Synteny of the lateral flagellar
systems of diverging Rhizobiales genomes belonging to Pleomorphomonas, Cohaesibacter, Methylobacterium,
Microvirga, Chelatococcus, Bosea, Methylocella and Methyloferula species. (c) Synteny of lateral flagellar
systems of genomes belonging to Ochrobactrum, Mesorhizobium, Hoeflea, Sinorhizobium, Agrobacterium
and Rhizobium species. (d) Synteny of the lateral flagellar systems of closest relative genomes outside
Rhizobiales belonging to Labrenzia, Pannonibacter and Polymorphum species of the Rhodobacteraceae family.
White arrows indicate hypothetical or unknown proteins or proteins with no involvement in flagellar
biosynthesis or regulation. Species name, genome NCBI accs. no. and coordinates of the regions shown
are specified under the syntenic representation of each genome.

Although Rhodopseudomonas and Tardiphaga are the closest relatives to the lateral flagellar system
of B. diazoefficiens USDA 1107, and species from both genera also possess the subpolar flagellum,
the blast results (Supplementary Table S3) show that other genera from the Rhizobiales order of
alpha-proteobacteria possess the lateral flagellar system.

3.4. Flagellar Systems Distribution in Rhizobiales

To further analyze the presence of the subpolar and lateral flagellar systems in the Rhizobiales
order, we performed a search on sequenced type-strain or reference species genomes for all the genera
comprised within the Rhizobiales order. According to the NCBI Taxonomy, the Rhizobiales order is
composed of 13 families, containing 130 genera and 741 named species of which only 292 species



Microorganisms 2019, 7, 50 90f17

from 67 genera have sequenced genomes (Table 1, Supplementary Data S3). From the total number
of sequenced species, 62.3% (182) present the lateral flagellum, while 28.8% (84) harbor the subpolar
flagellum and 18.5% (54) do not present any flagellar system. On the other hand, 9.6% (28) of species
from nine genera possess both flagellar systems. Most of these genera also contain species with only
the subpolar system (Bosea, Bradyrhizobium, Rhodopseudomonas, Methylobacterium and Pleomorphomonas).
We also found genera in which, aside from species with both flagella, there are also species with only
the lateral flagellum (Microvirga) and genera in which all the sequenced species harbor both flagellar
systems (Tardiphaga, Salinarimonas and Cohaesibacter) (Table 1), showing an uneven flagellar distribution
throughout the Rhizobiales order.

Table 1. Distribution of the flagellar systems in 67 genera of the Rhizobiales order.

Family Genus (Sequenced Species No.)  Subpolar Flagellum  Lateral Flagellum

Aurantimonadaceae Aurantimonas (2) - +
Aureimonas (5) - +
Fulvimarina (2) - +
Martelella (2) n.m./n.d.

Bartonellaceae Bartonella (27) -

Beijerinckiaceae Beijerinckia (2) -
Chelatococcus (2) -
Methylocapsa (3) -
Methylocella (1) -
Methyloferula (1) -

Bradyrhizobiaceae Afipia (5)
Bosea (4)
Bradyrhizobium (25)
Nitrobacter (3)
Oligotropha (1)
Rhodoblastus (1)
Rhodopseudomonas (2)
Salinarimonas (1)
Tardiphaga (1)

Brucellaceae Brucella (11)
Ochrobactrum (9)

Cohaesibacteraceae Cohaesibacter (1)

o+ o+ o+ o+ |+

+ o+ o+ o+ o+ o+

Hyphomicrobiaceae Blastochloris (1)
Cucumibacter (1)
Devosia (11)
Filomicrobium (1)
Hyphomicrobium (5)
Maritalea (1)
Pelagibacterium (2)
Prosthecomicrobium (1)
Rhodomicrobium (2)
Meganema (1) nm./n.d.

o+ o+ |+
T T [ e S T g
1 LI |

I

Methylobacteriaceae Methylobacterium (20) + +/-
Microvirga (6) +/- +
Neomegalonema (1) n.d.

Methylocystaceae Methylocystis (3) - +
Methylosinus (1) - +
Pleomorphomonas (2) + +/-
Terasakiella (1) + -
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Table 1. Cont.

Family Genus (Sequenced Species No.)  Subpolar Flagellum  Lateral Flagellum

Phyllobacteriaceae Aminobacter (1) - +
Aquamicrobium (2) -
Hoeflea (2) -
Mesorhizobium (17) -
Nitratireductor (5) -
Paramesorhizobium (1) -
Pseudaminobacter (2) -

o+ o+ ++ o+

Rhizobiaceae Kaistia (3) n.m./n.d.
Agrobacterium (9) -
Neorhizobium (1) -
Pararhizobium (2) -
Pseudorhizobium (1) -
Rhizobium (42) -
Ensifer (5) -
Sinorhizobium (6) -

Xanthobacteraceae Ancylobacter (1) -
Azorhizobium (2) -
Pseudoxanthobacter (1) -
Starkeya (1) n.m./n.d.
Xanthobacter (1) n.d.

unclassified Rhizobiales Bauldia (1) n.d.
Methylobrevis (1) + -
Methyloceanibacter (5) n.d.
Methyloligella (1) nm./n.d.
Pseudorhodoplanes (1) + -

I S S e e

Taxonomy according to NCBI Taxonomy database. Last accessed in October 2017. For extended information, see
Supplementary Data S3. n.d.: Distinctive genes of the flagellar systems as described in material and methods not
detected. n.m.: Non-motile bacteria. For references, see Supplementary Data S3.

The phylogenetic maximum-likelihood tree of 150 representative genomes belonging to 54 genera
and 13 families of the Rhizobiales order, built with 104 amino acid sequences (Figure 4) is in agreement
with previous accepted Rhizobiales order phylogenies [63,64]. Bootstrap support in both, the maximum
likelihood (ML) and maximum parsimony (MP) tree searches, indicates a robust Rhizobiales phylogeny
(Figure 4). Regarding the distribution of the flagellar systems across all examined species, we
found that genera from the Rhizobiaceae, Aurantimonadaceae, Phyllobacteraceae, Hyphomicrobiaceae,
Beijerinckiaceae and Brucellaceae families (i.e., Agrobacterium, Rhizobium, Sinorhizobium, Mesorhizobium,
Brucella, Ochrobactrum, Bartonella, Aureimonas and Aurantimonas, among others) harbor only one
flagellum that is homologous to the lateral flagellum of B. diazoefficiens USDA 1107 (Figure 4). On
the other hand, species belonging to genera from the Bradyrhizobiaceae family (i.e., Bradyrhizobium,
Rhodopseudomonas, Tardiphaga, Nitrobacter, Afipia and Oligotropha, among others) present flagella that
are homologous to the subpolar flagellum of B. diazoefficiens USDA 110T. However, aside from the
B. japonicum PG, the lateral flagellar system is also found in certain species of Rhodopseudomonas and in
all Tardiphaga species (Figure 4). Interestingly, some genera phylogenetically close to Bradyrhizobiaceae
family, such as Beijerinckia, Methylocapsa, Methylocella, Methyloferula, Hyphomicrobium and others, only
possess the lateral flagellum. Also, dual flagellar systems are found in some of these genera, as is the
case of Methylobacterium, Microvirga, Salinarimonas and Bosea, where certain species only harbor one of
the flagellar systems (Figure 4).
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Figure 4. ML tree inferred from 104 concatenated single-copy amino acid sequences of
150 representative Rhizobiales genomes. Caulobacter vibrioides CB15 was used as outgroup. Bootstrap
values under ML and MP tree searches are indicated above branches, left and right respectively. Dots
indicate maximum support under all settings and values above 95% are shown in bold. Subpolar
flagellum (Sf, black), lateral flagellum (Lf, green). Bold and T indicate type strain. Red typing indicates
genomes with both flagellar systems. For additional information, see Supplementary Data S3.

Interestingly, a homologous subpolar flagellum Fla2 (according to conservation in some gene
clusters, i.e., fliQEfIgCB, flgFGAH, flhBfliR) is present in the related alpha-proteobacteria of the
Rhodobacteraceae order Rhodobacter sphaeroides [9,63]. This finding does not agree with the type of
flagellum that dominates in Rhizobiales (lateral flagellum). The fact that early-diverging lineages
within this order only possess the lateral flagellum while some genera have retained only the subpolar
flagellum, might suggests HGTs events, supposedly affecting the lateral flagellum, as the genetic
organization of the subpolar flagellum scattered within the chromosome make its transference unlikely.
Conversely, no genomic signatures or HGT evidence are found, and further analyses are required in
order to either validate or refuse the HGT hypothesis of the lateral flagellum acquisition in Rhizobiales.

3.5. Flagellar Systems Phylogeny in Rhizobiales

To address the relationship of both flagella across representative Rhizobiales genomes, a
MLSA-based phylogeny was performed with 13 conserved and common amino acid sequences to
both flagellar systems. As expected, the result shows a clear divergence of both flagella (Figure 5a).
The subpolar flagellum branching pattern follows the same evolutive relationship than the observed
in the phylogeny of Rhizobiales (Figure 5b, Figure 4), being divided into two major groups; one
comprising Bradyrhizobiaceae family genomes and the related genera Methylobacterium, Microvirga and
Bosea, and the other one comprising genera such as Devosia, Pelagibacterium and Methylobacterium
among others. A similar branching pattern as observed in the Rhizobiales order phylogeny is also
shown within the lateral flagellum (Figure 5c, Figure 4), being divided into two mayor groups; one
comprising Rhizobiaceae, Aurantimonadaceae and Phyllobacteraceae families and the other one involving
Bradyrhizobiaceae and related families. These subpolar and lateral flagellar system trees (Figure 5b,c)
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do not seem to support any HGT event because their speciation speed encompasses that of the
phylogenetic Rhizobiales order tree.
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Figure 5. ML tree analysis of the subpolar and lateral flagellar systems across representative Rhizobiales
genomes based on the concatenated sequences of 13 orthologous amino acid sequences, common
to both flagella. Bootstrap values under ML and MP are indicated above branches. Dots indicate
maximum support under all settings. (a) Subpolar and lateral flagellar clusters in unrooted tree.
(b) Subpolar and (c) lateral flagellar system cluster trees were rooted using the other flagellar cluster
as outgroup. Genomes harboring both flagellar systems are emphasized in red typing. Bold and T
indicate type strain.

Outside the Rhizobiales order, the closest lateral flagellum relatives are found in Labrenzia,
Pannonibacter and Polymorphum species (Supplementary Table S4). They all belong to the Rhodobacterales
order of alpha-proteobacteria and, based on previous phylogenetic analysis of the Rhodobacteraceae family,
are very closely related [65]. Furthermore, syntenic organization of the lateral flagellum of these genera
is strongly conserved and resembles the lateral flagellum of Rhizobiales order genomes (Figure 3d).
Interestingly, Labrenzia, Pannonibacter and Polymorphum genomes also harbor a second flagellar gene set
scattered through the chromosome, which is homologous to the subpolar flagellum of the Rhizobiales
order. Additionally, this finding also shows that the lateral flagellar system is not only restricted to
Rhizobiales, but it is also found in other alpha-proteobacteria. The prevalence of the lateral flagellum
throughout different phylogenetically distant genera followed by subsequent loss events affecting
certain species from genera such as Bradyrhizobium, might be attributed to the genetic structure of this
flagellum in a single genetic cluster and the specific ecological niche these bacteria inhabit. However,
the relevance of this flagellum as an adaptive trait should be also further analyzed, as in Bradyrhizobium
no clear advantage has been uncovered to date.
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4. Conclusions

Few studies have explored the distribution of flagellar systems in bacteria [1,9] until now. The
present work makes a survey of the type and distribution of the flagellar systems within the Rhizobiales
order. Analysis of the presence of the subpolar and lateral flagella in Rhizobiales sequenced species
revealed an uneven flagellar distribution across this order. Dual flagellar systems are a rather
uncommon phenomenon, affecting a small fraction of these species. The results presented here
show that the lateral flagellar system is the most common flagellum within the order, while the
subpolar flagellum is less abundant. The structure of the subpolar flagellum scattered throughout
the chromosome in several clusters makes a transference event unlikely. Conversely, although genes
of the lateral flagellum are clustered together, phylogenetic analysis of the flagellar systems did not
show incongruencies compared to the species tree, which do not support horizontal transference
but rather speciation. Nonetheless, there is a tendency for maintaining only one of the two flagella
within the Rhizobiales order. The reasons underlying this observation might be related with flagellar
incompatibilities or excessive energy consumption. If so, a bias towards flagellar loss is likely, although
the consequences are different depending on the specific flagellum that is lost. From a functional point
of view, the possible advantages for each flagellum would be dependent of the ecological benefits
that might be derived from their presence. In the genus Bradyrhizobium, the tendency to maintain the
lateral flagella in roughly half of the species probably suggests a still unknown function. In the case of
B. diazoefficiens USDA 1107, studies indicate that its function could be related to swimming in viscous
media and restraining cell adhesion on surfaces [22]. Furthermore, the lateral flagellum is the unique
system present in the well-studied family of Rhizobiaceae and allows them to perform swimming and
swarming motilities [66,67].

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2076-2607/7/2/50/s1,
Figure S1: ANIb phylogenomic tree of 128 Bradyrhizobium genomes and clusters at phylogenetics groups and at
species levels, Figure S2: Unrooted ML tree based on the concatenated sequences of 35 lateral flagellum CDSs
of 66 Bradyrhizobium genomes, Figure S3: Syntenic organization of the lateral flagellar gene cluster among 66
Bradyrhizobium genomes, Table S1: General genomic features of genomes used in this study, Table S2: Subpolar
and lateral flagellar systems distribution in sequenced Bradyrhizobium genomes used in this study, Table S3: First
10 closest relatives of 31 Bradyrhizobium diazoefficiens USDA 1107 protein sequences of the lateral flagellar system,
Table S4: Blastx of 13 lateral flagellum genes of 10 representative Rhizobiales genomes against the nr NCBI protein
database excluding Rhizobiales order genomes, Data S1: GBDP and ANIb comparisons of Bradyrhizobium genomes,
Data S2: Clustering of Bradyrhizobium intergenomic distances for phylogenomic groups and species identification
based on GBDP and ANIb, Data S3: Subpolar and lateral flagellar systems distribution in sequenced representative
Rhizobiales order species.
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