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Abstract: Quorum sensing (QS) plays an important role during infection for the opportunistic human
pathogen Pseudomonas aeruginosa. Quorum sensing inhibition (QSI) can disrupt this initial event
of infection without killing bacterial cells, and thus QS inhibitors have been suggested as novel
approaches for anti-infective therapy. Cinnamaldehyde (CAD) is a P. aeruginosa biofilm inhibitor and
disperser of preformed biofilms. In this study, the combined use of CAD and colistin (COL) revealed
a synergistic activity, but this was not the case for CAD combined with carbenicillin, tobramycin
(TOB), or erythromycin in checkerboard assays for P. aeruginosa. CAD demonstrated QSI activity
by repression of the expression of lasB, rhlA and pqsA in GFP reporter assays. Approximately 70%
reduction in GFP production was observed with the highest CAD concentration tested in all the
QS reporter strains. TOB also showed strong QSI when combined with CAD in reporter assays.
Combination treatments revealed an additive activity of CAD with COL and TOB in biofilm inhibition
(75.2% and 83.9%, respectively) and preformed biofilm dispersion (~90% for both) when compared
to the individual treatments. Therefore, a proposed method to mitigate P. aeruginosa infection is
a combination therapy of CAD with COL or CAD with TOB as alternatives to current individual
drug therapies.

Keywords: quorum sensing; cinnamaldehyde; Pseudomonas aeruginosa; subminimum inhibitory
concentrations; biofilm

1. Introduction

The 20th century is recognized as the “antibiotic era”, which started with the discovery of antibiotics
to fight bacterial infections. However, this has been marred by the emergence of multidrug-resistant
bacteria [1] which has diminished the efficacy of antibiotic treatments. While the spread of antibiotic
resistance is largely due to horizontal gene exchange or the acquisition of mutations associated with
resistance, it is increasingly recognized that bacteria can exhibit increased tolerance to antimicrobials
when they grow as a biofilm [2,3]. Biofilm formation is associated with the establishment of persistent
and chronic infections [4,5]. The role of biofilms in forming chronic, drug-tolerant infections is
particularly well known for Pseudomonas aeruginosa, which is one of the most studied pathogens for
antimicrobial research according to the Infectious Diseases Society of America (IDSA) [6,7].

P. aeruginosa is an opportunistic pathogen that employs a number of different pathogenic traits
(e.g., biofilm formation) by means of a cell-to-cell communication system, termed quorum sensing
(QS) [8]. P. aeruginosa utilizes signaling molecules to coordinate the expression of virulence factors,
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such as elastase and rhamnolipids, as well as genes involved in biofilm formation. The QS system of
P. aeruginosa is comprised of three hierarchically integrated QS systems, Las, Rhl and PQS, to control
the expression of these virulence factors and biofilm genes that contribute to its pathogenicity [9]. One
emerging strategy for supplementing the existing antibiotic treatment options is through the disruption
of QS to inhibit virulence factor expression instead of inhibiting growth [10,11]. Since growth is not
dependent on QS, there is a reduced selection pressure for resistance to develop.

A number of publications have identified natural compounds and their synthetic analogues that
interfere with QS and that have been shown to reduce virulence factor expression in vitro or virulence
in vivo [10–17]. Some natural foods have compounds with QS inhibitory activity, and such foods
might offer a natural prophylaxis against chronic P. aeruginosa infections [15,16]. An additional benefit
of QSI is that QS-mediated biofilm formation is also associated with increased tolerance to antibiotics.
Reduction in P. aeruginosa biofilm resistance to antibiotics was previously reported by combining a QS
inhibitor (e.g., N-(2-pyrimidyl)butanamide) and antibiotics (ciprofloxacin, colistin and tobramycin) [18].
Therefore, reducing antibiotic resistance by QSI could be a practical approach in mitigating future
crises of antibiotic resistance. The use of subinhibitory concentrations of macrolides was recently
reported as another option for developing novel treatment strategies for P. aeruginosa infections [19].
Indeed, it has been shown that QS inhibitors work synergistically with antibiotics [20–22]. Thus, the
application of QS inhibitors with standard antibiotics could be a promising strategy to attenuate biofilm
infections [22,23].

Cinnamaldehyde (CAD) is one of the primary phytoconstituents of cinnamon, with therapeutic
potential to act as an antimicrobial agent against P. aeruginosa [24,25]. In a previous study, we
demonstrated that CAD can disrupt biofilms and other surface colonization phenotypes (e.g., swarming
motility) of P. aeruginosa [26]. CAD also modulated intracellular signaling processes through decreasing
cyclic-di-GMP levels [26], which led us to investigate whether CAD could be used as potential
antivirulence compound [26]. A previous study with sublethal concentrations of CAD demonstrated
inhibition of QS virulence factors and biofilm formation in P. fluorescence [27]. In a recent study [28],
subinhibitory levels of CAD downregulated las and rhl of P. aeruginosa. We demonstrated that CAD
is capable of interfering in the P. aeruginosa Las, Rhl and PQS QS systems, while having no impact
on bacterial growth. CAD combined with COL or tobramycin (TOB) inhibited biofilm formation and
dispersed preformed biofilms more efficiently than individual treatments. We have also exploited a
combined positive effect of CAD and TOB on P. aeruginosa QS systems.

2. Materials and Methods

2.1. Bacterial Strains, Media and Culture Conditions

Bacterial strains tagged with green fluorescent protein (GFP) were used in QS assays with
P. aeruginosa PAO1. The lasB::gfp (ASV) [29], rhlA::gfp (ASV) [30] and pqsA::gfp (ASV) with GmR [31]
translational reporter fusions were used. Reporter strains were routinely grown overnight in Mueller
Hinton Broth (MHB, Oxoid, Thermo Fisher Scientific, VIC, Australia) with 125.6 µM gentamicin (Gm,
Sigma-Aldrich, NSW, Australia) at 37 ◦C with shaking at 180 rpm. For QS assays, reporter strains
were grown in ABTGC medium, which is AB minimal medium [32] plus 7.4 µM thiamine, 0.01 M
glucose and 0.01 M casamino acids [33]. AB minimal medium consists of 15.1 mM ammonium sulfate,
33.7 mM sodium phosphate dibasic, 22 mM potassium dihydrogen phosphate, 50 mM sodium chloride,
1 mM magnesium chloride hexahydrate, 100 µM calcium chloride dehydrate and 1 µM iron (III)
chloride hexahydrate [33,34]. All the chemicals to prepare ABTGC medium were purchased from
Sigma-Aldrich, NSW, Australia. For the other experiments in this study, a wild-type P. aeruginosa
PAO1 [33] was grown in MHB overnight at 37 ◦C with shaking at 180 rpm.
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2.2. Determination of Minimum Inhibitory Concentration (MIC) for Antibiotics

MICs of four different classes of antibiotics (polypeptide (colistin), penicillin (carbenicillin),
aminoglycoside (tobramycin), and macrolide (erythromycin)) were determined using the broth
microdilution method [35]. It was carried in 96-well microtiter plates (Nunc, Thermo Fisher Scientific,
VIC, Australia) with an MHB overnight culture of P. aeruginosa PAO1 adjusted to OD600 of 0.1. Two-fold
serial dilutions with MHB achieved final concentrations of antibiotics (Sigma-Aldrich, Singapore):
colistin (COL 27.2 to 0.2 µM), carbenicillin (CARB 1353.1 to 10.6 µM), tobramycin (TOB 13.3 to 0.1 µM),
and erythromycin (ERY 1395.2 to 10.9 µM). The plate was incubated at 37 ◦C for 18–20 h with shaking at
180 rpm. The lowest concentration of antibiotics inhibiting growth as observed visually was recorded
as the MIC for each antibiotic.

2.3. Checkerboard Assay to Test Interaction between CAD and Antibiotics

The aim of the experiment was to evaluate the ability of antibiotics combined with CAD to inhibit
the growth of P. aeruginosa PAO1. Four different classes of antibiotics were tested in combination
with CAD (Product No: W228613, Sigma-Aldrich, NSW, Australia). Interactions of each antibiotic
with CAD was assessed using a checkerboard assay in 96-well microtiter plates (Nunc, Thermo Fisher
Scientific, VIC, Australia) (12 columns (1 to 12) × 8 rows (A to H)). For the checkerboard assay, each
antibiotic was added to individual wells in the microtiter plate at concentrations ranging from 16 to
0.13 MIC (concentrations decreasing from rows A to H) and CAD was added to individual wells at
concentrations representing 16 to 0.13 MIC (concentrations decreasing from columns 1 to 8). Columns
9 and 10 were used for testing antibiotics and CAD alone, respectively. Column 11 was used as
positive growth control with P. aeruginosa grown in MHB alone, and column 12 was used as sterility
control with uninoculated MHB. After preparing each well with the appropriate dilutions of CAD and
antibiotics, 100 µL of a P. aeruginosa PAO1 overnight MHB culture adjusted to OD600 of 0.1 was added
to each well, and plates were incubated at 37 ◦C for 18-20 h with shaking at 180 rpm. The MIC for each
compound was the lowest concentration that inhibited bacterial growth. The synergistic interactions
were expressed as the fractional inhibitory concentration index (FICI), which is calculated as:∑

FICI = FIC antibiotic + FIC CAD, (1)

where
FIC antibiotic = MIC o f antibiotic in combination/MIC o f antibiotic alone, (2)

FIC CAD = MIC o f CAD in combination/MIC o f CAD alone, (3)

A synergistic effect was defined at an FICI of ≤ 0.5; an indifferent effect at an FICI between 0.5
and ≤ 4 and an antagonistic effect at an FICI > 4. Similar checkerboard assays were followed for all
four antibiotics.

2.4. Development of Resistance to CAD

CAD was tested for development of resistance in P. aeruginosa PAO1 by serial passaging [36]. An
overnight bacterial culture adjusted to OD600 of 0.1 was amended with different concentrations of
CAD (23.6, 11.8 (= MIC), 5.9 and 3 mM). Inoculum without CAD was used as a control. Following
24 h incubation at 37 ◦C with shaking at 180 rpm, the culture with visible growth in the highest CAD
concentration was adjusted to an OD600 of 0.1 with MHB and used as the inoculum for the next round
of growth with CAD at 23.6, 11.8, 5.9 and 3 mM and the same incubation conditions as before. This
was repeated for 23 days. Growth curves of P. aeruginosa PAO1 treated with 5.9 mM CAD for 24 h
were generated at days 1 and 23 to determine the effect of serial passage. The relative growth rate was
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calculated by dividing the generation time of the 5.9 mM grown culture at day 1 with the generation
time of the 5.9 mM grown culture at day 23 [37]. The generation time was determined as follows:

Generation time, G =
t

3.3log b/B
, (4)

where t is the time interval in min, B is the OD600 at the beginning of the time interval and b is the
OD600 at the end of the time interval

2.5. QS Inhibition Assays with CAD or TOB

Overnight cultures of the QS reporter strains were adjusted to an OD600 of 0.1 and added with
100 µL of CAD to achieve 3, 1.5 or 0.8 mM CAD in a 96-well plate. Similarly, 0.9 µM TOB alone
and 0.9 µM TOB combined with 1.5 mM CAD were tested to determine their combined effect as QS
inhibitors. Cultures with no CAD or antibiotics added were used as growth controls. A proprietary
synthetic QS inhibitor named “A7” at 10 µM final concentration (kindly provided by Liang Yang,
Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological
University, Singapore) was used as a standard QS inhibitor. Plates were incubated at 37 ◦C with shaking
at 180 rpm for 7 h. GFP fluorescence (excitation wavelength of 485–512 nm and emission wavelength
of 520–530 nm) and bacterial cell density (OD600) measurements were collected at 1, 3, 5 and 7 h using
a FLUOstar Omega microplate reader (BMG Labtech, VIC, Australia). The relative fluorescence units
(RFU) were measured by dividing the fluorescence value by the corresponding OD600 value. p values
were calculated using regression analyses in Excel and values ≤0.05 were statistically significant.

2.6. Biofilm Inhibitory Assay with CAD and Antibiotics

The biofilm inhibitory activities of CAD and antibiotics were determined using Calgary biofilm
devices (CBDs) consisting of a 96-well microtiter plate with 96 pegs on the lid (Thermo Fisher Scientific,
VIC, Australia). The sub-MICs of CAD and antibiotics used in this experiment were determined from
the results of the checkerboard assay. Volumes of 100 µL of overnight MHB cultures of P. aeruginosa
PAO1 adjusted to OD600 of 0.1 were amended with 100 µL of 1:1 ratios of CAD-COL or CAD-TOB
(50 µL of CAD + 50 µL of COL or TOB) to achieve final concentrations of 1.5 mM (CAD), 0.9 µM
(COL) and 0.9 µM (TOB). The peg lid was added, and plates were incubated at 37 ◦C with shaking
at 180 rpm for 6 h, which was determined to yield the maximum biofilm on the pegs [26]. Peg lids
with adherent biofilms were transferred to a fresh plate base containing phosphate-buffered saline
(PBS, 137 mM sodium chloride, 2.7 mM potassium chloride, 10 mM sodium phosphate dibasic and
2 mM potassium dihydrogen phosphate (Sigma-Aldrich, NSW, Australia)) to remove loosely attached
bacterial cells. Biofilms on the peg lids were stained in 200 µL of 0.1% aqueous crystal violet (CV)
(Sigma-Aldrich, NSW, Australia) for 20 min at 37 ◦C with shaking (180 rpm), rinsed twice with 200 µL
PBS, then placed into 200 µL of ethanol (100%) to solubilize the CV. The OD570 of the CV in ethanol
solution was determined using an Omega microplate reader. Biofilm formation inhibition of tested
compounds was measured using Equation (5).

Biofilm formation inhibition % =(
OD experimental well without compound−OD experimental well with compound

OD experimental well without compound

)
× 100,

(5)

2.7. The Effect of CAD and Antibiotics on Preformed Biofilms

MHB cultures of P. aeruginosa PAO1 formed 6 h biofilms on peg lids in CBDs as described above.
The preformed biofilms were exposed to 1.5 mM CAD, 0.9 µM COL, 0.9 µM TOB, CAD-COL (1.5 mM
and 0.9 µM, respectively) or CAD-TOB (1.5 mM and 0.9 µM, respectively) for 3 h at 37 ◦C with shaking
at 180 rpm. Biofilms were washed and CV stained as above, and the biofilm dispersal activity was
determined by Equation (6).
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Preformed biofilm dispersion % =(
OD experimental well without compound−OD experimental well with compound

OD experimental well without compound

)
× 100,

(6)

3. Results

3.1. Synergistic Activity of CAD and Antibiotics against Planktonic Cells of P. aeruginosa

The MICs for all the antibiotics (Table 1) were determined with planktonic cells of P. aeruginosa.
MICs were then used to establish the checkerboard assay to study interactions between CAD and the
antibiotics on P. aeruginosa growth (Table 1).

Table 1. MICs of antibiotics alone and in combination with cinnamaldehyde (CAD).

Antibiotic
MIC 1

FICI 2 Activity
Alone Combined with 3 mM CAD

Colistin 6.8 µM 1.7 µM 0.5 Synergistic

Carbenicillin 338.3 µM 169.2 µM 0.75 Indifferent

Tobramycin 3.3 µM 1.7 µM 0.75 Indifferent

Erythromycin 348.8 µM 174.4 µM 0.75 Indifferent
1, MIC—minimum inhibitory concentration. 2, FICI— fractional inhibitory concentration index. The MIC of COL
was 6.8 µM, which was reduced to 1.7 µM when combined with CAD. The calculated FICI for COL plus CAD was
0.5, which indicates synergistic activity. Although carbenicillin (CARB), tobramycin (TOB) and erythromycin (ERY)
showed reduced MICs when combined with CAD (Table 1), their FICI values of 0.75 deemed them to be indifferent
or having no synergy with CAD.

3.2. P. aeruginosa Did Not Develop Resistance to CAD with Serial Passage

Cells serially passaged 23 times in MHB containing CAD at sub-MIC (5.9 mM) did not demonstrate
a change in their CAD MIC. However, the resultant culture did not attain the same optical density at
the stationary phase of growth (Figure 1), and the calculated log phase generation time increased from
55.5 to 83.4 min. However, there was no change in the lag-to-log phase time (at ~6 h) of the culture
grown with CAD on day 1 and on day 23 (Figure 1). Additionally, there was no change in the growth
curve of the culture grown without CAD between day 1 and day 23 (data not shown). Thus, the
reduction in growth rate with CAD was deemed CAD-specific and not the result of multiple passages
of the culture. It could be that the culture evolved over the 23 passages with consistent exposure to
CAD, albeit at a sub-MIC level.

Figure 1. Growth curve of P. aeruginosa isolates in the presence of 5.9 mM CAD that were passaged for
1 day (•) or 23 days (N). The results are the average of three independent experiments in parallel, and
error bars indicate ± standard deviations.



Microorganisms 2020, 8, 455 6 of 13

3.3. QSI Activity of CAD

Elastase (encoded by lasB) is a virulence factor that is controlled by LasR and is an indicator
of LasR activity [38]. To test the ability of CAD to inhibit LasR, a P. aeruginosa PAO1-lasB-gfp strain
was treated with different concentrations of CAD. At all tested concentrations of CAD, we observed
a significant (p values of ≤ 0.05) reduction in RFU corresponding to GFP inhibition over 7 h, and
there was a decrease in expression of fluorescence after 7 h (data not shown); this reduction was dose
dependent (Figure 2a).

Figure 2. Dose–response curves of CAD incubated with (a) P. aeruginosa PAO1-lasB-gfp; (b) P. aeruginosa
PAO1-rhlA-gfp and (c) P. aeruginosa PAO1-pqsA-gfp. ×, 3 mM CAD; N, 1.5 mM CAD; �, 0.8 mM CAD; •,
A7; �, untreated. (d) Green fluorescent protein (GFP) inhibition percent with varying levels of CAD
at 7 h: 0.8 mM CAD (white bars); 1.5 mM CAD (black bars); 3 mM CAD (downward diagonal bars).
A7 (gray bars) is a QS inhibitor. Data represent the average of three independent experiments, and
error bars indicate ± standard deviations. p values of ≤ 0.05. Relative fluorescence units (RFU) were
normalized to OD600 for all reporter assays.

After 7 h incubation, GFP inhibition at the lowest concentration of CAD tested (0.8 mM) was
32.5% of the non-CAD treated control culture. At 1.5 and 3 mM, the inhibition of GFP was 51.9% and
68.9% of the control culture, respectively (Figure 2d). The activity of 3 mM CAD was quite similar to
the QSI control compound A7. For all CAD concentrations tested, there was no reduction in biomass
as determined by OD600 (data not shown), suggesting that the effect on QS was not due to growth
inhibition or toxicity of the CAD.

To determine if CAD was specific for the Las system or if it more generally inhibited QS, reporter
bioassays for Rhl and PQS were also tested. Incubation of CAD with the P. aeruginosa PAO1-rhlA-gfp
reporter strain (Figure 2b) and the P. aeruginosa PAO1-pqsA-gfp reporter strain (Figure 2c) showed a
dose-dependent inhibition of GFP production. Compared to the inhibition of LasR (32.5%), a slightly
weaker inhibition was observed for RhlR (21.8%) (Figure 2d). However, 70.4% inhibition was observed
with 3 mM CAD, which is similar to the LasR system. It could be that the lower CAD concentration
(0.5 MIC; 0.8 mM) might have higher binding affinity for LasR than for RhlR. Thus, this binding to
LasR or RhlR resulted in inhibition of QS expression by disrupting LasR or RhlR activity. CAD also
strongly inhibited PQS (43.4%, Figure 2d). In every case, the maximum inhibition attained was not
more than 70% at 3 mM CAD (Figure 2d). The highest tested concentration of CAD (3 mM) showed a
higher inhibition compared to the synthetic QS inhibitor A7 for all of the QS systems, although the
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concentration used for A7 (10 µM) was considerably lower than the CAD concentrations that were
used here. We exposed a strain of P. aeruginosa that constitutively expresses gfp to 3 mM CAD and
observed no change in RFU [26]. This suggests that CAD does not directly interfere with the stability
or fluorescence of GFP.

3.4. QS Inhibitory Activity of CAD and TOB

TOB has been demonstrated to inhibit the Rhl QS system in P. aeruginosa at sub-MICs [39]. In this
study, 1.5 mM CAD and 0.9 µM TOB were assessed to determine their individual (CAD or TOB) and
combined (CAD-TOB) QSI effects on the QS GFP reporter strains of P. aeruginosa.

CAD and TOB alone reduced LasR-mediated QS over time, as shown by the reduction in RFU
(Figure 3a) and calculated GFP reductions (Figure 3d), compared to the non-CAD treated culture. CAD
reduced GFP expression by 51.9% and TOB reduced it by 35.8%, compared to non-CAD treatments,
and the combination of CAD and TOB showed a 70.7% GFP reduction in expression (Figure 3d). The
combination of CAD and TOB was also assessed for the effects on rhlA and pqsA as determined by
GFP expression (Figure 3b,c). Treatment with CAD and TOB alone reduced RhlR controlled GFP
expression by 56.7% and 32.2%, respectively (Figure 3d). CAD and TOB alone reduced PQS by 50%
and 55.9%, respectively (Figure 3d). The combination of CAD-TOB repressed RhlR and PQS by 64.7%
and 69.4% (Figure 3d), respectively, which was higher than either compound alone. The CAD and TOB
concentrations used for this study had no impact on the growth of P. aeruginosa PAO1 (data not shown).
These results demonstrate that CAD and TOB in combination have an additive effect in disrupting Las,
Rhl and PQS QS systems.

Figure 3. The effect of combined CAD and tobramycin (TOB) treatment on quorum sensing (QS).
(a) P. aeruginosa PAO1-lasB-gfp; (b) P. aeruginosa PAO1-rhlA-gfp and (c) P. aeruginosa PAO1-pqsA-gfp. �,
CAD; N, TOB •; CAD-TOB; �, untreated. (d) GFP inhibition % with CAD and TOB at 7 h. CAD (white
bars); TOB (black bars); CAD + TOB (downward diagonal bars). Data represent the average of three
independent experiments, and error bars indicate ± standard deviation. p values of ≤ 0.05. RFU were
normalized to OD600 for all reporter assays.

3.5. Biofilm Inhibition by CAD, COL and TOB

When combined with 3 mM CAD, the MIC of COL was reduced from 6.8 to 1.7 µM (checkerboard
assay). Therefore, to evaluate the combination of CAD and COL on biofilm formation, sub-MICs of 1.5
and 0.9 µM were used for CAD and COL, respectively. Similarly, CAD and TOB were evaluated at 1.5
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and 0.9 µM (both sub-MIC values), respectively. CAD showed 31.3% inhibition of biofilm formation,
whereas COL and TOB showed approximately 35% inhibition of biofilm formation, as shown by the CV
assay (Figure 4). When CAD was combined with COL or TOB, biofilm inhibition was significantly (p
values of < 0.05) higher at 83.9% and 75.2%, respectively, compared to the untreated control (Figure 4).

Figure 4. CAD-, colistin (COL)-, TOB-, CAD-COL- and CAD-TOB-mediated inhibition of biofilm
formation according to the crystal violet (CV) assay. Data represents the average of six technical
replicates from three independent experiments, and error bars indicate ± standard deviation. p values
of < 0.05.

3.6. Preformed Biofilm Dispersion by CAD, COL and TOB

To determine if CAD or CAD in combination with COL or TOB can disperse preformed biofilms,
biofilms formed on the pegs of a CBD were treated for 3 h and quantified by the CV assay. Treatment
with CAD alone showed 43.1% dispersal of the preformed biofilm (Figure 5).

Figure 5. Effect of CAD, TOB, COL, CAD-TOB and CAD-COL on preformed biofilms. Data represent
the average of six technical replicates from three independent experiments, and error bars indicate ±
standard deviations. p values of < 0.05.

Similarly, treatment with COL or TOB alone at 0.9 µM concentrations showed 32.6% and 35.2%
biofilm dispersion, respectively. When COL or TOB were used in combination with CAD, there was
a significant increase (p values of < 0.05) in biofilm dispersion as determined by ~90% reduction
in preformed biofilm (Figure 5). Thus, CAD combined with COL or TOB synergistically removes
established biofilms.
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4. Discussion

The increase in antibiotic resistance of P. aeruginosa and its ability to form persistent biofilms
highlight the need to develop alternative clinical treatment strategies [40]. In part, this increased
resistance and persistence is associated with biofilm formation [4]. In this study, CAD was combined
separately with representatives from four classes of antibiotics (COL, CARB, TOB and ERY), and the
synergistic or antagonistic activities towards the MICs of the antibiotics were evaluated with planktonic
P. aeruginosa PAO1. Only COL showed a synergistic effect with CAD against planktonic cells, although
there were slight reductions observed for the combinations of CARB, TOB or ERY with CAD according
to the FICI (Table 1). A synergistic activity of CAD and COL was also observed in 10% of clinical
P. aeruginosa isolates in a prior study [41]. Thus, further work investigating the spectrum of isolates for
which COL and CAD show synergistic activity is needed to better clarify this activity. To investigate
the possible underlying reason of this synergistic activity, we tested the effect of CAD and COL on
biofilm inhibition and also biofilm dispersion assays. Our study on biofilm assays revealed a positive
combined effect of CAD and COL at sub-MIC levels which could be due to a disruption in QS system
of P. aeruginosa. However, this is yet to be tested.

One issue in the development of antibacterial strategies is the selection for drug resistant mutants,
and this concern also applies to QSI-based approaches. Due to the nonlethal nature of QS strategies,
it has been suggested that QSI poses no or little selective pressure to pathogens, thus mitigating
microbial resistance development to QS inhibitors. However, it was shown that P. aeruginosa developed
resistance to COL after 15 passages [42]. In this study, serial passage did not lead to a change in the
MIC of CAD but was associated with a reduction in fitness after 23 days of daily treatment with CAD
(Figure 1). Therefore, based on these results, resistance to CAD was not demonstrated, but some
growth fitness reduction occurred. The cytotoxic effect of CAD must also be considered. Previous
research demonstrated that 57 mM CAD did not show inhibitory effects on primary human T cells or
macrophages [43] or that 4% (303 mM) CAD in calcium carbonate hydrogel had no cytotoxic effect
on human gingival fibroblast cells [44]. We evaluated CAD concentrations substantially lower than
these (e.g., around the MIC of 11.8 mM), so we predict that our tested CAD concentrations would not
be cytotoxic.

In recent years, a number of different antipathogenic drugs and strategies have been developed to
reduce bacterial virulence by disrupting QS [45]. Thus, blocking QS in P. aeruginosa by QSI is suggested
as a promising strategy for the treatment of infections [20,46,47]. It was recently shown that iberin,
from horseradish, has QSI activity in P. aeruginosa according to two reporter systems tested: lasB::gfp
and rhlA::gfp [15]. Cinnamon oil (in which CAD is one of the major ingredients) has been previously
reported to show QSI effect on P. aeruginosa [48]. This study demonstrated a reduction in long-chain
acyl-homoserine lactones (AHLs) and pyocyanin of the QS system by cinnamon oil. In our study, CAD
inhibited the Las-, Rhl- and PQS-mediated expression of GFP in a concentration-dependent manner,
without affecting microbial growth. Similar results with CAD significantly reducing the expression
of LasR and RhlR were reported [28]. However, there was no demonstrated inhibition of CAD on
the PQS system of P. aeruginosa [28]. PQS regulates the release of extracellular DNA, which is an
important structural component of P. aeruginosa biofilms [33]. Other previous studies found that CAD
inhibited pyocyanin production [25,48–50]. A study of CAD, QS and pyocyanin demonstrated that
CAD specifically targets the short-chain AHL synthase (RhlI) [50], which is important for pyocyanin
production. Thus, our work expands the spectrum of CAD activity beyond its inhibition of pyocyanin
production by showing that CAD is inhibitory towards the Las and Rhl systems, and additionally
towards PQS system of P. aeruginosa, in a concentration-dependent manner (Figure 2d).

We also confirmed the QSI activity of TOB, which is consistent with previously published
findings [39]. TOB did not affect the transcription rates of the lasI or rhlI (for AHL synthases), but there
was a substantial reduction (20–25%) in short-chain AHL when P. aeruginosa PUPa3 was grown in the
presence of sub-MIC TOB [39]. However, in our study, CAD and TOB reduced the expression of lasB,
rhlA and pqsA in a LasR-independent manner. TOB alone reduced RhlR-controlled GFP expression
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by 32.2%, and the combination of CAD-TOB repressed GFP by 64.7%. Similar results were observed
for LasB and PQS (Figure 3d). Thus, sub-MIC CAD and TOB combined is an avenue that should be
explored to increase the chance of success in the treatment of P. aeruginosa infections as it does not kill
the bacteria, which limits its tendency to develop resistance to CAD-TOB. Instead of imposing direct
selective pressure on the growth of P. aeruginosa, CAD and TOB could preferentially reduce QS-based
communication and eventually attenuate cascades of gene expression and production of virulence
factors which could lead to less pathogenicity. It was also demonstrated that they have a combined
efficacy in biofilm formation inhibition and dispersion of preformed biofilms by disrupting QS.

Given that biofilm formation in P. aeruginosa is partially QS controlled, COL and TOB were
investigated for their control of biofilms in combination with CAD. Previously, CAD demonstrated a
significant reduction in biofilm formation at sub-MIC level, and CAD at 3 mM (sub-MIC) was also able
to disperse preformed biofilm up to 95%, confirmed by confocal laser scanning microscopy images [26].
As predicted, a substantial inhibition in biofilm formation was observed when CAD was combined
with either COL (83.9%) or TOB (75.2%) compared to the CAD-treated (31.3%) biofilms alone (Figure 4).
Thus, we propose that a combination treatment could be aimed first at disabling the QS system and
then inhibiting biofilm formation. This could be a promising strategy to prevent biofilm infections from
developing into the chronic state. For example, it was reported that treatment with a QS inhibitor and
TOB resulted in an increased clearance of P. aeruginosa in a foreign body infection model, demonstrating
that this approach can work in vivo [23]. Another study demonstrated eradication of P. aeruginosa
biofilms when a QS inhibitor and TOB were combined [51]. Sub-MIC CAD and 2×MIC of TOB had
demonstrated a significant inhibition of P. aeruginosa biofilms [22]. We focused on sub-MICs of CAD
and COL or TOB, as our main focus was to control the signaling pathways of P. aeruginosa in attempts
to avoid antimicrobial resistance. CAD in combination with COL or TOB dispersed preformed biofilms
by up to ~90% compared to untreated biofilms, whereas COL and TOB alone only dispersed biofilms
by 32.6% and 35.2%, respectively (Figure 5). These findings could be due to the absence of functional
QS as CAD is able to disrupt the QS systems, thus making P. aeruginosa more susceptible to antibiotics
and showing synergistic effects on inhibiting biofilms and dispersing preformed biofilms.

In conclusion, CAD and COL showed a synergistic action in killing planktonic cells of P. aeruginosa.
The 23 passages with CAD reduced P. aeruginosa growth rate, but these levels of passaging are beyond
what might occur in a clinical setting. CAD is a QS inhibitor at sub-MICs, and the additive effect
of TOB with CAD was also apparent in the inhibition of QS. CAD combined with COL or TOB
reduced biofilm formation and increased dispersal of preformed biofilm cells compared to individual
treatment. Collectively, these results demonstrated that CAD as a QS inhibitor may increase the success
of antibiotic treatment in combination therapy by disrupting QS more efficiently and subsequently
increasing the susceptibility of bacterial biofilms to antibiotic therapy. Thus, CAD shows promise for
use as an antipathogenic compound that is enhanced if used in combination with antibiotics.
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