Supplementary DATA

Fig. S1. The Supercoil Sensor and mechanism of the $\gamma\delta$ resolution reaction. A. The 9 kb supercoil sensor is shown inserted at a Frt site upstream of the highly transcribed *Salmonella* ATP operon (the first two genes *atpl* and *atpB*). The sensor includes a complete copy of the lac operon, a gentamycin resistance gene (Gn) shown in green, two directly repeated Res sites (red) flanked by two Frt sites (blue). B. Recombination in the Tn3/γδ resolvase pathway requires two 114 bp sites (Res) with binding sites for three dimers of the resolvase. The sites are Resl (blue), ResII (red), and ResIII (yellow). C. Supercoil diffusion is required to form an active synapse in which two directly repeated sites entrap 3 negative crossing nodes. Only resolvase dimers bound to Res site I, (blue box and blue oval) can catalyze strand exchange. Movement of the interwound DNA strands promotes formation of the three-node synapse by reversible branching and slithering. Recombination generates an irreversible strand exchange with two supercoiled molecules singly linked as catenanes. D. The dependence of – supercoiling for plasmids recombination *in vitro* is shown by the scale on the left [1]. The inferred diffusible supercoil density for recombination of a 9 Kb interval in the *Salmonella* chromosome in vivo is shown on the bottom [2].

Table S1.

Strains Used

Strain	Genotype	Plasmid	Cs
NH2002	I T2 W/T		
NH6000	atnl < Frt Res lac Gn Res Frt > aidR	nIBRES 30'	85
NH6001	STM3261 < Frt Res lac Gn Res Frt > STM3262	nIBRES 30'	71
NH6002	smnB < Frt Res lac Gn Res Frt > STM2689	pIBRES 30'	58
NH6003	STM2135 < Ert Res lac Gn Res Ert > veaO	pIBRES 30'	45
NH6005	STM1554 < Frt Res lac Gn Res Frt > STM1553	pJBRES 30'	33
NH6006	STM0951 < Frt Res lac Gn Res Frt > STM0952	pJBRES 30'	21
NH6007	amnH < Frt Res lac Gn Res Frt > shmA	pIBRES 30'	
NH6008	STM4442::< Ert Res lac Gn Res Ert >	pJBRES 30' 96	5
NH6009	marC::< Frt Res lac Gn Res Frt >	pJBRES 30'	33
NH6010	STM1612::< Frt Res lac Gn Res Frt >	pJBRES <i>30'</i> 35	
NH6011	<i>vciG</i> :: < Frt Res <i>lac</i> Gn Res Frt >	pJBRES 30'	36
NH6012	acnA < Frt Res lac Gn Res Frt > cysB	pJBRES <i>30'</i> 37	
NH6016	NH6000 zeh754::Tn10 gyrA213	pJBRES <i>30'</i>	85
NH6018	NH6005 zeh754::Tn10 gyrA213	pJBRES <i>30'</i>	85
NH6019	NH6000 zeh754::Tn10 gyrA209	pJBRES <i>30'</i>	85
NH6020	NH6001 zeh754::Tn10 gyrA209	pJBRES <i>30'</i>	71
NH6021	NH6002 zeh754::Tn10 gyrA209	pJBRES <i>30'</i>	58
NH6022	NH6003 zeh754::Tn10 gyrA209	pJBRES <i>30'</i>	45
NH6024	NH6005 zeh754::Tn10 gyrA209	pJBRES <i>30'</i>	33
NH6025	NH6006 zeh754::Tn10 gyrA209	pJBRES 30'	21
NH6026	NH6007 zeh754::Tn10 gyrA209	pJBRES 30'	9
NH6027	NH6008 zeh754::Tn10 gyrA209	pJBRES <i>30'</i>	96
NH6028	NH6000 zib6794::Tn10 gyrB652	pJBRES <i>30'</i>	85
NH6029	NH6001 zib6794::Tn10 gyrB652	pJBRES <i>30'</i>	71
NH6030	NH6002 zib6794::Tn10 gyrB652	pJBRES <i>30'</i>	58
NH6031	NH6003 zib6794::Tn10 gyrB652	pJBRES <i>30'</i>	45
NH6033	NH6005	pJBRES <i>30'</i>	33
NH6034	NH6006 zib6794::Tn10 gyrB652	pJBRES <i>30'</i>	21
NH6035	NH6007 zib6794::Tn10 gyrB652	pJBRES <i>30'</i>	9
NH6036	NH6008 zib6794::Tn10 gyrB652	pJBRES <i>30'</i>	96
NH6037	NH6000 <i>zib748</i> ::Tn <i>10 gyrB1820</i>	pJBRES <i>30'</i>	85
NH6040	MH6000 zgc2393::Tn10 parC281	pJBRES <i>30'</i>	85
NH6043	NH6000 zgc2393::Tn10 parE206	pJBRES <i>30'</i>	85

NH6044	NH6001 zgc2393::Tn10 parE206	pJBRES	30'	71
NH6045	NH6002 zgc2393::Tn10 parE206	pJBRES	30'	58
NH6046	NH6003 zgc2393::Tn10 parE206	pJBRES	30'	45
NH6048	NH6005 zgc2393::Tn10 parE206	pJBRES	30'	33
NH6049	NH6006 zgc2393::Tn10 parE206	pJBRES	30'	21
NH6056	NH6007 zgc2393::Tn10 parE206	pJBRES	30'	9
NH6058	NH6008 zgc2393::Tn10 parE206	pJBRES	30'	96
NH6072	STM2655:: < Frt Res <i>lac</i> Gn Res Frt >	pJBRES	30'	57.64
NH6073	<i>clpB</i> < Frt Res <i>lac</i> Gn Res Frt > <i>rrlG</i>	pJBRES	30'	57.65
NH6108	NH6001 zib748::Tn10 gyrB1820	pJBRES	30'	71
NH6109	NH6002	pJBRES	30'	58
NH6110	NH6003 zib748::Tn10 gyrB1820	pJBRES	30'	45
NH6111	NH6005	pJBRES	30'	33
NH6112	NH6006	pJBRES	30'	21
NH6113	NH6007	pJBRES	30'	9
NH6114	NH6008	pJBRES	30'	96
NH6118	NH6009 zib748::Tn10 gyrB1820	pJBRES	30'	33'
NH6119	NH6010 zib748::Tn10 gyrB1820	pJBRES	30'	35
NH6120	NH6011	pJBRES	30'	36
NH6121	NH6012	pJBRES	30'	37
NH6222	NH6000 <i>rpoC</i> (β' Δ215-220)	pJBRES <i>30'</i>	85	
NH6223	NH6001 <i>rpoC</i> (β' Δ215-220)	pJBRES <i>30'</i>	71	
NH6224	NH6002 <i>rpoC</i> (β' Δ215-220)	pJBRES <i>30'</i>	58	
NH6225	NH6003 <i>rpoC</i> (β' Δ215-220)	pJBRES <i>30'</i>	45	
NH6226	NH6005 <i>rpoC</i> (β' Δ215-220)	pJBRES <i>30'</i>	33	
NH6227	NH6006 <i>rpoC</i> (β' Δ215-220)	pJBRES <i>30'</i>	21	
NH6228	NH6007 <i>rpoC</i> (β' Δ215-220)	pJBRES <i>30'</i>	9	
NH6229	NH6008 <i>rpoC</i> (β' Δ215-220)	pJBRES 30'	96	
NH6230	NH6073 <i>rpoC</i> (β' Δ215-220)	pJBRES 30'	57.65	
NH6231	NH6072 <i>rpoC</i> (β' Δ215-220)	pJBRES <i>30'</i>	57.64	
		-		

List and genetic structure of all strains used in this study. All strains were created for this or previous studies related to this work.

Strain	Map	Relevant	Resolution	MIF	Apparent	Average σ_D
	Position	Subunits	Efficiency		σ	(w/o Cs 33)
<u>NH6259</u>	Cs 85	AstBst	$66 \pm 8\%$	1	-0.034	
<u>NH6260</u>	Cs 71	A _{St} B _{St}	$62 \pm 10\%$	1	-0.033	
NH6261	Cs 58	$A_{St}B_{St}$	$69 \pm 10^{\circ}$		-0.035	
NH0237	$C_{\rm S} 57.65$	$A_{St}B_{St}$	$09 \pm 11\%$ 21 + 11%	1	-0.033	
NH6262	$C_{s} 45$	AstDSt Ac.Bc.	$51 \pm 11\%$ 69 + 12%	1	-0.024	
NH6263	Cs 33	AstBst	34 + 9%	1	-0.035	
NH6264	Cs 21	AstBst	$\frac{51 \pm 570}{66 \pm 11\%}$	1	-0.034	
NH6265	Cs 9	AstBst	$49 \pm 17\%$	1	-0.030	WT mean
NH6266	Cs 96	$A_{St}B_{St}$	66 ± 15%	1	-0.034	- 0.032±0.004
NH6273	Cs 85	$A_{St}B_{Ec}$	78 ± 1%	0.8	- 0.037	
NH6274	Cs 71	$A_{St}B_{Ec}$	63 ± 9%	1.0	-0.034	
NH6275	Cs 58	$A_{St}B_{Ec}$	$66 \pm 7\%$	1.0	- 0.034	
NH6271	Cs 57.65	A _{St} B _{Ec}	89 ± 3%	0.8	-0.040	
NH6272	Cs 57.64	$A_{St}B_{Ec}$	50 ± 7%	0.6	-0.030	
NH6276	Cs 45	$A_{St}B_{Ec}$	72 ± 7%	1.0	- 0.036	
NH6277	Cs 33	$A_{St}B_{Ec}$	13 ± 3%	2.6	- 0.016	
NH6278	Cs 21	$A_{St}B_{Ec}$	54 ± 1%	1.2	- 0.031	
NH6279	Cs 9	A _{St} B _{Ec}	$29 \pm 8\%$	1.7	- 0.023	AstBEc mean
NH6280	Cs 96	A _{St} B _{Ec}	51 ± 2%	1.3	- 0.030	- 0.031±0.007
NH6284	Cs 85	$A_{Ec}B_{St}$	$30 \pm 10\%$	2.2	- 0.024	
NH6285	Cs 71	$A_{Ec}B_{St}$	21 ± 2%	3.0	- 0.020	
NH6286	Cs 58	$A_{Ec}B_{St}$	$26 \pm 3\%$	2.7	- 0.022	
NH6282	Cs 57.65	$A_{Ec}B_{St}$	10 ±1%	6.9	-0.014	
NH6283	Cs 57.64	$A_{Ec}B_{St}$	$10 \pm 13\%$	3.1	-0.014	
NH6287	Cs 45	$A_{Ec}B_{St}$	$29 \pm 8\%$	2.4	- 0.023	
NH6288	Cs 33	$A_{Ec}B_{St}$	$11 \pm 3\%$	3.1	- 0.015	
NH6289	Cs 21	$A_{Ec}B_{St}$	48 ±7%	1.4	- 0.030	
NH6290	Cs 9	A _{Ec} B _{St}	54 ± 15%	0.9	- 0.031	A _E cB _{St} mean
NH6291	Cs 96	$A_{Ec}B_{St}$	31 ± 12%	2.1	- 0.024	-0.022±0.006
NH6295	Cs 85	$A_{Ec}B_{Ec}$	41 ± 10%	1.6	- 0.027	
NH6296	Cs 71	$A_{Ec}B_{Ec}$	$30 \pm 3\%$	2.1	- 0.024	
NH6297	Cs 58	$A_{Ec}B_{Ec}$	51 ± 5%	1.4	- 0.030	
NH6293	Cs 57.65	$A_{Ec}B_{Ec}$	31 ± 7%	2.2	-0.024	
NH6294	Cs 57.64	$A_{Ec}B_{Ec}$	6 ± 5%	5.2	-0.011	
NH6298	Cs 45	$A_{Ec}B_{Ec}$	$47 \pm 4\%$	1.5	- 0.029	
NH6299	Cs 33	$A_{Ec}B_{Ec}$	$12 \pm 1\%$	2.8	- 0.015	
NH6300	Cs 21	$A_{Ec}B_{Ec}$	$29 \pm 3\%$	2.3	- 0.023	
NH6301	Cs 9	$A_{Ec}B_{Ec}$	$14 \pm 4\%$	3.5	- 0.016	AEcBEc mean
NH6302	Cs 96	$A_{Ec}B_{Ec}$	31 ± 2%	2.1	- 0.024	-0.022±0.006

Table S2. Resolution and σ_D values of WT and chimeric strains carrying *gyrA*, *gyrB* or both genes from *E. coli*.

Strain	Map	Relevant	Resolution	MIF	Apparent	Average $\sigma_{\rm D}$
	Position	Subunits	Efficiency		$\sigma_{\rm D}$	(w/o Cs 33)
NH6356	Cs 85	AEc<1/2 CTD-ST>BSt	81±1%	0.8	-0.038	
NH6357	Cs 71	AEc<1/2 CTD-ST>BSt	71±2%	0.9	-0.036	
NH6358	Cs 58	AEc<1/2 CTD-ST>BSt	73±1%	0.9	-0.036	
NH6354	Cs 57.65	AEc<1/2 CTD-ST>BSt	71±2%	1.0	-0.036	
NH6355	Cs 57.64	AEc<1/2 CTD-ST>BSt	39±1%	0.8	-0.028	
NH6359	Cs 45	AEc<1/2 CTD-ST>BSt	71±2%	1.0	-0.036	
NH6360	Cs 33	AEc<1/2 CTD-ST>BSt	35±1%	1.0	-0.025	
NH6361	Cs 21	AEc<1/2 CTD-ST>BSt	67±1%	1.0	-0.035	
NH6362	Cs 9	AEc<1/2 CTD-ST>BSt	52±4%	0.9	-0.031	<1/2 CTD-ST> Mean
NH6363	Cs 96	AEc<1/2 CTD-ST>BSt	65±1%	1.0	-0.034	-0.034 ± 0.004
NH6378	Cs 85	AEc <ctd-st> BSt</ctd-st>	77±5%	0.9	-0.037	
NH6379	Cs 71	AEc <ctd-st> BSt</ctd-st>	38±10%	1.6	-0.026	
NH6380	Cs 58	AEc <ctd-st> BSt</ctd-st>	63±2%	1.1	-0.034	
NH6376	Cs 57.65	A _{Ec} <ctd-st> B_{St}</ctd-st>	65±1%	1.1	-0.034	
NH6377	Cs 57.64	A _{Ec} <ctd-st> B_{St}</ctd-st>	31±5%	1.0	-0.024	
NH6381	Cs 45	AEc <ctd-st> BSt</ctd-st>	63±5%	1.1	-0.034	
NH6382	Cs 33	AEc <ctd-st> BSt</ctd-st>	25±11%	1.4	-0.022	
NH6383	Cs 21	A _{Ec} <ctd-st> B_{St}</ctd-st>	58±5%	1.1	-0.032	
NH6384	Cs 9	AEc <ctd-st> BSt</ctd-st>	37±9%	1.3	-0.026	<ctd-st> Mean</ctd-st>
NH6385	Cs 96	AEc <ctd-st> BSt</ctd-st>	43±6%	1.5	-0.028	-0.030 ± 0.005
NH6367	Cs 85	AEc <ctd-st> BEc</ctd-st>	79±5%	0.8	-0.038	
NH6368	Cs 71	AEc <ctd-st> BEc</ctd-st>	70±4%	0.9	-0.035	
NH6369	Cs 58	AEc <ctd-st> BEc</ctd-st>	60±16%	1.2	-0.033	
NH6365	Cs 57.65	AEc <ctd-st> BEc</ctd-st>	68±4%	1.0	-0.035	
NH6366	Cs 57.64	AEc <ctd-st> BEc</ctd-st>	41±4%	0.8	-0.027	
NH6370	Cs 45	AEc <ctd-st> BEc</ctd-st>	56±3%	1.2	-0.032	
NH6371	Cs 33	AEc <ctd-st> BEc</ctd-st>	23±2%	1.5	-0.021	
NH6372	Cs 21	AEc <ctd-st> BEc</ctd-st>	75±2%	0.9	-0.037	
NH6373	Cs 9	AEc <ctd-st> BEc</ctd-st>	69±1%	0.7	-0.035	<ctd-st> Mean</ctd-st>
NH6374	Cs 96	AEc <ctd-st> BEc</ctd-st>	85±3%	0.8	-0.039	-0.033±0.005

Table S3. Results of resolution measurement and apparent σ_D values of strains with GyrA chimeras containing *E. coli* GyrA with either a half (A_{Ec}<1/2 CTD-ST>) or whole (A_{Ec}<CTD-ST>) CTD domain from *S. typhimurium* and *gyrB* from either *E. coli* or *S. typhimurium*.

Table S4. Efficiency of $\gamma\delta$ resolution reactions with a supercoil sensor at 4 positions in E. coli strains with a WT and chimeric *Salmonella-E. coli* GyrA fusions.

		Sensor	Resolution
Strain	GyrA	Position min/gene	Efficiency
E. coli NH	E. coli	85' gidB	94±1%
E. coli NH	E. coli	8' cynX	87±6%
E. coli NH	E. coli	15' ybfN	87±4%
E. coli NH	E. coli	59' rrnG	96±1%
E. coli NH	S. Tm <ctd coli="" e.=""></ctd>	85' gidB	93±1%
E. coli NH	S. Tm <ctd coli="" e.=""></ctd>	8' cynX	94±1%
E. coli NH	S. Tm <ctd coli="" e.=""></ctd>	15' ybfN	96±1%
E. coli NH	S. Tm <ctd coli="" e.=""></ctd>	59' rrnG	79±4%
E. coli NH	<i>S. Tm</i> <32 aa <i>E. coli</i> Tail>	85' gidB	80±4%
E. coli NH	<i>S. Tm</i> <32 aa <i>E. coli</i> Tail>	8' cynX	77±5%
E. coli NH	<i>S. Tm</i> <32 aa <i>E. coli</i> Tail>	15' ybfN	87±4%
E. coli NH	<i>S. Tm</i> <32 aa <i>E. coli</i> Tail>	59' rrnG	79±4

- 1. Benjamin, K.R., et al., *Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination.* J. Mol. Biol., 1996. **256**: p. 50-65.
- 2. Booker, B.M., S. Deng, and N.P. Higgins, *DNA topology of highly transcribed operons in Salmonella enterica serovar Typhimurium*. Mol Microbiol, 2010. **78**(6): p. 1348-64.