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Abstract: Despite the obvious impact of tuberculosis on global health, there is currently no effective
vaccine and there is increasing resistance against established front-line drug regiments. Our current
understanding of disease progression in tuberculosis is shaped by data collected from the failure
of immune control. We feel that this represents a biased approach, which constrains our capacity
to understand both disease control and progression. In this opinion piece, we re-examine these
questions in the context of recently published data from fluorescent bacterial reporter strains and the
analysis of the different macrophage lineages present at sites of infection. We believe that this analysis
provides alternative models for disease progression, which are not addressed through current vaccine
or immune-therapeutic strategies.
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1. Introduction.

Tuberculosis is an ancient disease caused by Mycobacterium tuberculosis (Mtb) that has co-evolved
with its human host since before man emerged from Africa [1,2] Ancestral strains are thought to be
represented by several of the current Mtb complex strains still found in Central and West Africa, such as
M. africanum. For a large part of our evolution, we have existed as small hunter/gatherer groups and it
is surmised that Mtb, as an inducer of a chronic sustained infection, would have evolved to be capable
of infecting many members of a group yet only generating disease in a limited set of individuals at
any given time. In this way, a human-specific pathogen lacking an animal reservoir could expand
and be maintained in small population units in a relatively balanced state. However, this is not a
progression to symbiosis. In order to transmit and complete its life cycle, Mtb has to make its host
sick [3]. Active tuberculosis is the completion of the pathogen’s life cycle. It is extremely efficient
and in most individuals in the absence of treatment, it is ultimately fatal. Mtb, like all organisms on
the planet, is driven by the “selfish gene” principle and if damaging its host comes with increased
fecundity, that is the direction in which it will be selected.

2. To Progress or Not to Progress

Thus, what determines the transition from a chronic to an active state of infection? It is estimated
that approximately 23% of the world’s population is infected with Mtb, but the majority harbor the
pathogen in a non-active disease state, which is known as latent tuberculosis infections (LTBI) [4].
There is debate about the average duration of latency and the relative frequency of reactivation of
latent disease versus re-infection of individuals [5]. In areas of high transmission density, it would
appear that the latter is much more common than we have appreciated previously [6].

The ability to assess the difference between reactivation versus re-infection is critical for biomarker
studies that seek to identify immune correlates with the capacity to predict disease progression within
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a population. Unfortunately, most of these studies have been conducted in South Africa because of its
high disease burden and patient accessibility and its developed clinical research capacity. However,
it is challenging to conduct such studies in this population because the high transmission pressure in
many South African communities will lead to re-infection that will misinform attempts to identify
predictive correlates of immune status.

However, what these studies do have is the capacity to generate increasingly sensitive diagnostic
indicators of the early events associated with disease progression. Early peripheral transcriptomics
analysis of peripheral blood identified a neutrophil signature that was associated with progression to
active disease [7]. Since these initial studies, the analyses have become increasingly more sophisticated
and sensitive. However, I feel that they are reliant on the detection of a disease process that has
already been initiated [8–10]. For that reason, I believe that they are diagnostic biomarkers but are not
predictive. Undoubtedly, such readouts are of great value in the early identification of individuals
on the pathway to the development of clinical disease and will help to direct the initiation of early
treatment. However, these readouts are unlikely to be of value in the assessment of immune status in
the absence of disease progression. Therefore, we are still working blindly when it comes to correlates
of immune protection with the capacity to inform vaccine development strategies.

3. What Do We Know of Immune Protection?

The majority of our knowledge regarding immune protection has come from the study of immune
failure [11]. We know how different knockout mouse strains behave after being challenged with Mtb
and we have a list of human genes that correlate with differing degrees of susceptibility to active
tuberculosis. However, the extrapolation of data from immune failure to the identification of desirable
characteristics of protection and the use of these correlates for the development of vaccine programs is
optimistic at best.

If you take a wheel off a car, it does not work very well. However, there is no guarantee that
adding a fifth wheel to the car is going to improve its performance. Unfortunately, this appears to be the
rationale behind many of the vaccine strategies that use peripheral production of IFN-γ as a surrogate
for vaccine efficacy. Clearly, IFN-γ is required but it is not sufficient in itself. In general, the vaccine
community has tended to focus almost exclusively on the functionality of different lymphocyte
subsets and how the loss of a certain T-cell subsets and/or cytokines impacts negatively on acquired
immune protection.

Such approaches are pretty much restricted to the generation of correlative data that documents
failure of immune control rather than the identification of pathways of improved control.

4. Immune Control Is Filtered Through the Host Phagocyte

Although vaccines modify the acquired immune response, the impact of the acquired immune
response must ultimately be translated through the response of the infected host macrophages.
The world of macrophage biology has undergone somewhat of a re-birth over the past five years.
We used to believe that all macrophages were hemopoetically-derived and started with a neutral
M0 phenotype, which could be driven to either classically-activated (M1) or alternatively-activated
(M2) states through exposure to type 1 (IFN-γ) or type 2 (IL-4, IL-13) cytokines. Recent cell fate
mapping studies in mice has shown that this is not to be the case [12,13]. Most notably, for tuberculosis,
alveolar macrophages are fetal stem cell-derived cells that populate the tissue early in development
and represent a long-lived, self-replenishing tissue resident population lineage. Indeed, in humans 3–4
years post-lung transplant, 85–90% of the alveolar macrophages are donor-derived [14,15].

The significance of the different myeloid populations in tuberculosis was demonstrated recently
through the use of fluorescent fitness reporter strains of Mtb in experimental murine infections [16].
Following a short-term Mtb infection (14 days), the bacilli were found to be roughly equally distributed
between the resident alveolar macrophages and recruited interstitial macrophage populations. Using
the fluorescent fitness readouts [17,18], we found that the bacteria in the alveolar macrophages
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exhibited higher indicators of replication and lower indicators of stress than those bacteria in the
recruited interstitial macrophages. We selectively depleted both macrophage subsets individually
using clodronate liposomes delivered into the lung airways or peripheral blood. Depletion of the
alveolar macrophages resulted in a log reduction in bacterial burden, while depletion of the peripheral
blood monocytes that give rise to the interstitial macrophages resulted in a log increase in bacterial
burden [16]. As Mtb only infects 1–2% of the total macrophage population in the lung, we conclude
that the bacterial burden is directly influenced by the identity of its host macrophage population.

Transcriptional and metabolic profiling of the two infected phagocyte populations demonstrated
that the interstitial macrophages were committed to glycolysis, whereas the alveolar macrophages
demonstrated a marked bias towards fatty acid oxidation and mitochondrial respiration. Intriguingly,
intoxication of interstitial macrophages with the non-hydrolysable glucose analog 2-deoxyglucose,
both in vitro and in vivo, led to an enhancement of Mtb growth, whereas treatment of macrophages
with the fatty acid oxidation inhibitor Etomoxir reduced bacterial growth in vitro.

These data demonstrate the tight metabolic relationship that exists between Mtb and its host
phagocytes [16,19]. However, more significantly, they provide an alternative model of disease
progression that does not come from failure of the acquired immune response. Expansion of the
permissive alveolar macrophage population would support increased bacterial growth.

5. Is Host Macrophage Ontogeny a Missing Link in Tuberculosis Progression?

Tuberculosis is not the only disease in which macrophage ontogeny appears to play a significant role
in disease progression or maintenance. In cutaneous leishmaniasis, the resident dermal macrophages
support parasite expansion in comparison to the recruited, blood monocyte-derived macrophages [20].
Significantly, in both infections, the permissive tissue resident macrophage populations were driven
into replication by the infection. This suggests that an increase in pathogen burden could be driven
by the selective expansion of permissive, tissue resident macrophage lineages as represented in
Figure 1. Furthermore, such a phenomenon could occur in the face of a highly-effective controlling
immune response.
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Figure 1. Diagrammatic representation of an alternate model for macrophage polarization. Model
1 illustrates the current paradigm whereby neutral, or M0, macrophages can be programmed by
cytokine exposure to adopt either an M1, classically-activated, or an M2, alternatively-activated, state.
In contrast, in Model 2, the macrophage lineages are pre-programmed to respond divergently to the
same cytokine milieu. As we have demonstrated previously, the immune environment of the murine
TB granuloma results in the resident alveolar macrophages adopting an M2-like phenotype, while the
recruited interstitial macrophages adopt a classically-activated M1-like phenotype [16]. The alveolar
macrophages are more permissive to bacterial growth and the expansion of this host cell population
could result in bacterial growth and disease progression. Modified from [16].
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By limiting our models of tuberculosis disease progression to the failure of immune control we are
restricting our capacity to detect alternative explanations, such as the gain of permissiveness (namely,
the expansion of host macrophages that are non-responsive or respond divergently to type 1 cytokines).
Given the failure of our vaccine strategies based on Th1 immunity, we believe that it is vital to explore
alternative routes to disease progression. We would argue that the use of fluorescent Mtb fitness
reporters [16–18] circumvents the need to rely on indirect immune correlates through the provision of
direct readouts of the fitness and the replication status of the pathogen itself.

6. Final Comments

These data bring into focus two other issues that need to be reassessed. It has long been known that
disease progression is determined at the level of the individual granuloma and not systemically. This
has always been perceived as a limitation to the search for peripheral biomarkers of disease. However,
this challenge is now even greater when one acknowledges that the cell lineages that appear responsible
for bacterial expansion are tissue-specific lineages that lack a peripheral counterpart. Secondly, we have
always thought that cytokines would elicit comparable responses in different macrophage populations,
but this appears not to be the case. Despite the fact that both alveolar and interstitial macrophage
lineages experience the same immune milieu, they clearly respond divergently [16,21] as shown in
Figure 1. Is this a product of epigenetic control? Whatever the mechanistic explanation, the divergent
responses of macrophage lineages to the same immunological environment represents an additional
challenge to vaccine-mediated control.

If we continue to rely on immune correlates of “protection” to support ongoing vaccine design,
I believe that we are destined to repeat our recent failures. As a field, we need less biased readouts
of disease progression and microbial readouts are always going to be more directly informative and
reliable than immune correlates.
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