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Abstract: Glaciers have been recognized as biomes, dominated by microbial life. Many novel species
have been isolated from glacier ecosystems, and their physiological features are well characterized.
However, genomic features of bacteria isolated from the deep ice core are poorly understood. In this
study, we performed a comparative genomic analysis to uncover the genomic features of strain
Dyadobacter tibetensis Y620-1 isolated from a 59 m depth of the ice core drilled from a Tibetan Plateau
glacier. Strain D. tibetensis Y620-1 had the smallest genome among the 12 cultured Dyadobacter strains,
relatively low GC content, and was placed at the root position of the phylogenomic tree. The gene
family based on a nonmetric multidimensional scaling (NMDS) plot revealed a clear separation of
strain D. tibetensis Y620-1 from the reference strains. The genome of the deep ice core isolated strain
contained the highest percentage of new genes. The definitive difference is that all genes required for
the serine-glyoxylate cycle in one-carbon metabolism were only found in strain D. tibetensis Y620-1,
but not in any of the reference strains. The placement of strain D. tibetensis Y620-1 in the root of the
phylogenomic tree suggests that these new genes and functions are of ancient origin. All of these
genomic features may contribute to the survival of D. tibetensis Y620-1 in the glacier.
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1. Introduction

Glaciers and ice sheets comprise approximately 70% of the total freshwater on Earth [1]. Although
they are the largest freshwater reservoirs on Earth, only recently have those systems been recognized
as biomes dominated by microorganisms [1–3]. Microbe-mediated biogeochemical cycles on glaciers
have both local and global impacts [2,4]. Thus, it is important to understand the physiology and
genomic features of these microorganisms.

In spite of the fact that the glacial environment is too hostile for the proliferation and survival
of advanced organisms, the snow and ice ecosystems are not so extreme for microorganisms [5,6],
and viable microorganisms have been found in ice cores drilled from polar and Tibetan Plateau
glaciers [7,8]. Interconnected liquid veins along three-grain boundaries in ice were proposed as a
habitat in which psychrophilic bacteria can move and obtain energy and carbon from the solution
in the liquid veins [8]. Recently, many novel species have been described from glaciers in the
Alps [9–11], Tibetan Plateau [12–16], Antarctic [17,18], and Arctic [19–21], suggesting that the cold
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origin of endemic species [22]. To survive in cold environments, psychrophilic bacteria possess special
adaptation strategies in terms of both physiology and molecular basis [23–25]. The physiological
features (e.g., growth temperature, salinity, pH; composition of fatty acids, menaquinone; enzyme
activities and assimilation of general carbon sources) have been well described. However, the genomic
features of these glacier isolated type strains are poorly characterized.

In the present study, the genome of a type strain Dyadobacter tibetensis Y620-1 isolated from a
59 m depth of the ice core drilled from Yuzhufeng Glacier on the Tibetan Plateau was compared to
the genomes of 12 Dyadobacter cultured isolates, and one metagenome assembled genome. The genus
Dyadobacter was first proposed by Chelius and Triplett [26], within the phylum Bacteroidetes, class
Sphingobacteria. Bacterial members of this genus are gram-negative rods that have been isolated
from diverse habitats, i.e., plant, soil, freshwater, seawater, glacier, subterranean sediment, and desert
sand [27]. Our aim was to investigate the genomic features of the deep ice core isolated strain
D. tibetensis Y620-1 and identify the potential strain specific metabolism pathways that facilitate its
survival in the glacial environments.

2. Materials and Methods

Ice core samples were drilled from the Yuzhufeng Glacier on the Tibetan Plateau of China (94◦

14.77′ E, 35◦ 39.64′ N) in 2009. The type strain Y620-1 was isolated from a 59 m depth of the ice and has
been proposed as a novel species named as Dyadobacter tibetensis Y620-1 [28].

The genome of strain D. tibetensis Y620-1 was sequenced in 2012 and described by Liu et al.
(2014). The reference genomes were downloaded from the NCBI database in March 2018 (Table 1).
The completeness of genomes was estimated using CheckM [29], genomes with a completeness of
less than 95% and contamination over 5% were removed. AAI and ANI (Average nucleotide and
amino acid identity) were calculated using compareM: https://github.com/dparks1134/CompareM [30]
and ANI calculator http://enve-omics.ce.gatech.edu/ani/ [31], respectively. To remove potential
differences introduced through different annotation methods, all the genomes analyzed were annotated
simultaneously in the present study with RAST (Rapid Annotation using Subsystem Technology) [32]
and PROKKA [33].

For phylogenomic clustering, Runella limosa DSM 17973 and Rudanella lutea DSM 19387 were
chosen as the out-group. The two strains are close relatives to the Dyadobacter genus [34] and
are placed right at the lineage outside Dyadobacter. In general, out-groups that are closely related
to the in-group species are better suited for phylogeny reconstruction than the distantly related
ones [35]. The Maximum Likelihood phylogenomic tree was constructed using PhyloPhlAn2 [36].
Neighbor-Joining and Bayesian trees were constructed using MEGA 5.05 and Mrbayes 3.2, respectively,
with the concatenated protein sequences produced by PhyloPhlAn2 [37–39].

Gene families were clustered using FastOrtho software (–pv_cutoff 1-e5 –pi_cutoff 70
–pmatch_cutoff 70): http://enews.patricbrc.org/fastortho/ [40] the cutoff values were set according to
Parks et al. (2017). Gene family matrix was produced using custom-made PERL scripts. Ordinations
and statistical analyses were performed using the vegan package v2.4.4 [41] using R v3.3.3.

https://github.com/dparks1134/CompareM
http://enve-omics.ce.gatech.edu/ani/
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Table 1. Genomic and phenotypic characteristics of the 13 Dyadobacter strains with sequenced genomes.

Strain Assembly No. Isolation Sources Completeness Contamination GC Size (Mbp) CDS CRISPRs rRNAs tRNAs CspA CspG New Gene Dendity Coding Density

D. alkalitolerans DSM 23607 GCA_000428845.1 Desert sand 100.00 0.00 45.67 6.29 5496 0 3 35 3 1 0.24 0.11
D. beijingensis DSM 21582 GCA_000382205.1 Soil 99.69 0.30 52.08 7.38 6030 0 6 40 4 1 0.23 0.12
D. crusticola DSM 16708 GCA_000701505.1 Soil 100.00 0.00 46.73 6.07 5141 0 3 40 2 1 0.20 0.12
D. fermentans DSM 18053 GCA_000023125.1 Plant 99.70 0.30 51.54 6.97 5853 0 12 43 2 1 0.22 0.12
D. jiangsuensis DSM 29057 GCA_003014695.1 Soil 100.00 0.60 50.26 8.27 6854 0 2 38 2 1 0.19 0.12
D. koreensis DSM 19938 GCA_900108855.1 Fresh water 99.70 0.89 41.26 7.34 6140 0 7 40 1 1 0.19 0.12
D. psychrophilus DSM 22270 GCA_900167945.1 Soil 99.70 0.30 45.05 6.74 5722 0 4 34 2 1 0.19 0.12
D. soli DSM 25329 GCA_900101885.1 Soil 99.70 0.00 50.47 8.74 7339 0 6 40 1 1 0.17 0.12
D. tibetensis Y620-1 GCA_000566685.1 Ice core 99.70 0.30 43.45 5.31 4275 6 3 37 5 2 0.34 0.12
Dyadobacter sp. 50-39 GCA_001898145.1 Bioreactor 99.70 0.60 50.24 7.72 6563 5 2 40 4 1 0.20 0.12
Dyadobacter sp. Leaf189 GCA_001424405.1 Leaf 99.70 0.60 47.00 6.07 5141 0 3 40 3 1 0.24 0.12
Dyadobacter sp. SG02 GCA_900109045.1 Root 99.70 0.74 50.23 8.48 7043 0 2 38 6 1 0.21 0.12
Dyadobacter sp. UBA7685 GCA_002482895.1 Water 97.02 0.00 50.58 5.18 4436 0 0 30 2 1 0.27 0.12



Microorganisms 2019, 7, 211 4 of 12

3. Results

3.1. General Features of the Dyadobacter Genomes

Dyadobacter strains with high quality non-redundant genomes were isolated from a wide range of
habitats, e.g., soil, desert sand, fresh water, plant, and bioreactor (Table 1). The size of the Dyadobacter
genomes ranged from 5.18 to 8.74 Mbp. Out of the 13 Dyadobacter genomes, 12 were cultured with
completeness >99.69 %, and one (Dyadobacter sp. UBA7685) was assembled from the metagenome of a
water sample with completeness of 97.02%. The genome size of the strain D. tibetensis Y620-1 (5.31 Mb)
was the smallest among the 12 cultured Dyadobacter strains. The genomic GC content (guanine-cytosine
content) of the 13 Dyadobacter genomes ranged from 41.26% to 52.08%. Most of the strains that were
able to grow at ≤5 °C have considerably lower GC contents (≤47.00 %) than those with a minimum
growth temperature ≥10 °C (GC content ≥50.23 %) [16,26,42–48]. The genomic GC content of strain
D. tibetensis Y620-1 was 43.45%, which was lower than all the Dyadobacter genomes, except for the strain
D. koreensis DSM 19938 (41.26 %). The CRISPRs (Clustered regularly interspaced short palindromic
repeats) were only identified from strain D. tibetensis Y620-1 and Dyadobacter sp. 50-39 with 6 and 5
copies, respectively. Seven strains were predicted to contain a full rRNA operon. The copy number of
16S rRNA varied widely (from 1 to 4 copies) in the genomes of Dyadobacter. For example, the genome
of strain D. tibetensis Y620-1 contained one 16S rRNA gene, while strain D. fermentans DSM 18053 had
four copies of 16S rRNA genes. Harboring a lower copy number of rRNA operon suggested strain
D. tibetensis Y620-1 being having an oligotrophic lifestyle [49]. The copy number of tRNA ranged from
30 to 43 in the Dyadobacter genomes. The 13 genomes contained 3 to 7 copies of cold shock genes.
Strain D. tibetensis Y620-1 contained the largest number of cold shock genes among the 13 genomes
with 5 CspA and 2 CspG genes been identified. Other components of csp family (CspB, CspC, CspD,
CspE, CspF and CspI) were not contained by any of the 13 genomes.

3.2. Distribution of Dyadobacter Strains in Their Phylogenomic Tree

To infer the ancestral state, a robust phylogenomic tree is needed to describe the evolutionary
relationship of the taxa. We obtained a robust evolutionary position of the 13 Dyadobacter strains
using three different phylogenomic approaches (ML (Maximum Likelihood) and NJ (Neighbor Joining),
and Bayesian, Figure 1). Strains isolated from different environments were mixed in the phylogenomic
tree. Strain D. koreensis DSM 19938 and Dyadobacter sp. UBA7685 isolated from fresh water were
located in the deep lineage with strains isolated from the soil and bioreactor. The plant associated
strain Dyadobacter sp. Leaf189 was placed in the middle lineage with strains isolated from the soil
and desert sand. Strain D. tibetensis Y620-1 was isolated from the 59 m depth of an ice core, with the
smallest genome placed in the basal position of the phylogenomic tree.

Figure 1. (a) Phylogenomic clustering of Dyadobacter strains based on concatenated alignment
orthologous proteins using PhyloPhlAn; (b) Neighbor-Joining tree constructed by MEGA; (c) Bayesian
tree constructed by Mrbayes. Numbers at nodes indicate bootstrap percentages for ML (Maximum
Likelihood) and NJ (Neighbor Joining) tree, and posterior probabilities for Bayesian tree. Bar 0.05, 0.1
and 0.2 accumulated changes per amino acid for ML, NJ and Bayesian tree, respectively.
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3.3. Average Nucleotide and Amino Acid Identity

We calculated the pairwise AAI and ANI of the Dyadobacter with the two out-group strains.
The inter-genus AAI and ANI were not higher than 69.70% and 60.91%, respectively. The intra-genus
ANI and AAI ranged from 70.48% to 99.33% and 67.92% to 99.29%, respectively (Figure 2). The highest
pairwise AAI values observed was 99.33% between strain Dyadobacter sp. UBA7685 assembled from
metagenome and Dyadobacter sp. 50-39 isolated from a bioreactor, suggesting that all investigated
genomes represented non-redundant genomes based on the proposed threshold of 99.5% AAI suggested
by Parks et al. (2017). The rest of the pairwise ANI were all lower than 95%, suggesting that these are
different species [50]. Thus, the 13 Dyadobacter genomes could represent 12 distinct species (Dyadobacter
sp. UBA7685 and Dyadobacter sp. 50-39 could be the same species). Genome clustering based on
AAI and ANI matrix was consistent with their phylogenomic positions, for example, Dyadobacter sp.
UBA7685 and Dyadobacter sp. 50-39 with the highest ANI were placed together (Figures 1 and 2).

Figure 2. Relationships between average nucleotide (ANI) and amino acid identity (AAI), black dots
for all pairs of the genomes and red dots for D. tibetensis Y620-1 and the reference genomes.

3.4. Distribution Pattern of Function Genes and Gene Families

We annotated the Dyadobacter genomes on the RAST server. The functional genes were classified
into four hierarchy levels: category, subcategory, subsystem and role. There were 26 categories,
99 subcategories, 372 subsystems and 1498 roles identified, and no substantial differences were
observed among the 13 genomes (Table S1). The distribution of genes in the 26 categories did
not differ significantly between strain D. tibetensis Y620-1 and the reference strains (chi-square test,
P > 0.05). At the subcategory level, nine genes related to inorganic sulfur assimilation were specific
to strain D. koreensis DSM 19938 and were not identified in other genomes. There were 16 strain
specific subsystems in the 13 Dyadobacter genomes. Most interestingly, twenty-five genes related
to serine-glyoxylate cycle were specific to strain D. tibetensis Y620-1, and seventeen genes related
to L-fucose utilization were specific to strain Dyadobacter sp. SG02. There were 134 specific roles
distributed in 12 Dyadobacter genomes except Dyadobacter sp. UBA7685. Strain D. koreensis DSM 19938
and D. tibetensis Y620-1 were very divergent with 48 and 33 strain specific roles, and the rest had no
more than 20.

We constructed a gene family matrix of the 13 Dyadobacter genomes. Genes in these genomes
were clustered into 10,898 families, alternatively pan genomes. The Core genome of the 13 Dyadobacter
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genomes comprised 1382 gene families (Table S2). The number of gene families (10,898) was much
higher than the function type of the genes (1498 types, defined by RAST), suggesting a high sequence
diversity of genes with the same function in the Dyadobacter. Ordination of functional genes using
two-dimensional non-metric multidimensional scaling (NMDS) revealed a clear separation of strain
D. tibetensis Y620-1 and D. psychrophilus DSM 22270 (Figure 3). Strain D. psychrophilus DSM 22270 was
isolated from hydrocarbon contaminated soil, and it is a psychrophilic bacterium [44].

Figure 3. Nonmetric multidimensional scaling (NMDS) plot of gene family showing clear separation
of the two cold adapted strains D. tibetensis Y620-1 and D. psychrophilus DSM 22270.

The genus Dyadobacter showed a conserved range of the coding density around 1.2 genes per 1 kb
sequences (adjusted to 0.12 genes per 100 bp sequence, Figure 4), slightly higher than the average
coding density of prokaryotic species (one gene per 1 kb of sequence) [51]. Protein coding sequences
(CDS) that cannot be assigned to any known function or gene family may represent new genes [52].
We analyzed the density of new genes (genes of function unknown) in the Dyadobacter genomes.
The results showed that the density of new genes vary greatly, ranging from 17% to 34% in Dyadobacter
genomes (22% in average) (Figure 4). Strain D. tibetensis Y620-1 has the highest density of new genes of
34%, more than ten percent higher than that of the other isolates (the metagenome assembled genome
was not included for its relative low completeness), and was twice that of strain D. soli DSM 25329
isolated from farm soil near Daejeon, South Korea [43]. It is worth noting that 771 genes with a known
function present in the genome of other Dyadobacter species are missing in D. tibetensis. These genes
are most related to Cofactors/Vitamins/Prosthetic Groups/Pigments (110 genes, 14%), Amino Acids
and Derivatives (95 genes, 12%), Carbohydrates (95 genes, 12%), Protein Metabolism (67 genes, 9%)
and RNA Metabolism (55 genes, 7%) (Figure 5).
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Figure 4. Bar graph showing the density of new genes and protein coding genes in each genome.

Figure 5. Functional distribution of genes that present in the genome of other Dyadobacter species that
are missing in D. tibetensis Y620-1.

3.5. Specific Functions in One-Carbon Metabolism of D. tibetensis Y620-1

We analyzed the strain specific function of D. tibetensis Y620-1 and 30 genes assigned in one-carbon
metabolism were detected. This was substantially higher than the other strains, which typically
only contained 5–7. These genes were further divided into two subsystems: one-carbon metabolism
by tetrahydropterines and serine-glyoxylate cycle (Figure 6). In the 12 reference strains, all the
one-carbon metabolism related genes belonged to the subsystem tetrahydropterines. Genes related
to tetrahydropterines were also present in strain D. tibetensis Y620-1. However, 25 genes in the
subsystem serine-glyoxylate cycle that were presented in strain D. tibetensis Y620-1 were absent from
the 12 reference strains (Figure 6).
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Figure 6. (a) Cladogram of Dyadobacter strains based on PhyloPhlAn tree; (b) Presence and
absence of genes affiliated to the RAST category carbohydrates and subcategory one-carbon
metabolism, numbers in the boxes represent copies of the related genes. Gene 1-29 represent:
Formyltetrahydrofolate deformylase (EC 3.5.1.10), 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2),
Methylenetetrahydrofolate dehydrogenase (NADP+) (EC 1.5.1.5), 5,10-methylenetetrahydrofolate
reductase (EC 1.5.1.20), Methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), Malate dehydrogenase
(EC 1.1.1.37), Serine hydroxymethyltransferase (EC 2.1.2.1), Methylmalonyl-CoA mutase, small subunit
(EC 5.4.99.2), Succinate dehydrogenase flavoprotein subunit (EC 1.3.99.1), Aconitate hydratase (EC
4.2.1.3), Succinate dehydrogenase iron-sulfur protein (EC 1.3.99.1), Citrate synthase (si) (EC 2.3.3.1),
Propionyl-CoA carboxylase beta chain (EC 6.4.1.3). Methylmalonyl-CoA mutase (EC 5.4.99.2),
5,10-methylenetetrahydrofolate reductase (EC 1.5.1.20), Methenyltetrahydrofolate cyclohydrolase
(EC 3.5.4.9), Enolase (EC 4.2.1.11), Methylcrotonyl-CoA carboxylase carboxyl transferase subunit
(EC 6.4.1.4), 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2), Phosphoenolpyruvate carboxykinase
[ATP] (EC 4.1.1.49), Putative malate dehydrogenase (EC 1.1.1.37), similar to archaeal MJ1425,
Methylenetetrahydrofolate dehydrogenase (NADP+) (EC 1.5.1.5), cytosolic long-chain acyl-CoA
thioester hydrolase family protein, Acetyl-CoA acetyltransferase (EC 2.3.1.9), Succinyl-CoA ligase
[ADP-forming] alpha chain (EC 6.2.1.5), 3-ketoacyl-CoA thiolase (EC 2.3.1.16), low-specificity
D-threonine aldolase, Succinyl-CoA ligase [ADP-forming] beta chain (EC 6.2.1.5), and Glycerate
kinase (EC 2.7.1.31).

4. Discussion

The 13 Dyadobacter genomes showed high genetic diversity in genome size, GC content, rRNA
operon copy number and the number of cold shock protein genes. These features may enable them
to colonize in diverse habitats such as plants, soils, freshwater, seawater, subterranean sediment
sample and desert sand [27]. However, the strain D. tibetensis Y620-1 isolated from a deep ice core of
Yuzhufeng glacier is located in the basal position of the Dyadobacter phylogenomic tree and separated
from other freshwater isolated strains and the psychrophilic strain D. psychrophilus DSM 22270. Thus,
strain D. tibetensis Y620-1 may represent a highly glacier-adapted species. NMDS analysis of gene
families reveals a clear separation of D. tibetensis Y620-1 from the mesophilic strains, suggesting glacial
environment adaptation. The well-characterized psychrophilic strain D. psychrophilus DSM 22270
is also clearly separated from the mesophilic strains. However, the strain D. tibetensis Y620-1 and
D. psychrophilus DSM 22270 are located far away from each other (the strain D. tibetensis Y620-1 in
the bottom-left of the plot while the strain D. psychrophilus DSM 22270 in the upper-right of the plot).
The separation of the two cold adapted strains in the NMDS plot may reveal different functions of
the two strains. Strain Y620-1 was isolated from a glacier ice core, where the primary productivity
is much lower than that of soil. Thus, the ability in carbon metabolism may differ between these
two psychrophiles.

A limited difference was detected at the category and subcategory levels. However, at the
subsystem level, presence and absence of genes related to one-carbon metabolism could clearly
differentiate D. tibetensis Y620-1 from the other 12 reference strains. Genes related to serine-glyoxylate
cycle present in D. tibetensis Y620-1 are not identified from any of the 12 reference strains. One-carbon
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compounds can be generated from various renewable sources, such as digestion of organic matter [53].
The serine-glyoxylate cycle is unique since it is the only naturally evolved oxygen-insensitive
pathway that can synthesize acetyl-CoA (the two-carbon building block) from multiple groups
of one-carbon compounds without carbon loss [54]. In the oligotrophic glacial environment, one of
the survival challenges is to obtain metabolic substrates [55]. One-carbon compounds may support
microbial communities in the cold and oligotrophic environment [56]. The presence of genes relate to
serine-glyoxylate cycle may enable the strain D. tibetensis Y620-1 to utilize simply formed and newly
produced carbon sources, e.g., decomposed microbial residues entrapped in the glacier and labile
organic carbon freshly derived from photosynthetic bacteria [57–60]. The carbon and energy sources in
the veins of the ice core were estimated to be able to maintain the bacterial population for thousands of
years [8]. Oligotrophic lifestyle could also be revealed by the lower copy number of rRNA operon in
D. tibetensis Y620-1 [49]. All genes required for serine-glyoxylate cycle [54] are found and are specific
to the glacier isolated strain D. tibetensis Y620-1, suggesting the utilization of one-carbon may be one of
the strategies for adaptation to the oligotrophic condition in the glacier environments.

Low-temperature habitats are hot spots of microbial diversity and evolution. These environments
may harbor microorganisms that process novel metabolic functions [61]. Our results showed that
D. tibetensis Y620-1 had the highest density of novel genes compared with other genomes. The basal
placement of D. tibetensis Y620-1 in the phylogenomic tree suggests that these new genes and functions
could be ancient origin. This is supported by the view that distribution of bacteria may not result
from widespread contemporary dispersal but is an ancient evolutionary legacy, as revealed by the
evolutional analysis of cold desert cyanobacteria and thermal traits of Streptomyces sister-taxa [62,63].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2076-2607/7/7/211/s1.
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