
microorganisms

Article

The Microbiota Profile in Inflamed and Non-Inflamed
Ileal Pouch–Anal Anastomosis

Sabrina Just Kousgaard 1,2,* , Thomas Yssing Michaelsen 3, Hans Linde Nielsen 2,4 ,
Karina Frahm Kirk 5, Mads Albertsen 3 and Ole Thorlacius-Ussing 1,2

1 Department of Gastrointestinal Surgery, Aalborg University Hospital, Hobrovej 18-22,
9000 Aalborg, Denmark; otu@rn.dk

2 Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000 Aalborg, Denmark;
halin@rn.dk

3 Center for Microbial Communities, Aalborg University, Frederik Bajers Vej 7H, 9220 Aalborg, Denmark;
tym@bio.aau.dk (T.Y.M.); ma@bio.aau.dk (M.A.)

4 Department of Clinical Microbiology, Aalborg University Hospital, Mølleparkvej 10, 9000 Aalborg, Denmark
5 Department of Infectious Disease, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark;

kfk@rn.dk
* Correspondence: s.kousgaard@rn.dk; Tel.: +45-97661210

Received: 21 September 2020; Accepted: 19 October 2020; Published: 20 October 2020
����������
�������

Abstract: The objective was to determine the bacterial composition in inflamed and non-inflamed
pouches for comparison to the microbiota of healthy individuals. Pouch patients and healthy individuals
were included between November 2017 and June 2019 at the Department of Gastrointestinal Surgery,
Aalborg University Hospital, Denmark. A faecal sample was collected from all participants for
microbiota analysis using 16S rRNA amplicon sequencing. Overall, 38 participants were included
in the study. Eleven patients with a normally functioning pouch, 9 patients with chronic pouchitis,
6 patients with familial adenomatous polyposis, and 12 healthy individuals. Patients with chronic
pouchitis had overall lower microbial diversity and richness compared to patients with a normal pouch
function (p < 0.001 and p = 0.009) and healthy individuals (p < 0.001 and p < 0.001). No significant
difference was found between patients with familial adenomatous polyposis and chronic pouchitis
(microbial diversity p = 0.39 and richness p = 0.78). Several taxa from the family Enterobacteriaceae,
especially genus Escherichia, were associated primarily with patients with chronic pouchitis, while taxa
from the genus Bacteroides primarily were associated with healthy individuals and patients with a
normally functioning pouch. Finally, a microbial composition gradient could be established from
healthy individuals through patients with normal pouch function and familial adenomatous polyposis
to patients with chronic pouchitis.
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1. Introduction

Chronic pouchitis is the primary reason for long-term functional disturbance for patients with an
ileal pouch–anal anastomosis (IPAA) [1,2]. Pouchitis is unusual in familial adenomatous polyposis
(FAP) patients with pouches, but occurs in up to 60% of patients with a pouch created in the surgical
treatment of ulcerative colitis (UC) [3,4].

The pathogenesis of pouchitis remains uncertain, although many theories have been suggested.
Current evidence suggests that the gut microbiota is a major factor in the aetiology of pouchitis [5].
This hypothesis is supported by clinical observations of the symptomatic effect of antibiotic treatment.
However, after initial response to antibiotics, more than half of the patients have recurring episodes of

Microorganisms 2020, 8, 1611; doi:10.3390/microorganisms8101611 www.mdpi.com/journal/microorganisms

http://www.mdpi.com/journal/microorganisms
http://www.mdpi.com
https://orcid.org/0000-0002-2394-7104
https://orcid.org/0000-0002-2370-417X
http://www.mdpi.com/2076-2607/8/10/1611?type=check_update&version=1
http://dx.doi.org/10.3390/microorganisms8101611
http://www.mdpi.com/journal/microorganisms


Microorganisms 2020, 8, 1611 2 of 10

pouchitis and about 5% of the patients develop chronic pouchitis [4,6]. Simultaneously, it is likely that
there is an abnormal activation of the immune system in pouchitis, caused by yet unidentified factors.
The initial success of antibiotics in the treatment of pouchitis also indicates that gut bacteria is a likely
trigger, activating the mucosal immune system [7].

Probiotics and faecal microbiota transplantation have been found to decrease the rate of pouchitis,
indicating that dysbiosis of the microbiota is an imperative factor [8–10]. However, direct evidence of
the role of a dysbiotic microbiota in the pathogenesis of pouchitis is missing [11]. Studies investigating
the composition of the bacteria in the gut are often based on traditional culture techniques, which will
detect less than 50% of bacteria in the lumen depending on the culture medium and cultivation
method [12]. Use of molecular techniques for DNA-based identification of the composition of the
microbiota has provided researchers with the opportunity to evaluate the microbiota profile in the
pouch more effectively [13].

The aim of our study was to determine the bacterial composition of inflamed and non-inflamed pouch
microbiota and compare it to the microbiota of healthy individuals, using bacterial microbiota profiling.

2. Materials and Methods

2.1. Trial Design

Pouch patients and healthy individuals were included in a single-centre, cross-sectional study.
A faecal sample was collected from all patients and healthy controls (HCs).

The primary endpoint was to determine the bacterial composition of pouch microbiota in inflamed
and non-inflamed pouches by bacterial microbiota profiling. The secondary endpoint was to compare
pouch microbiota to the microbiota of HCs.

2.2. Participants

Patients and HCs were recruited between November 2017 and June 2019 at the Department of
Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark. The participants were
contacted by telephone for recruitment, or during outpatient visits.

Asymptomatic patients with a normally functioning pouch (no symptoms of pouchitis) after IPAA
surgery for UC were identified using patient records at the hospital. Inclusion criteria for patients with
a normal pouch function were the absence of documented episodes of pouchitis, absence of symptoms
of pouch dysfunction, and no use of antibiotics for pouchitis within the last years prior to inclusion.

Patients with chronic pouchitis and patients with FAP were identified using patient records at the
hospital. Chronic pouchitis was defined as ≥3 episodes of pouchitis diagnosed according to clinical
symptoms, endoscopic signs of inflammation and histologic inflammation of pouch biopsies with
a Pouchitis Disease Activity Index (PDAI) score ≥7 within the last year [14]. Patients with chronic
pouchitis were also included in a pilot study using faecal microbiota transplantation in the treatment of
pouchitis, as described by Kousgaard et al. [15]. Faecal samples were collected before study intervention
in the pilot study. Patients with FAP had previously undergone surgery with removal of the large
intestine after diagnosis of FAP. The FAP patients had no history of pouchitis and no use of antibiotics
for pouchitis within the last years prior to inclusion.

Overall, patients were grouped according to inflammation (patients with chronic pouchitis) or no
inflammation (patients with a normal pouch function and FAP) of the pouch.

HCs without disease in the colon or rectum were recruited from the Blood Bank at Aalborg
University Hospital, Aalborg, Denmark.

Each participant was asked to deliver a faecal sample when included in the study. The participants
also completed a questionnaire to obtain information about daily bowel movements, use of any type of
antibiotics within the last 6 months (including specific use of antibiotics for pouchitis (ciprofloxacin and/or
metronidazole) and continuous use of antibiotics) and information about current pouch function for
the pouch patients (using the clinical PDAI score, cPDAI).
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2.3. Sample Preparation

A faecal sample was collected from all patients and HCs for microbiota analysis.
All samples were stored in a biobank at minus 80 degrees before further tests. DNA was extracted

from the faecal samples using QIAamp PowerFecal DNA Kit (QIAGEN, Copenhagen, Denmark)
according to the manufacturer’s instructions. Bacterial microbiota profiling (the hypervariable
V4-region of the 16S rRNA gene) was used to analyse microbiota in the faecal samples.

DNA was prepared for sequencing by a two-step PCR amplification. The first PCR amplification
was prepared as 25 µL reactions using PCRBIO Ultra Mix (PCR Biosystems, localities) with 10 ng of
isolated DNA as template and 400 nM primer mix (515F: GTGYCAGCMGCCGCGGTAA [16] and 806R:
GGACTACNVGGGTWTCTAAT [17]). Thermocycler settings for the first PCR: Initial denaturation at
95 ◦C for 2 min, 30 cycles of 95 ◦C for 15 s, 55 ◦C for 15 s, 72 ◦C for 50 s, and a final elongation for 5 min.
Both a negative and a positive control were included in the PCR setup. The negative control consisted
of nuclease-free water. The positive control contained template DNA from an anaerobic digester
sample known to amplify PCR product with the selected primer set. The first PCR amplification was
performed with duplicate reactions for each sample and pooled after amplification. Incorporation of
barcodes was carried out in a second PCR amplification. The reactions (25 µL) were performed with
2 µL cleaned amplicon PCR product (diluted to 5 ng/µL) as template, as well as X5 PCRBIO reaction
buffer (×1), PCRBIO Hifi polymerase (1U) and 1 µM Illumina adaptor mix. Thermocycler settings
for the second PCR: Initial denaturation at 95 ◦C for 2 min, 8 cycles of 95 ◦C for 20 s, 55 ◦C for 30 s,
72 ◦C for 60 s and a final elongation at 72 ◦C for 5 min. The second PCR was performed in single
reactions. PCR product from both PCR runs was purified using 0.8× CleanNGS beads (CleanNA)
and eluted in nuclease-free water. DNA concentrations were measured with Quant-iT HS DNA
Assay (Thermo Fisher Scientific) and the purified PCR amplicon products were visualised on D1K
ScreenTapes using a TapeStation 2200 Analyzer (Agilent). Prior to sequencing, all samples were pooled
into one tube in equimolar concentrations and barcoded with the Nextera indexing kit. Sequencing of
the library pools was performed on the Illumina MiSeq platform with v3 chemistry and 2 × 301 bp
paired-end setting.

2.4. Data Analysis

The raw sequencing data were summarised into amplicon sequencing variants (ASVs) using an
in-house pipeline AmpProc v5.1 (http://www.github.com/eyashiro/AmpProc/), primarily using the
USEARCH v10.0.240 workflow [18]. The ASVs were assigned taxonomy using SILVA LTP vers. 132
as reference database (https://www.arb-silva.de/) [19]. The raw sequencing data were demultiplexed
with bcl2fastq v2.17.1.14 then processed with AmpProc v5.1beta1.0 (http://www.github.com/eyashiro/

AmpProc/), which is primarily based on the USEARCH v10.0.240 workflow [18]. Data were summarised
into ASVs to avoid clustering by nucleotide identity to maximise taxonomic resolution and reduce
clustering biases [20]. After filtering out phix contamination, the paired-end reads were merged using
–fastq_mergepairs with settings “-fastq_maxdiffs 15” [21]. Merged reads were filtered to determine
quality using –fastq_filter with settings “-fastq_maxee 1 –fastq_minlen 200”, dereplicated using
–fastx_uniques and clustered into ASVs by –unoise3. Clustered reads were further curated by filtering
out reads more distantly related to known sequences than 60% identity using –userarch_global with
settings “-db gg_13_8_otus97/97_otus-fasta –id 0.6 –maxaccepts 1 –maxrejects 8” [22]. The ASV table
was generated using the function –otutab with settings “–zotus and –id 0.97” [23], and taxonomy was
assigned to each ASV using –sintax with setting “-sintax_cutoff 0.8” along with the SILVA LTP vers.
132 as the reference database (https://www.arb-silva.de/) [19].

Data analysis was performed in R v. 3.6.0 through Rstudio v. 1.1.383 (http://www.rstudio.com)
primarily using the packages ampvis2, tidyverse, and vegan [24–26]. Community richness was
calculated using an observed number of ASVs and diversity was calculated using the Shannon
index. Samples were rarefied to the lowest observed sequencing depth (16,245 reads) for richness
and diversity estimates. Beta diversity was examined using principal component analysis (PCA) on
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Hellinger transformed ASV abundances. Filtering of ASVs with low variance, defined as >50% of
samples associated with one value, was performed prior to PCA. To assess the statistical significance
of the groupings in PCA, permutation tests of pairwise linear regression were performed using
the pairwise.factorfit function from the RVAideMemoire package [27]. For statistical comparison,
the Wilcoxon rank sum test was used, and the Holm p-value correction was used to address multiple
testing [28]. An adjusted p-value < 0.05 was considered statistically significant.

2.5. Ethics

The study was performed with the requirements of Good Clinical Practice and the Revised
Declaration of Helsinki. All participants provided signed written informed consent to participate
in the study. The Regional Research Ethics Committee of Northern Jutland, Denmark approved the
study (N-20180013), 3 April 2018. Five of the HCs were included in connection with another study
(N-20150021, approved 1 June 2015).

3. Results

3.1. Patient Population

Overall, 38 participants were included in the study, 11 patients with normal pouch function,
9 patients with chronic pouchitis, 6 patients with FAP but without registered episodes of pouchitis,
and 12 HCs. Participant characteristics are summarised in Table 1.

Table 1. Summary of participant characteristics (n = 38).

Group Normal Pouch
(n = 11)

Chronic Pouchitis
(n = 9)

FAP
(n = 6)

HCs
(n = 12)

Age mean (SD) 47.1 (11.0) 52.9 (13.7) 54.8 (16.3) 42.3 (13.9)
Male n (%) 7 (64) 3 (33) 1 (17) 8 (69)

Years since surgery mean (range) 12.9 (5–21) 17.6 (8–28) 14.2 (3–30) -
Daily bowel movements mean (range) 5.5 (3–8) 11.2 (5–20) 5.5 (1–8) 1.2 (1–2)

cPDAI score mean (range) 0.6 (0–1) 3.7 (3–5) 1.0 (1–1) -
Continues antibiotics n (%) 0 (0) 3 (33) 0 (0) 0 (0)

cPDAI, clinical Pouchitis Disease Activity Index; FAP, familial adenomatous polyposis; HCs, healthy controls.

3.2. Analysis of Gut Microbiota

Sequencing was successful for all samples and produced satisfactory reads (16,245 to 28,512 reads) to
cover the community for all patients and HCs as determined by rarefaction analysis. Sequencing data
are deposited in the Sequencing Read Archive https://www.ncbi.nlm.nih.gov/sra/ (accession number:
PRJNA646261).

Faecal samples collected from patients with chronic pouchitis had lower microbial diversity and
richness compared to patients with normal pouch function (p < 0.001 and p = 0.009) and HCs (p < 0.001
and p < 0.001) (Figure 1). Faecal samples from patients with FAP did not significantly differ in microbial
diversity or richness compared to patients with chronic pouchitis (p = 0.39 and p = 0.78) (Figure 1).
In general, microbial diversity and richness were also lower in patients with normal pouch function
compared to HCs without disease in the colon or rectum (p = 0.005 and p = 0.003) (Figure 1).

Relative abundance of bacterial species between the three groups of patients and HCs showed that
patients with normal pouch function and HCs overall had a similar composition of their microbiota
(Figure 2A). For most of the patients with a normally functioning pouch and HCs, the most abundant
genera were the genus Bacteroides, or the genus Prevotella for the remaining few (Figure 2A). Subsequently,
the genus Faecalibacterium or Dialister from the phylum Firmicutes was the most abundant genera in
patients with normal pouch function and HCs (Figure 2A). Moreover, the composition of the microbiota
in patients with normal pouch function and HCs was more homogenic compared to patients with

https://www.ncbi.nlm.nih.gov/sra/
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chronic pouchitis and FAP. For patients with chronic pouchitis or FAP, the genus Bacteroides was most
prevalent in some patients, where for others the genus was not detected as one of the 20 most abundant
genera (Figure 2A). The two chronic pouchitis patients (patient ID: Pouchitis_001 and Pouchitis_005)
with no detection of the genus Bacteroides had both received continues long-term treatment with
ciprofloxacin and metronidazole (Figure 2A). The remaining chronic pouchitis patients (patient ID:
Pouchitis_007) receiving continuous antibiotics had Bacteroides as the most prevalent genera. All the
included patients with chronic pouchitis had received one or several antibiotic treatments for pouchitis,
within the year up to study inclusion.Microorganisms 2020, 8, x FOR PEER REVIEW 5 of 10 
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Throughout the principal component analysis (PCA) plot, it was possible to separate HCs from
all other groups (p < 0.05, Figure 2B). Furthermore, patients with normal pouch function and FAP
scattered as intermediate between HCs and patients with chronic pouchitis along PC1, which explained
a considerable portion of the variance (38.7%; Figure 2B). Albeit pairwise comparisons of patients with
a normal pouch function, FAP and chronic pouchitis were not statistically significant (p-value between
0.14 and 0.26), this suggests a gradient in the microbial composition going from HCs through normal
pouch function, and FAP to chronic pouchitis. Inspecting the ASVs with heights absolute weights on
the PC1 axis (Figure 2C) several ASVs from genus Bacteroides were associated primarily with HCs,
while ASVs from the family Enterobacteriaceae, especially genus Escherichia primarily were associated to
patients with chronic pouchitis.
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Figure 2. Microbial composition in healthy individuals and patients with normal pouch function,
familial adenomatous polyposis (FAP), and chronic pouchitis. The top 20 most abundant genera with
phylum names, ordered from top to bottom by mean abundance, are shown for all patients and healthy
individuals in (A). A principal component analysis (PCA) plot of the first two components for all
samples from the patients and healthy individuals is shown in (B) and coloured accordingly. In (C) are
the top 20 most influential amplicon sequencing variants (ASVs) on the first principal component (PC1)
ordered from top to bottom by absolute value. Names are shown on the y-axis, with corresponding
weights on the x-axis.

4. Discussion

This study used bacterial microbial profiling with 16S rRNA amplicon sequencing to determine the
bacterial composition of pouch microbiota. In particular, the aim was to elucidate a distinct microbial
profile for patients with an inflamed pouch, compared to a pouch without confirmed inflammation.

Overall, we found that patients with an inflamed pouch had lower microbial diversity and richness
compared to healthy individuals and patients with a pouch without inflammation. This was previously
also described by Landy et al., where pouchitis patients’ stool was characterised by low bacterial
richness and diversity, compared with stool samples from healthy individuals [29]. This lower diversity
and richness in stool samples from patients with an inflamed pouch compared to non-inflamed pouches



Microorganisms 2020, 8, 1611 7 of 10

could indicate a link between dysbiosis of the microbiota and pouch inflammation. However, it is
important to take into consideration that patients with a normal functioning pouch still have lower
microbial diversity and richness, compared to healthy individuals with a colon. Furthermore, we found
no difference in microbial diversity and richness between patients with FAP and chronic pouchitis
patients. This could suggest that factors other than changes in the microbial composition can influence
inflammation of the pouch. Finally, frequent bowel movements may impact the microbial profile.
A study by Kwon et al. [30] found that microbial richness tended to decrease with increasing number
of defecations in a group of healthy individuals.

A recent study by Petersen et al. [31] found that ileo-anal pouch anastomosis patients had an
increased abundance of the phylum Proteobacteria compared to patients with UC or Crohn’s disease
and healthy individuals. Furthermore, a higher abundance of the phylum Fusobacteria was found
in pouch patients with a faecal calprotectin level above 500 µg/mg as a measure for an inflamed
pouch [31]. In our study, the difference of the microbiota of chronic pouchitis patients compared to
healthy individuals and patients with a non-inflamed pouch could mainly be explained by several
taxa from the genus Bacteroides, which were most abundant in healthy individuals and patients with
a normal pouch function, while taxa from the family Enterobacteriaceae including genus Escherichia
primarily were most abundant in patients with chronic pouchitis. The abundance of the phylum
Proteobacteria was increased in both patients with a normal functioning pouch and healthy individuals
compared to chronic pouchitis patients. Two out of the three chronic pouchitis patients receiving
continued long-term treatment with ciprofloxacin and metronidazole had no detection of members of
the Bacteroides genera among the most abundant genera, which possibly could be explained by the
previous use of antibiotics, as also suggested by Petersen et al. [31].

Another study by Pawełka et al. found that chronic pouchitis or patients in need of long-term
antibiotic treatment to control symptoms of pouchitis were associated with a significantly higher
numbers of Staphylococcus aureus in faecal cultures [32]. Our research group found no difference
between the present of S. aureus in faecal cultures in patients with chronic pouchitis compared to the
Danish background population (data not published). Contradictory to the findings of Pawełka et al. [32],
Tannock et al. reported a significantly lower number of Enterococcus spp., Faecalibacterium prausnitzii,
Clostridium spp., Ruminococcus spp., Eubacterium spp., Lachnospiraceae and Insertae Sedis XIV in chronic
pouchitis compared to healthy individuals, by use of faecal cultivation [33].

Furthermore, Landy et al. [29] showed that at the phylum level, pouchitis patients’ stool samples
were characterised by a higher proportion of Proteobacteria compared to healthy individuals’ stool
samples. At the family level, pouchitis patients’ stool samples were characterised by a lower proportion
of common obligate anaerobic lineages such as Ruminococcaceae, Coriobacteriaceae, Porphyromonadaceae
and Rikenellaceae, and higher proportional abundances of Enterobacteriaceae and Clostridiaceae [29], as also
demonstrated in our study. When looking at the genus and 97% operational taxonomic unit levels,
Landy et al. found that pouchitis patients’ stool samples contained lower proportional abundances of
many obligate anaerobes, including F. prausnitzii, and higher proportions of Escherichia/Shigella spp. and
Ruminococcus gnavus compared with healthy individuals’ stool samples [29]. In general, we found that
the abundance of several bacterial taxa, including taxa from the phylum Firmicutes and Proteobacteria,
were lower in patients with chronic pouchitis, compared to patients with a normal pouch function and
healthy individuals.

The strength of this study is that it compares the composition of the pouch microbiota among
several groups of patients and healthy individuals, to describe the differences in microbial profiles
of inflamed and non-inflamed pouches. All samples were collected and sequenced according to the
same protocol, to limit the risk of bias. Furthermore, the PDAI score, instead of faecal calprotectin
levels, was used to identify patients with pouchitis, since PDAI is the recognised scoring system for
diagnosing pouchitis and assessing severity of illness [34].

Several limitations need to be addressed. In total, a reasonable number of participants were
included, but when subdividing the participants into groups, the sample size of each group is low,
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which makes it difficult to draw definitive conclusions, especially for FAP patients. Faecal samples
from patients with UC or Crohn’s diseases were not included in our study, as it was outside the scope of
our aim. However, it would have been relevant to include UC patients with an intact colon, to compare
inflamed pouch microbiota with inflamed colon microbiota, as described by Petersen et al. [31].
All patients with chronic pouchitis had received one or several antibiotic treatments before inclusion
in the study, as antibiotics are the primary treatment of pouchitis. This will inevitably influence the
composition of the patients’ gut microbiota and affect the microbial results. Moreover, other types of
medications could also influence the gut microbiota and would have been relevant to include in our
study. Microbiome data in our study were generated from 16S amplicon sequencing, which is more
informative than using faecal cultures [35]. However, metagenomics would have been the best method
to generate the total microbiome data. Our data were summarised into ASVs to avoid clustering
by nucleotide identity, in order to maximise taxonomic resolution and reduce clustering biases [20].
In general, caution should be taken when linking changes in microbiome composition to specific ASVs,
because the capability to correctly assign taxonomy using 16S amplicon data is still uncertain [36,37].
Finally, the retrospective design of the study allows only association and not causation to be inferred
from the results.

In conclusion, patients with an inflamed pouch had lower microbial diversity and richness
compared to non-inflamed pouches. Divergent microbial profiles were found between inflamed
and non-inflamed pouches, with taxa from the family Enterobacteriaceae, especially genus Escherichia
primarily associated to patients with chronic pouchitis, and taxa from genus Bacteroides associated
with healthy individuals and patients with a normally functioning pouch. However, no significant
difference was found between patients with familial adenomatous polyposis and chronic pouchitis.
Future studies should use metagenomic sequencing to further investigate the association between
pouch inflammation and the microbiota of the pouch.
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