Supplemental materials

Phenotypic adaptation of *Pseudomonas aeruginosa* in the presence of siderophore-antibiotic conjugates during epithelial cell infection

6

5

1

7 Table S1. Strains and plasmids used in this study.

Strain	Collection ID	Relevant characteristics	Reference	
Pseudomonas aeruginosa				
PAO1	PAO1	Wild-type strain		
ΔpvdFΔpchA	PAS283	PAO1; pvdF and pchA chromosomally deleted	[1]	
∆pvdF∆pchA∆pfeA	PAS294	PAO1; pvdF, pchA and pfeA chromosomally deleted	[2]	
∆pvdF∆pchA∆pirA	PAS348	PAO1; pvdF, pchA and pirA chromosomally deleted	[1]	
ΔpvdFΔpchAΔpfeAΔpirA	PAS351	PAO1; <i>pvdF, pchA, pfeA</i> and <i>pirA</i> chromosomally deleted	[1]	
∆pvdF∆pchA∆fiuA	PAS534	PAO1; pvdF, pchA and fiuA chromosomally deleted	[3]	
pfeEmcherry	PAS355	PAO1; pfeEmcherry chromosomally integrated	[4]	

8

9

10 Table S2. Primers used for RT-qPCR analysis

Primer ID	Target	Sequence		
<i>uvrD</i> F	uvrD	CTACGGTAGCGAGACCTACAACAA		
<i>uvrD</i> R	uvrD	GCGGCTGACGGTATTGGA		
GAPDH F	GAPDH	TGCACCACCAACTGCTTAGC		
GAPDH R	GAPDH	GGCATGGACTGTGGTCATGAG		
<i>aprA</i> F	aprA	AACCAGAAGATCAACCTCAACGA		
<i>aprA</i> R	aprA	TCGACACATTGCCCTTCAAC		
<i>exoY</i> F	ехоҮ	AATGGATGGCGGAGCCTATA		
<i>exoY</i> R	ехоҮ	CAAGGCGTTGCCGAGAGAT		
<i>lasB</i> F	lasB	CGCCTGGGCGAGAACA		

<i>lasB</i> R	lasB	GGGAATCAGGTAGGAGACGTTGT
phzA2 F	phzA2	GGCACAACGTGCGGATCT
phzA2 R	phzA2	CGCACTCGACCCAGAAGTG
<i>piv</i> F	piv	GCGTGGGCCTGAAAACG
<i>piv</i> R	piv	CGATCCATTCGAGGGTTGTC
<i>toxA</i> F	toxA	CCCGGCGAAGCATGAC
<i>toxA</i> R	toxA	GGGAAATGCAGGCGATGA
<i>amrZ</i> F	amrZ	TCGCTCGCAGCCATCAC
<i>amrZ</i> R	amrZ	TCGAGTCGGGCGATGATC
<i>fecA</i> F	fecA	GATCGACGACCTGATCCTCAA
<i>fecA</i> R	fecA	GGTCATCGCCGAAAACGT
<i>pirA</i> F	pirA	GCCTGAACGCTTCCCAAA
<i>pirA</i> R	pirA	TGAAGGCCCGTGCGATA
<i>pfeA</i> F	pfeA	GCCGAGACCAGCGTGAAC
<i>pfeA</i> F	pfeA	GGCCGGATTCGATCTTGTT
<i>fpvA</i> F	fpvA	AGCCGCCTACCAGGATAAGC
<i>fpvA</i> R	fpvA	TGCCGTAATAGACGCTGGTTT
<i>fptA</i> F	fptA	GCGCCTGGGCTACAAGATC
<i>fptA</i> R	fptA	CCGTAGCGGTTGTTCCAGTT
<i>foxA</i> F	foxA	AAGGGCTCGGATACCCAGTT
<i>foxA</i> R	foxA	CGTTGGGATCGTGTTGCA
<i>fiuA</i> F	fiuA	GCCGCGACAAGAAGTTCAG
<i>fiuA</i> R	fiuA	ACGACTCCGCATAGGAGATATAGG
<i>feoA</i> F	feoA	CCTACCGCATCACCGGTTAT
<i>feoA</i> R	feoA	ACAGGCGTTGGCGATAGC
hasR F	hasR	AGCGCCTGCAGTTCAGCTA
hasR R	hasR	GTTCTCGGTGTTGAGCATGTTG
phuR F	phuR	GGTCGAACTGCCCAACGA
phuR R	phuR	TACGATGTCCGGATCGACGTA

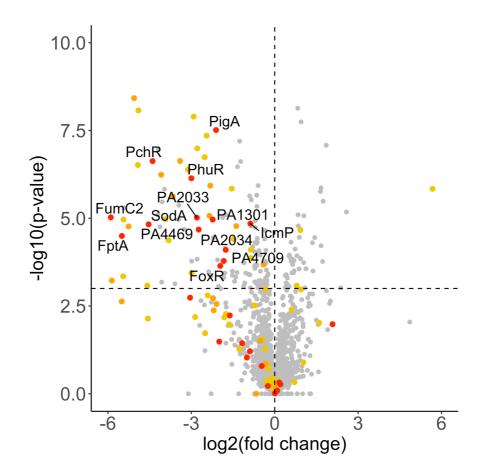


Figure S1. Differential production of iron-regulated proteins in the presence of ALBO based on the Palma, Worgall, and Quadri (2003) and Ochsner et al. (2002) studies [5,6]. Both studies were transcriptome analyses of the *P. aeruginosa* response to iron. The analysis presented here was performed on *P. aeruginosa* PAO1 cells after a 3-h infection of A549 epithelial cells in RPMI medium, in the presence or absence of 10 μM ALBO. The yellow points correspond to proteins identified in one of the two analyses, the orange points to proteins identified in the two analyses, and the red points to proteins belonging to the direct Fur regulon, as described in the Collectf database.

21

22 Synthesis of TCVL6.

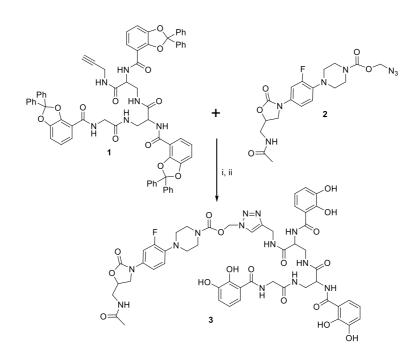
23 General informations

24 TCVL6 was synthesized as described in 1S Scheme. Linezolid was purchased from Sigma-

- 25 Aldrich. Protected TCV 1 and linezolid-azide derivative 2 were synthesized according
- 26 previously described protocols [7,8]. All reactions were carried out under argon (technical

27 quality, Air products). Solvents used were of analytical grade purity (>99.9%). When necessary, 28 solvents and bases were purchased extra-dry. All other chemicals were obtained from 29 commercial suppliers and were used as received, unless otherwise stated. All reactions were monitored by thin-layer chromatography (TLC) using *Merck* precoated silica gel 60F²⁵⁴ (0.25 30 31 mm). TLC are visualized using UV (254 nm/365 nm, Vilber Lourmat, VL-4LC) and/or using 32 classical revelation mixtures (sulfuric vaniline, potassium permanganate, ninhydrin reagent). 33 Final conjugate **3** was also detected on TLC using a 2% hydromethanolic solution of FeCl₃ (2%). 34 Before chromatographic purification reaction mixtures were adsorbed on silica gel (60-200 35 μm, VWR Chemicals). Chromatographic purifications were performed on a *Reveleris* (*Grace* 36 Davison Discovery Sciences) purification device using PuriFlash® pre-packed silica gel columns 37 (Interchim, Montluçon, France). NMR spectra were recorded on Bruker Avance 400 (¹H: 400 MHz, ¹³C: 100 MHz, ¹⁹F : 376 MHz) or Avance 500 (¹H: 500 MHz, ¹³C: 125 MHz, ¹⁹F : 470 MHz), 38 39 using the residual non-deuterated solvent as reference. The chemical shifts (δ) and coupling 40 constants (J) are expressed in ppm and hertz respectively. Multiplicity is indicated as follow: 41 s for singlet, d for doublet, t for triplet, q for quadruplet, quint for quintuplet and m for a multiplet. The letter "b" before the multiplicity indicate a broaden signal. Mass spectra were 42 43 recorded in the Service Commun d'Analyses (SCA) de la Faculté de Pharmacie de l'Université 44 de Strasbourg and were measured in ES-TOF experiments on a Bruker Daltonic MicroTOF mass 45 spectrometer. LC/HRMS were measured after calibration on an Agilent QToF.

46


47 Protocol

Linezolid azide 2 (1 eq.) and alkyne-vector 1 (1,2 eq.) were solubilized in THF (final
concentration 0.1 M). An aqueous solution of CuSO₄ (200 mg/mL, 1 eq.) and sodium ascorbate
(5 eq.) were successively added [9]. The mixture was sonicated and further stirred at 20°C

4

51 under argon till the total consumption of limiting reagent (linezolid azide). The mixture was then filtered through a celite pad and the filtrate was adsorbed on silical gel. The crude 52 mixture was then purified on silica gel using a gradient of EtOH in CH₂Cl₂. The resulting white 53 solid was dissolved in the mixture CH₂Cl₂/TFA/Triisopropylsilane/EtOH (70/20/5/5, 5 mL for 54 55 0.1 mmol of starting linezolid azide 2). The solution was stirred at 20°C till the total 56 consumption of the starting material. Solvents were then evaporated from the mixture under reduced pressure. The oily residue was dissolved in a minimum volume of THF then 57 cyclohexane was added dropwise till the precipitation of the expected conjugate as a thin 58 powder. The pure conjugate was filtered off on a Hirsch funnel. 59

60

61

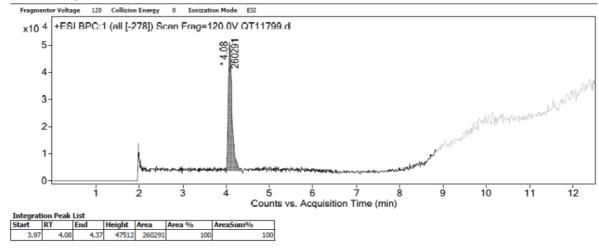
62

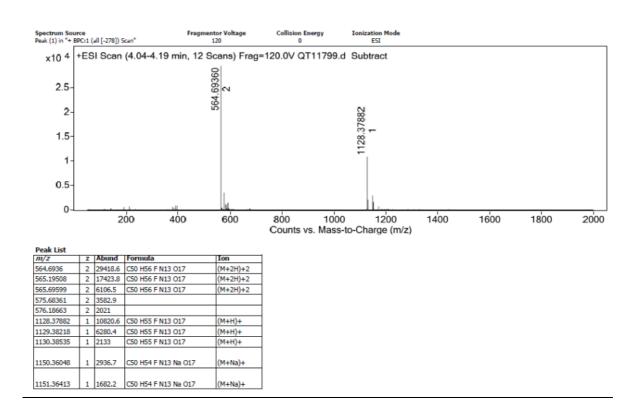
Scheme S1: Synthesis of TCVL6 (3). i. CuSO₄, sodium ascorbate, THF/H₂O, (((, 20°C. ii.
CH₂Cl₂/TFA/Triisopropylsilane/EtOH (70/20/5/5, 20°C.

65

66 Spectroscopic analysis of TCVL6.

67	¹ H NMR (500 MHz, DMSO- d_6): δ 11.98 (s, 1H), 11.73 (m, 2H), 9.05 (br s, 3H), 8.79 (s,
68	1H), 8.56 (d, J = 6.9 Hz, 1H), 8.53 (d, J = 6.9 Hz, 1H), 8.45 (t, J = 5.5 Hz, 1H), 8.18 (t, J =
69	5.5 Hz, 1H), 8.02 (t, J = 5.5 Hz, 1H), 7.93 (t, J = 5.5 Hz, 1H), 7.81 (s, 1H), 7.46 (t, J = 7.2
70	Hz, 1H), 7.28-7.22 (m, 1H), 7.08-6.99 (m, 3H), 6.95-6.89 (m, 1H), 6.84-6.78 (m, 1H), 6.72-
71	6.66 (m, 3H), 6.49-6.40 (m, 3H), 6.03 (s, 2H), 4.35-4.28 (m, 1H), 4.19-4.08 (m, 2H), 4.02-
72	3.91 (m, 2H), 3.89-3.85 (m, 1H), 3.71-3.65 (m, 1H), 3.55-2.91 (m, 14H), 1.44 (s, 3H). ¹⁹ F
73	NMR (125 MHz, DMSO- <i>d</i> ₆): δ -73.72, -121.19. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆): δ 169.7,
74	169.6, 169.5, 169.4, 169.3, 169.2, 169.1, 162.5, 149.2, 149.0, 146.1, 146.0, 145.4, 137.1,
75	132.8, 129.7, 128.7, 124.1, 119.9, 118.9, 118.8, 118.2, 118.1, 117.8, 117.7, 115.5, 114.1,
76	71.6, 68.4, 53.9, 53.8, 53.7, 50.1, 47.3, 47.2, 43.7, 42.4, 41.5, 10.5, 40.3, 40.2, 40.1, 35.9,
77	30.9, 27.5, 23.4, 23.3, 22.5, 21.8, 21.7. HRMS: C ₅₀ H ₅₄ FN ₁₃ O ₁₇ : calcd: 1127.37447, found:
78	1127.37501.


80 LC-HRMS Spectra of compound 3 (TCVL6)


Chemical Formula: C₅₀H₅₄FN₁₃O₁₇ Exact Mass: 1127,37447 Molecular Weight: 1128,05440

Sample Group Info.

User Chromatograms

Formula Calculator Results							
Formula	Best	Mass	Tgt Mass	Dift (ppm)	Mz	Ion Species	Score
C46 H50 F N19 O15		1127.37167	1127.37178	0.1	1128.37882	C46 H51 F N19 O15	99.57
C49 H49 N19 O14		1127.37166	1127.37064	-0.91	1128.37882	C49 H50 N19 O14	98.92
C45 H54 F N15 O19		1127.37165	1127.37044	-1.07	1128.37882	C45 H55 F N15 O19	98.77
C62 H50 F N11 O10		1127.3716	1127.37262	0.9	1128.37882	C62 H51 F N11 O10	98.03
C53 H53 N13 O16		1127.37162	1127.37332	1.51	1128.37882	C53 H54 N13 O16	97.9
C48 H53 N15 O18		1127.37164	1127.3693	-2.08	1128.37882	C48 H54 N15 O18	96.54
C50 H54 F N13 O17	TRUE	1127.37163	1127.37447	2.52	1128.37882	C50 H55 F N13 O17	95.18
C54 H49 N17 O12		1127.37164	1127.37466	2.68	1128.37882	C54 H50 N17 O12	94.19
C57 H50 F N13 O12		1127.37162	1127.36859	-2.68	1128.37882	C57 H51 F N13 O12	94.08
C51 H50 F N17 O13		1127.37165	1127.3758	3.69	1128.37882	C51 H51 F N17 O13	90.37
C46 H50 F N19 O15		1127.37139	1127.37178	0.34	1150.36048	C46 H50 F N19 Na O15	98.44
C49 H49 N19 O14		1127.37139	1127.37064	-0.66	1150.36048	C49 H49 N19 Na O14	98.12
C45 H54 F N15 O19		1127.37137	1127.37044	-0.82	1150.36048	C45 H54 F N15 Na O19	98.11
C48 H53 N15 O18		1127.37136	1127.3693	-1.83	1150.36048	C48 H53 N15 Na O18	96.2
C62 H50 F N11 O10		1127.37132	1127.37262	1.15	1150.36048	C62 H50 F N11 Na O10	96.17
C53 H53 N13 O16		1127.37134	1127.37332	1.76	1150.36048	C53 H53 N13 Na O16	96.08
C57 H50 F N13 O12		1127.37134	1127.36859	-2.43	1150.36048	C57 H50 F N13 Na O12	93.62
C50 H54 F N13 O17	TRUE	1127.37135	1127.37447	2.77	1150.36048	C50 H54 F N13 Na O17	93.18
C54 H49 N17 O12		1127.37136	1127.37466	2.92	1150.36048	C54 H49 N17 Na O12	92.17
C60 H49 N13 O11		1127.37133	1127.36745	-3.45	1150.36048	C60 H49 N13 Na O11	89.46
C53 H53 N13 O16		1127.37264	1127.37332	0.6	564.6936	C53 H55 N13 O16	99.64
C46 H50 F N19 O15		1127.3727	1127.37178	-0.81	564.6936	C46 H52 F N19 O15	99.61
C62 H50 F N11 O10		1127.37262	1127.37262	-0.01	564.6936	C62 H52 F N11 O10	98.85
C50 H54 F N13 O17	TRUE	1127.37265	1127.37447	1.61	564.6936	C50 H56 F N13 O17	98.67
C49 H49 N19 O14		1127.37269	1127.37064	-1.82	564.6936	C49 H51 N19 O14	98.32
C54 H49 N17 O12		1127.37267	1127.37466	1.77	564.6936	C54 H51 N17 O12	98.14
C45 H54 F N15 O19		1127.37267	1127.37044	-1.98	564.6936	C45 H56 F N15 O19	97.96
C51 H50 F N17 O13		1127.37267	1127.3758	2.78	564.6936	C51 H52 F N17 O13	96.21
C48 H53 N15 O18		1127.37267	1127.3693	-2.99	564.6936	C48 H55 N15 O18	95.76
C42 H53 N19 O19		1127.37271	1127.37651	3.37	564.6936	C42 H55 N19 O19	94.43

92

93 **References**

- Gasser, V.; Baco, E.; Cunrath, O.; August, P.S.; Perraud, Q.; Zill, N.; Schleberger, C.; Schmidt,
 A.; Paulen, A.; Bumann, D.; et al. Catechol siderophores repress the pyochelin pathway
 and activate the enterobactin pathway in *Pseudomonas aeruginosa*: an opportunity for
 siderophore-antibiotic conjugates development. *Environ. Microbiol.* 2016, *18*, 819–832,
 doi:10.1111/1462-2920.13199.
- 99 2. Paulen, A.; Gasser, V.; Hoegy, F.; Perraud, Q.; Pesset, B.; Schalk, I.J.; Mislin, G.L.A. 100 Synthesis and antibiotic activity of oxazolidinone-catechol conjugates against 101 Pseudomonas aeruginosa. Org. Biomol. Chem. 2015, 13, 11567-11579, 102 doi:10.1039/c5ob01859e.
- Normant, V.P.; Josts, I.; Kuhn, L.; Perraud, Q.; Fritsch, S.; Hammann, P.; Mislin, G.L.A.;
 Tidow, H.; Schalk, I.J. Nocardamine-dependent iron uptake in *Pseudomonas aeruginosa*:
 exclusive involvement of the FoxA outer membrane transporter. *ACS Chem. Biol.* 2020,
 15, 2741-2751. doi: 10.1021/acschembio.0c00535.
- Perraud, Q.; Moynié, L.; Gasser, V.; Munier, M.; Godet, J.; Hoegy, F.; Mély, Y.; Mislin,
 G.L.A.; Naismith, J.H.; Schalk, I.J. A Key Role for the Periplasmic PfeE Esterase in Iron
 Acquisition via the Siderophore Enterobactin in *Pseudomonas aeruginosa*. ACS Chem.
 Biol. 2018, 13, 2603–2614, doi:10.1021/acschembio.8b00543.
- 5. Palma, M.; Worgall, S.; Quadri, L.E.N. Transcriptome analysis of the Pseudomonas aeruginosa response to iron. *Arch. Microbiol.* 2003, *180*, 374–379, doi:10.1007/s00203-003-0602-z.

- Ochsner, U.A.; Wilderman, P.J.; Vasil, A.I.; Vasil, M.L. GeneChip expression analysis of the
 iron starvation response in *Pseudomonas aeruginosa*: identification of novel pyoverdine
 biosynthesis genes. *Mol. Microbiol.* 2002, 45, 1277–87.
- Baco, E.; Hoegy, F.; Schalk, I.J.; Mislin, G.L. Diphenyl-benzo[1,3]dioxole-4-carboxylic acid pentafluorophenyl ester: a convenient catechol precursor in the synthesis of siderophore vectors suitable for antibiotic Trojan horse strategies. *Org. Biomol. Chem.* 2014, *12*, 749– 57, doi:10.1039/c3ob41990h.
- Paulen, A.; Hoegy, F.; Roche, B.; Schalk, I.J.; Mislin, G.L.A. Synthesis of conjugates between
 oxazolidinone antibiotics and a pyochelin analogue. *Bioorg. Med. Chem. Lett.* 2017, 27,
 4867–4870, doi:10.1016/j.bmcl.2017.09.039.
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition
 Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes.
 Ang. Chem. Int. Ed. 2002, 41, 2596–2599, doi:10.1002/1521 3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.
- 129