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Abstract: Tularemia is a zoonotic disease caused by Francisella tularensis a small, pleomorphic,
facultative intracellular bacterium. In Europe, infections in animals and humans are caused mainly
by Francisella tularensis subspecies holarctica. Humans can be exposed to the pathogen directly
and indirectly through contact with sick animals, carcasses, mosquitoes and ticks, environmental
sources such as contaminated water or soil, and food. So far, F. tularensis subsp. holarctica is the only
Francisella species known to cause tularemia in Germany. On the basis of surveillance data, outbreak
investigations, and literature, we review herein the epidemiological situation—noteworthy clinical
cases next to genetic diversity of F. tularensis subsp. holarctica strains isolated from patients. In the
last 15 years, the yearly number of notified cases of tularemia has increased steadily in Germany,
suggesting that the disease is re-emerging. By sequencing F. tularensis subsp. holarctica genomes,
knowledge has been added to recent findings, completing the picture of genotypic diversity and
geographical segregation of Francisella clades in Germany. Here, we also shortly summarize the
current knowledge about a new Francisella species (Francisella sp. strain W12-1067) that has been
recently identified in Germany. This species is the second Francisella species discovered in Germany.

Keywords: Francisella tularensis subspecies holarctica; W12-1067; tularemia; rabbit fever;
zoonotic disease; Germany

1. Introduction

Tularemia, also called “rabbit fever”, is a rare but potentially severe zoonosis caused by
Francisella tularensis. The pleomorphic bacterium is non-motile and non-sporulating, and proliferates
efficiently in different host cells, in vivo mainly in macrophages [1–3]. The pathogen has a wide host
range including mammals, birds, amphibians, fishes, and invertebrates [4,5]. Transmission to humans
occurs through contact with sick animals, primarily free-living lagomorphs (hares and rabbits), as well
as animal carcasses, and moreover through arthropod vectors (mosquitoes and ticks), environmental
sources (water, dust, aerosol, and soil), and sometimes food and drinking water [5–9]. Thereby, hunters
are a typical risk group exposed through handling (skinning, preparing, or consuming) meat of infected
animals [10–13]. Human to human transmission has not been described thus far, despite a case of
tularemia after organ transplantation [14].

The species Francisella tularensis comprises four main subspecies (Francisella tularensis subsp.
tularensis, F. tularensis subsp. holarctica, F. tularensis subsp. mediasiatica, and F. tularensis subsp. novicida),
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with distinct geographical distributions and high to low pathogenicity for humans. Two subspecies are
of clinical relevance: F. tularensis subsp. tularensis and F. tularensis subsp. holarctica. F. tularensis subsp.
tularensis is predominantly found in North America while F. tularensis subsp. holarctica is prevalent
in the whole northern hemisphere. Recent reports of tularemia in Australia caused by F. tularensis
subsp. holarctica demonstrated this subspecies to be present also in the Southern hemisphere [15,16].
F. tularensis subsp. holarctica seems to originate from North America or Asia [17–20] and has spread
through Scandinavia to southern parts of Europe, passing German territories as early as the 19th
century, as described in historical records and more recent investigations [17,18,21]. Today, F. tularensis
subsp. holarctica shows a broad genetic variety in Europe. Two clades are most abundant: the basal
clade B.6 (biovar I, erythromycin-sensitive) is more prominent in Western Europe, and basal clade B.12
(biovar II, erythromycin-resistant) is more prevalent in north-eastern Europe [4,5,17,19,21–29]. Indeed,
evidence for a geographical north to south segregation of both basal clades was recently demonstrated
for Germany as well, and new clades as well as a new Francisella species (Francisella sp. isolate
W12-1067) were identified [22,30]. Interestingly, this isolate is the only Francisella species described as
being present in Germany next to F. tularensis subsp. holarctica [21,30]. This species seems not to be
clinically relevant regarding the yet available knowledge, and is described in Section 4.

In Germany, tularemia is a notifiable disease. Important epidemiological aspects, such as clinical
aspects and diagnosis, seasonality, outbreaks, and putative natural reservoirs, are discussed in Section 3
of this review. While today tularemia is rarely diagnosed in Germany, a 10-fold increase in notified
cases during the last 15 years indicates a re-emergence of the pathogen [21].

This review summarizes our current knowledge about tularemia in Germany, which might also
be of interest to other European countries with a similar epidemiological situation. Included in the
review are data of sequenced genomes of Francisella isolates from patients recovered in 2019, adding
new findings about genetic diversity and the geographical segregation of clades in Germany.

2. Francisella tularensis Subsp. holarctica—Genetic Diversity and Geographic Distribution

A clonal structure of the pathogen is considered. For epidemiological studies of tularemia,
canonical single-nucleotide polymorphisms (canSNPs) at whole-genome scale are used to genotype
Francisella tularensis subsp. holarctica strains [31–33]. Thus far, four major clades have been described:
B.4, B.6, B.12, and B.16 [18,19]. These clades can be divided further into subclades. Clade B.4 is very
rarely found in Germany and B.16 can be found mainly in Japan (biovar japonica). The clades B.6 and
B.12 are most abundant in Europe and a spatial segregation between western and north-eastern parts
in Europe has been described [4,5,17,19,21–29].

Although a high genetic diversity has been reported from Scandinavia, it has been hypothesized
that F. tularensis subsp. holarctica strains in Western Europe have expanded from closely related
strains with a long-range dispersal over time, slow replication, and long-term persistence in the
environment [17,18,31,34]. Interestingly, a high diversity of different F. tularensis subsp. holarctica
strains could also be found in Germany, especially in northern parts [21,35,36]. Additionally, recent
investigations identified various different B. 6 (B.51, B.50, B52, B.63) and B. 12 (B.34, B.36, B. 71, B. 73,
B. 74, B.77) subclades to be present in Germany. Moreover, by sequencing 12 F. tularensis subsp. holarctica
isolates recovered from clinical samples in 2019, we identified two additional subclades: B.12/B.80 and
B.6/B90 (see Figure 1), which have not been previously isolated from patients in Germany [22]. Of these
12 isolates, nine clustered into clade B.6 and three into clade B.12. Thus, the ratio of the number of
strains belonging to biovar I or II was found to be in agreement with other investigations studying
F. tularensis subsp. holarctica diversity in Germany [22,37–39]. The genetic diversity of F. tularensis
subsp. holarctica in Germany, as in other European countries, seems to be still underestimated and
further investigations are needed, as shown by recent data obtained in France (82 new B.6 subclades
were described) [40]. However, the definition of further “sub-sub-sub”-clades (now B. > 300) should
be a subject of discussion, since sometimes only very few SNPs are different between strains of such
subclades, and a further subdivision of isolates may not be reasonable.
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generated by DNA sequencing and mapping of obtained DNA reads to the genome of F. tularensis 
subsp. holarctica (Fth) live vaccine strain (LVS) (for details, see reference 17). For the clustering, the 
neighbor joining bootstrap method was chosen, with F. tularensis subsp. holarctica strain OSU18 as an 
out-group. Outlined for each genome are the identifier of the isolate and the year of sampling, the 
host organism, and the sampling spot (Germany’s federal state). In addition, the respective Francisella 
clade and final subclade (na = not determined) for each genome is given. The sequences obtained from 
isolates in 2019 (not published elsewhere yet) and some reference genomes included in the analysis 
are given in bold. Abbreviations: Austria (AT), France (FR), Lithuania (LT), United States (US), 
Sweden (SE) and Switzerland (CH). Germanys federal states: BB: Brandenburg; BE: Berlin; BW: 
Baden-Württemberg, BY: Bavaria; HE: Hesse, MV: Mecklenburg-Western Pomerania; NI: Lower 
Saxony; NW: North Rhine-Westphalia; RP: Rhineland-Palatinate; SH: Schleswig-Holstein; SN: 
Saxony; TH: Thuringia. 

Next to high diversity of F. tularensis subsp. holarctica strains in Germany, recent investigation 
could show the spatial segregation of clades (B.6 and B.12 clade) within the country [22]. It was found 
that B.6 clade members are more abundant in the southwestern parts of Germany whereas B.12 clade 
members are to be found more often in the northeast [22]. These finding could be supported by new 
acquired data of F. tularensis subsp. holarctica isolates investigated herein. The identified B.6 clade 
members were recovered from patient samples collected in southwestern parts of Germany and B.12 
clade members from samples collected in northeastern parts. Indeed, these findings fit into the 
picture of spatial segregation of clades within western and north-eastern parts of Europe as 
mentioned above. Thus, taking into account latest findings, Germany might be a “melting pot” for 
the species, a region where strains become mixed and new genetic variants arise [21,22,36,41,42]. 
  

Figure 1. Phylogenetic relationship of Francisella tularensis subsp. holarctica isolates from 2007–2019
in Germany. The analysis was based on a Mauve alignment for collinear genomes. Genomes
were generated by DNA sequencing and mapping of obtained DNA reads to the genome of
F. tularensis subsp. holarctica (Fth) live vaccine strain (LVS) (for details, see [17]). For the clustering,
the neighbor joining bootstrap method was chosen, with F. tularensis subsp. holarctica strain
OSU18 as an out-group. Outlined for each genome are the identifier of the isolate and the year
of sampling, the host organism, and the sampling spot (Germany’s federal state). In addition,
the respective Francisella clade and final subclade (na = not determined) for each genome is given.
The sequences obtained from isolates in 2019 (not published elsewhere yet) and some reference genomes
included in the analysis are given in bold. Abbreviations: Austria (AT), France (FR), Lithuania (LT),
United States (US), Sweden (SE) and Switzerland (CH). Germanys federal states: BB: Brandenburg;
BE: Berlin; BW: Baden-Württemberg, BY: Bavaria; HE: Hesse, MV: Mecklenburg-Western Pomerania;
NI: Lower Saxony; NW: North Rhine-Westphalia; RP: Rhineland-Palatinate; SH: Schleswig-Holstein;
SN: Saxony; TH: Thuringia.

Next to high diversity of F. tularensis subsp. holarctica strains in Germany, recent investigation
could show the spatial segregation of clades (B.6 and B.12 clade) within the country [22]. It was found
that B.6 clade members are more abundant in the southwestern parts of Germany whereas B.12 clade
members are to be found more often in the northeast [22]. These finding could be supported by new
acquired data of F. tularensis subsp. holarctica isolates investigated herein. The identified B.6 clade
members were recovered from patient samples collected in southwestern parts of Germany and B.12
clade members from samples collected in northeastern parts. Indeed, these findings fit into the picture
of spatial segregation of clades within western and north-eastern parts of Europe as mentioned above.
Thus, taking into account latest findings, Germany might be a “melting pot” for the species, a region
where strains become mixed and new genetic variants arise [21,22,36,41,42].
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3. Tularemia in Germany

3.1. Epidemiology of Notified Cases

Tularemia is a notifiable disease according to Germany’s infection protection act of 2001.
The current surveillance case definition applies to persons with clinical symptoms compatible
with tularemia together with one of the following four laboratory criteria: antigen detection by,
e.g., enzyme immune assays or immunofluorescence assays; isolation from bacterial culture; detection
of specific nucleic acids, e.g., by polymerase chain reaction; or detection of specific antibodies (titer
increase in consecutive serum samples or one clearly elevated titer (https://www.rki.de/DE/Content/
Infekt/IfSG/Falldefinition/Downloads/Falldefinitionen_des_RKI_2019.pdf)). Tularemia is likely subject
to significant underdiagnoses and underreporting in Germany as the disease is generally rare,
and, in patients presenting with lymphadenitis and fever, tularemia is rarely considered as a differential
diagnosis by clinicians and diagnostic laboratories.

Between 1 January 2002 and 31 December 2019, 435 cases of tularemia were notified in
Germany (Figure 2), corresponding to a mean yearly incidence of 0.29 cases per million population
(range: 0.01–0.88). Of the 435 cases reported, 387 were sporadic cases and 48 belonged to a cluster of
cases. Only for 39 of 435 cases (9.0%) was a relevant travel history in the likely period of infection
notified; thus, most infections were likely acquired in Germany. Age of the patients ranged from 1 to
99 years (mean: 47.5) and the male to female ratio was 2.11. While a median of three annual cases were
notified from 2002 through 2006, an overall increase from 2007 through 2012 and a year on year increase
between 2013 (n = 20) and 2019 (n = 72) was observed (Figure 2). Thus, the incidence of reported
cases is on a level comparable to the yearly mean in Germany in the 1950s when, likely due to the
socio-economic situation after the war, cases had surged. It is unclear whether the increase in the last
15 years is due to an actual increase in infection pressure and clinical cases or whether it is the result of
increased awareness and more frequent testing. However, a relatively stable proportion of hospitalized
cases suggest that the increase is not the result of a change in sensitivity of the surveillance system.
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Tularemia is a seasonal disease in Germany, with most patients (63%) reporting symptom onset
from July through November (Figure 3) when reservoir animal populations are peaking and frequent
outdoor activities (such as hunting, farming, fishing, hiking, etc.) facilitate contact between wildlife
and humans. This is in concordance with the seasonal occurrence of tularemia cases in Europe [20,21].
Imported cases only account for a small fraction of the total case load (39 of 360, 11.3%), peaking after
the summer holiday season in August and after Christmas/New Year.Microorganisms 2020, 8, x FOR PEER REVIEW 5 of 14 
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notification, Germany, 2002–2019.

Cases are reported from almost all Federal States of Germany. Between 2002 and 2019,
the highest mean annual incidences were recorded in parts of Saxony-Anhalt, Baden-Württemberg,
and Brandenburg (Figure 4). Although there is large variability in the regional incidence of tularemia,
long-term surveillance data indicate that the pathogen can be found all over Germany. The variation
in the number of reported cases from the different Federal States could be explained by (i) variations in
actual disease incidence as a result of varying exposure risks or infection pressure or (ii) variations
in diagnostic consideration of tularemia and reporting activity due to differences in awareness of
healthcare workers for the disease. Comparing reported cases and results of serological studies indicate
that only a fraction of infections are diagnosed and reported [10,41–45]. Two cross-sectional studies
have shown a relatively high seroprevalence: one population-representative study from 2004 with
6617 sera and one study conducted in a small town in Baden-Württemberg in 2009 with 2416 sera,
which revealed positive results in 0.23% and 2.3% of the sera, respectively [46,47]. Serological studies
in hunters as a putative population at high risk have shown a seroprevalence of up to 1.7% [10].
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3.2. Outbreaks of Tularemia in Humans

Outbreaks or clusters of tularemia (defined as at least two cases with an epidemiological link,
such as a common source of exposure) are apparently rare in Germany. Between 2002 and 2019, 14 case
clusters were reported. Except for two with a connection to situations in other countries and one
large outbreak caused by grape must (unintentional contamination) [7–9], the remaining 11 clusters
consisted of 2 to 10 cases and were associated with contact with wild animals, nine of them in the
context of hunting activities [12,13,37,48–52]. Two outbreaks are presented in more detail below.

Eight of the above clusters were reported in connection with consumption of or contact with
infected hares. The largest occurrence was in 2005, with a total of 10 affected hunters participating
in a hare hunting event [12,13]. Indeed, prevalence studies in ticks in the southwest of Germany
revealed the presence of Francisella in 8% of 916 investigated Ixodes Ricinus, while Dermacentor species
clustered with Francisella endosymbionts [41]. For cases that were not part of clusters, contact with
hares, rabbits, wild boars, and deer, and also tick bites and mosquitoes, have been suspected as the
source of infection [37,52–56]. Some wild animals (raccoon dog, red fox, wild boar, hares, voles) have
been suggested as serving as natural reservoirs for F. tularensis subsp. holarctica or as sentinels for
tularemia [36,38,41,43,44,47,54,57–61]. The role of ticks and mosquitoes for the transmission of tularemia
in Europe likely differs between countries and is still under investigation [22,26,37,39,41,55,62–65].

Outbreak 1: An uncommon outbreak of oropharyngeal tularemia occurred in 2016 in
Rhineland-Palatinate after the consumption of freshly pressed grape must during a grape harvest [7–9].
Among 29 harvesters, six developed clinical symptoms compatible with tularemia (swollen cervical
lymph nodes, fever, chills, and diarrhea) 4 to 8 days after the exposure. Tularemia was proven
serologically in all patients and they required an antibiotic treatment duration of more than 14 days [9].
The must served to the participants of the harvest was collected by a mechanical harvester and pressed
at the winery. Six weeks after the event, the contaminated must-derived products (sweet reserve (SR)
and young wine (YW)) were analyzed for the presence of F. tularensis, F. tularensis chromosomal DNA,
and DNA of the putative source (vector) of contamination [8]. No bacterial isolate could be obtained,
but the YW contained the amount of 17,000 Francisella genome equivalents per milliliter. A nearly
complete draft genome could be generated by next-generation sequencing (NGS) analysis from the
DNA isolated from the YW. The genome of the F. tularensis subsp. holarctica strain contaminating the
grape must belongs to the phylogenetic clade B.12/B.34 (see Section 2 and Figure 1), which could be
corroborated also by NGS analysis of isolated DNA from an aspirate lymph node sample of one of the
patients of this outbreak. In search of the vector responsible for the contamination with F. tularensis
subsp. holarctica, vertebrate-specific cytochrome b sequences could be identified within the isolated
DNA from the SR and YW. The revealed cytochrom b sequence analysis identified the putative vector
to be Apodemus sylvaticus (wood mouse), suggesting that a wood mouse infected with F. tularensis subsp.
holarctica was the source of contamination of the grape must [8]. In conclusion, in this uncommon
case, it was proposed that a wood mouse infected with F. tularensis subsp. holarctica was “collected”
by the automatic mechanical harvester, then transferred into the mash car and then into the press,
thus contaminating the press and finally 730 L of fresh grape must. This must was then served to the
harvester and six people became infected by F. tularensis subsp. holarctica. It was suggested that rodent
control should be implemented in the wine production steps and that freshly pressed must for tasting
should be produced generally from hand-picked wine grapes.

Outbreak 2: This occurred in 2018 in a group of hunters in Bavaria. Several hunting dogs and
39 persons were exposed to at least one infected hare. From one of the hares, a F. tularensis subsp.
holarctica strain (A-1338-1-2018) was isolated, belonging to the phylogenetic clade B.12/B.33 (Figure 1
and reference [22]). Thus, the hare could be confirmed as the putative source of infection. In total,
11 of the 39 exposed persons (attack rate 28.2%) developed acute tularemia laboratory confirmed by
the detection of specific antibodies. In nine of these patients, the antibody and cytokine response could
be monitored over time (Jacob et al., submitted). All samples from hunting dogs, investigated using
PCR and cultivation, remained negative for F. tularensis subsp. holarctica.
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3.3. Clinical Aspects and Diagnosis

The clinical manifestation of tularemia depends on the entry route of the bacterium into the
organism and is defined by ulceroglandular or glandular form, oropharyngeal form, ocularglandular
form, respiratory form, and typhoidal form (WHO Guidelines on Tularemia, 2007). The primary
common symptoms are fever and enlarged lymph nodes. The incubation period is typically 3 to 5 days
with a range of 1 to 14 days, depending on the infectious dose, route of entry, and virulence of the
strain. Pulmonary infections with F. tularensis subsp. tularensis can have a case fatality rate of 30–60%.
In the case of complications such as suppuration, pneumonia, and meningitis, convalescence is often
prolonged. F. tularensis subsp. holarctica, the subspecies relevant for human infections in Germany,
usually causes a relatively mild form of tularemia in humans. Even without antimicrobial treatment,
fatal courses of disease are rare.

Among notified cases in Germany, the most frequent clinical presentations were glandular and
ulceroglandular tularemia (Table 1). A total of 12% of the patients presented with mixed forms and
18% could not be assigned (they typically only presented with fever (as well as symptoms less typical
for tularemia)). The latter could also represent typhoidal tularemia. Not all authors differentiate
between “intestinal” and “oropharyngeal” forms of tularemia (WHO Guidelines on Tularemia, 2007).
When symptoms of both forms were present, these are listed under “combination” in Table 1. Collecting
additional clinical details during routine surveillance could be considered to allow for a more accurate
classification of cases.

Table 1. Notified tularemia cases with laboratory confirmation by clinical presentation, Germany,
2002–2019 (n = 435) [n = total number of tularemia cases].

Form n %

Glandular (lymphadenitis and not meeting criteria for other forms) 129 29.7
Ulceroglandular (lymphadenitis + skin ulcer) 68 15.6

Pneumonic (dyspnoea or pneumonia) 53 12.2
Intestinal (diarrhea, vomiting, or abdominal pain) 20 4.6

Oropharyngeal (lymphadenitis AND tonsillitis, pharyngitis, stomatitis) 23 5.3
Oculoglandular (lymphadenitis + conjunctivitis) 8 1.8

Combination (meeting criteria of >1 form) 52 12.0
Typhoidal 5 1.1

Other (symptoms not meeting any of the above criteria, e.g., “only fever”) 77 17.7

Yet, the diagnostic is performed often by detection of specific serum antibodies and/or using
isolated DNA for specific qPCRs or PCR assays [32,33,66–77]. Cultivation is poorly successful due
to the reason that antibiotic treatment of the patient has often already started and therefore seldom
leads to positive results [21]. Of the 435 cases of tularemia reported in 2002–2019, 55 (12.6%) were
confirmed using an antigen assay, 288 (66.2%) serologically, 68 (15.6%) by culture, and 96 (22.1%)
by PCR (some cases were confirmed by a combination of methods). Median time from the onset
of symptoms until notification (which typically occurs within two days of diagnosis) was 30 days
(inter quartile range: 19–54 days), indicating that diagnosis is often delayed.

4. Francisella sp. Strain W12-1067 (F-W12)—What Is Known

The new Francisella species F-W12 was incidentally identified in Germany in 2012 while screening
for the presence of Legionella species in a water reservoir of a hospital cooling tower in the framework
of an investigation into a cluster of Legionnaires’ disease cases [30]. Further analysis of the obtained
bacterial isolate revealed a new Francisella species: Francisella sp. strain W12-1067. The species is the
second identified Francisella species in Germany next to F. tularensis (subsp. holarctica). F-W12 is a
close relative of Allofrancisella guangzhouensis (formerly named Francisella guangzhouensis), which was
isolated from an air-conditioning system in China [78,79]. Various homologs of virulence factors of the
genus Francisella were identified using in silico analysis of the genome sequence of F-W12. Surprisingly,
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these investigations could show that all genes found on the Francisella pathogenicity island (FPI) are
missing, but a putative alternative type 6 secretion system is present [30]. Moreover, the strain can
persist in co-culture with human cell lines and with amoebae (e.g., Acanthamoeba lenticulata) [30,80].
Interestingly, experimental screening assays aiming to elucidate fitness and virulence factors of
F-W12 by amoebae co-culture lead to the identification of various known virulence factors of the
genus Francisella. The majority of the identified genes encode proteins involved in the synthesis or
maintenance of the cell envelope (LPS, outer membrane, capsule), starvation (stringent response), or in
the metabolism (glycolysis, gluconeogenesis, pentose phosphate pathway). Altogether, the results
indicated that F-W12 may be able to replicate in host cells, although natural host cells have not been
identified yet [30,80].

To further characterize this new species, we analyzed its core metabolic pathways by applying
isotopologue profiling, indicating the presence of a bipartite metabolism of amino acids, glucose, and
glycerol. In addition, a myo-inositol (MI) metabolizing gene cluster was identified and it could be
demonstrated that F-W12 is able to metabolize MI. F-W12 and also F. novicida strain Fx1 are able to
use MI as an alternative growth substrate in the absence of glucose [81]. Indeed, the metabolism of
F-W12 seems to be more related to the aquatic habitat-associated species F. novicida rather than to
F. tularensis subsp. holarctica. Both results support a previously proposed natural water-associated
habitat of F-W12 [81].

Further experiments are necessary to investigate the new species’ pathogenicity for protozoa,
animals, or humans. This would be a fruitful undertaking, as it could be shown that F-W12 is
genetically treatable (generation of mutant strains by a transposon or of specific mutants by site-specific
recombination after natural transformation; transformation of plasmids by electroporation). Recently,
a new phage integration vector (pFIV-Val) was built, which can be used for integrating genes into the
genome of F-W12, as well as for the complementation of specific mutant strains [80–82].

5. Conclusions

In Germany, tularemia likely represents a re-emerging disease with a high proportion of
undiagnosed cases. The increase of cases in the last 15 years may be related to more frequent
outdoor activities and contact with wildlife, or to changes in the abundance of F. tularensis subsp.
holarctica in reservoir animals and vectors [65,83]. Increasing awareness and knowledge of the
disease among healthcare personnel may facilitate a more timely diagnosis and treatment of cases.
More research is needed to be able to assess the burden of disease and to better understand risk factors
and routes of infection of tularemia in Germany.

Taking into account the latest findings of the genetic diversity of F. tularensis subsp. holarctica
isolates, Germany might be a “melting pot” for the species, a region where strains get mixed and new
genetic variants arise. The identification of the new Francisella species F-W12 in Germany indicated that
it could make sense to have an “open view” (e.g., methods such as next generation sequencing) when
analyzing isolates or probes of patients suffering of tularemia to be able to identify further potentially
existing (new) Francisella species in Germany. Further experiments are necessary to investigate the
pathogenicity of F-W12 for protozoa, animals, and humans, as well as to investigate if this new species
may be distributed all over Germany.

Author Contributions: Conceptualization, D.J., R.G., K.H.; data curation: S.A., M.F., K.K., K.H.; writing—original
draft preparation, S.A., M.F., K.H.; writing—editing, D.J., K.K., R.G.; supervision, D.J., K.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Robert Koch Institute.

Conflicts of Interest: The authors declare no conflict of interest.



Microorganisms 2020, 8, 1448 10 of 14

References

1. Moreau, G.B.; Mann, B.J. Adherence and uptake ofFrancisellainto host cells. Virulence 2013, 4, 826–832.
[CrossRef]

2. Clemens, D.L.; Lee, B.-Y.; Horwitz, M.A. Francisella tularensis Enters Macrophages via a Novel Process
Involving Pseudopod Loops. Infect. Immun. 2005, 73, 5892–5902. [CrossRef] [PubMed]

3. Santic, M.; Molmeret, M.; Klose, K.E.; Abu Kwaik, Y. Francisella tularensis travels a novel, twisted road within
macrophages. Trends Microbiol. 2006, 14, 37–44. [CrossRef]

4. Ellis, J.; Oyston, P.C.F.; Green, M.; Titball, R.W. Tularemia. Clin. Microbiol. Rev. 2002, 15, 631–646. [CrossRef]
5. Maurin, M.; Gyuranecz, M. Tularaemia: Clinical aspects in Europe. Lancet Infect. Dis. 2016, 16, 113–124.

[CrossRef]
6. Oyston, P.C.; Griffiths, R. Francisellavirulence: Significant advances, ongoing challenges and unmet needs.

Expert Rev. Vaccines 2009, 8, 1575–1585. [CrossRef] [PubMed]
7. Burckhardt, F.; Hoffmann, D.; Jahn, K.; Heuner, K.; Jacob, D.; Vogt, M.; Bent, S.; Grunow, R.; Zanger, P.

Oropharyngeal Tularemia from Freshly Pressed Grape Must. N. Engl. J. Med. 2018, 379, 197–199. [CrossRef]
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