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Abstract: To propose a solution for control of Mycobacterium avium subsp. paratuberculosis (MAP)
infections in animals as well as in humans, and develop effective prevention, diagnostic and treatment
strategies, it is essential to understand the molecular mechanisms of MAP pathogenesis. In the present
review, we discuss the mechanisms utilised by MAP to overcome the host defense system to achieve
the virulence status. Putative MAP virulence genes are mentioned and their probable roles in view of
other mycobacteria are discussed. This review provides information on MAP strain diversity, putative
MAP virulence factors and highlights the knowledge gaps regarding MAP virulence mechanisms
that may be important in control and prevention of paratuberculosis.

Keywords: Mycobacterium avium subspecies paratuberculosis; Johne’s disease; virulence; pathogenesis

1. Introduction

Mycobacterium avium subsp. paratuberculosis (MAP) is a weakly Gram-positive acid-
fast bacterium which causes Johne’s disease or paratuberculosis in animals especially
ruminants [1,2]. It is also implicated in the cause of Crohn’s disease (inflammatory bowel
disease) in humans [3]. Paratuberculosis is one of the most serious infectious diseases of
dairy cattle worldwide, causing considerable loss in production in terms of reduced milk
yield, reduced weight gain, culling/deaths and increased cost of disease control [4].

Among the attributes for a potentially pathogenic bacterium are its ability to gain
access to a susceptible host, establish itself through evasion of the host defense mechanisms
and multiply in the host, leading to disease or tissue damage and eventual dissemination
to other hosts [5]. Genetic factors that enable the organism to achieve these pathogenic
attributes are considered to be virulence factors. A lot still remains to be understood
regarding the pathogenesis of MAP and its virulence in its numerous hosts. There are
reports of differences in virulence among the various strains as well as differences in host
susceptibilities [6]. This review is an attempt to elucidate the basis and mechanisms of
differential virulence of MAP strains and isolates as reported to date.
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2. Taxonomic Classification of MAP

Mycobacterium avium subsp. paratuberculosis is a Gram-positive bacillus, aerobic, non-
motile, non-spore-forming and acid-fast bacterium belonging to the genus Mycobacterium of
the family Mycobacteriacea and is a member of the Mycobacterium avium complex (MAC) [7].
MAC are widely distributed in the environment, in healthy animals and humans and do
not usually cause disease unless the host is debilitated or immunocompromised. Other
members in the MAC complex include: M. avium avium, M. avium silvaticum, M. colombiense
and M. intracellulare. They belong to the slow-growing group of mycobacteria, taking
between 8–16 weeks to produce visible colonies on solid media such as Egg-based media
such as Löwenstein–Jensen medium, Herrold’s egg-yolk medium and synthetic media such
as Middlebrook 7H9, 7H10 and 7H11, though some strains may take up to 6 months [2,6].
MAP is classified biochemically as being dependent on externally provided mycobactin,
though some strains have been found to be mycobactin independent.

3. MAP Strain Diversity

Principally, three broad MAP strain groups are recognised depending on their growth
characteristics, colony pigmentation and host associations: Sheep type or “Type S”, the
Cattle type or “Type C” and the Bison or “B-type” [8]. Some of the molecular techniques
used in MAP strain typing for identification of genetic diversity include: IS900 restriction
fragment length polymorphism (RFLP) [9], IS1311 RFLP, IS1311 polymerase chain reaction–
restriction enzyme analysis (PCR-REA) [10], pulsed-field gel electrophoresis (PFGE) [11];
short sequence repeat (SSR) [12], mycobacterial interspersed repetitive unit-variable num-
ber tandem repeat (MIRU-VNTR) analysis [13] and single-nucleotide polymorphism (SNP)
typing [14]. These typing techniques have divided MAP into Type I, II and III (Figure 1).
Type I is predominantly isolated from sheep (Type S) and Type II is for isolates from cattle
and other animals as well as humans. Type III is a subgroup of Type S. Based on SNP
analysis of the IS1311, MAP first isolated from bison from Montana, USA, has been classi-
fied as Type B [15]. With further molecular analysis, this bison type was found to differ
from a similar type from India giving rise to the Indian bison type [16]. Type B strains are
a subtype of Type C but are not restricted to the bison. Type III and Type I appear to be
subgroups of Sheep type [13]. Recent studies recommend that MAP characterisation should
be based on whole genome sequence (WGS) analysis of genetic markers such as insertion
elements, repetitive sequences and single nucleotide polymorphisms (SNP) [13,17] for
better resolution, although this would be very expensive for small epidemiological studies.
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Figure 1. An illustration of MAP strain differentiation based on whole genome SNP-based phylogenetic analysis [13]. 
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cosa via the microfold (M) cells residing in the Peyer’s patches [23]. It has also been 
demonstrated that MAP can cross the gut mucosa even in areas without Peyer’s patches 
entering through enterocytes [24]. Here, they resist intracellular degradation and eventu-
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responses that aim to contain the intracellular infection but unfortunately end up aug-
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4. MAP Pathogenesis
4.1. Transmission

MAP is transmitted in cattle mainly through the fecal–oral mode and infection occurs
mostly in young calves [1,18]. Risk factors for MAP transmission include: importation
or introduction of new animals whose MAP infection status is unknown, pooled milk
feeding of calves and lack of or failure to use maternity pens on the farm [19,20]. Infected
animals shed MAP in manure, colostrum and milk and young animals become infected
through ingestion of colostrum and milk from the infected animals, contaminated water
and pasture [21,22]. Upon ingestion, MAP enters the intestinal wall through the ileal
mucosa via the microfold (M) cells residing in the Peyer’s patches [23]. It has also been
demonstrated that MAP can cross the gut mucosa even in areas without Peyer’s patches
entering through enterocytes [24]. Here, they resist intracellular degradation and even-
tually get phagocytosed by subepithelial macrophages. Infected macrophages migrate
to local lymphatics and spread to regional lymph nodes where the organisms stimulate
inflammatory and immunological responses [25,26].

4.2. Immune Responses

Infected macrophages stimulate T-helper lymphocytes and clonal expansion of two
T-helper cell subpopulations: T helper 1 (Th1) and T helper 2 (Th2), which secrete differ-
ent cytokines [25,27]. The Th1 cells produce pro-inflammatory cytokines such as inter-
feron gamma (IFNγ), interleukin 2 (IL-2), IL-12 and tumour necrosis factor alpha (TNFα)
while Th2 cells produce anti-inflammatory cytokines such as IL-4, IL-5, IL-6, IL-10 and
IL-13 [28,29]. These cytokines are believed to orchestrate cell-mediated and humoral im-
mune responses that aim to contain the intracellular infection but unfortunately end up
augmenting the disease process. The early immune response to MAP infection consists of
numerous infected macrophages with increased amounts of adhesion molecules, which
result in formation of granulomas in which the bacilli remain secluded for a long period of
time [27]. The animal in this state presents no clinical symptoms and it can remain in this
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subclinical phase for a period of 2–5 years while the bacilli are contained in macrophages
and microscopic granulomas [30,31]. Infected animals may not manifest clinical disease
throughout their lifetime, yet they continue to contaminate the environment through
shedding of MAP [32–34]. What determines the length of this duration both at host and
pathogen levels is still unknown. With the failure of macrophages to destroy MAP, the
organisms begin to multiply intracellularly with production of immunoglobulin G1 (IgG1)
antibodies characteristic of the late humoral response in MAP infection [28].

5. Fate of MAP inside Macrophages

Mononuclear phagocytes, principally macrophages, serve as the intracellular niche for
MAP survival and multiplication [35]. Macrophages possess several receptors involved in
mycobacterial uptake which include complement receptors (CR1, CR3 and CR4), mannose
receptors, immunoglobulin receptors and the scavenger receptors [36–38]. Reports suggest
that complement opsonisation is important for the uptake of MAP by bovine mononuclear
phagocytes and that these phagocytes can synthesise and secrete complement proteins to
opsonise particles for phagocytosis [39].

The innate immune system also employs germline-encoded pattern-recognition recep-
tors for the initial detection of microbes. There are several classes, some of which include
the Toll-like receptors (TLRs) and Nucleotide-binding oligomerisation domain-like recep-
tors (NLRs) [40]. Antigen-presenting cells such as macrophages express these TLRs, which
initiate immune responses mediated by different cytokines. Reports have indicated that
TLRs and NLRs are involved in the recognition of MAP by the innate immune system [41].

Mechanisms of virulence responsible for MAP colonisation, entry and persistence in
macrophages and eventual disease development remain elusive. Several mycobacterial fac-
tors are believed to interplay and interact with host factors to determine the virulence and
pathogenesis of MAP within the animal host (Figure 2). Once inside macrophages, MAP
survives and proliferates in the phagosome using means which are not fully understood.
One such means is the ability of MAP to disable the reactive oxygen anion intermediates
(ROI) such as superoxide anions, hydrogen peroxide and hydroxyl radicals [42], which have
a mycobactericidal effect. MAP secretes superoxide dismutase, which is a possible counter
mechanism for protection of the bacilli in macrophages [43]. Macrophages also produce
reactive nitrogen intermediates such as nitric oxide (NO) when stimulated with IFN-γ and
TNF-α which are also known to have a mycobactericidal effect [44]. Macrophages infected
with M. tuberculosis (MTB) have been shown to inhibit recruitment of inducible nitric oxide
synthase (iNOS) in phagosomes containing mycobacterium as a measure to counteract NO
production [45]. A similar mechanism is believed to work in macrophages infected with
MAP, though this requires further investigation since [46] found little evidence of iNOS
activity in Johne’s disease lesions.

Another microbicidal mechanism by phagocytes is the phagosome–lysosome fusion
to form a functional phagolysosome in which the lysosomal vacuoles containing hydrolytic
enzymes kill and degrade invading microbes [47,48]. Live MAP has been shown to perfo-
rate this vacuole by secreting lipids that create pores in the membrane surrounding the
vacuole. Mycobacteria are also known to interfere with phagosomal maturation through
inhibition of the ATP-dependent proton pump (H+-ATPase) which maintains an acidic
environment necessary for optimal activity of the hydrolytic enzymes [49]. MAP cells
have been shown to inhibit phagosome–lysosome fusion and phagosomal acidification
in murine cells [50,51]. This is through blocking of Rab5 activity, therefore preventing
the fusion of early endosomes. Activation of MAP-infected murine macrophages with
IFN-γ and lipopolysaccharide (LPS) resulted in enhanced phagosome–lysosome fusion
and increased killing of MAP cells intracellularly as compared to the unstimulated [52].
MAP cells have been shown to stimulate production of IL-10, an anti-inflammatory cy-
tokine, which counteracts the effects of IFN-γ in macrophage infection and aids MAP
survival [53]. Consequently, downregulation of IL-10 gene resulted in reduced survival of
MAP but also increased production of INF-γ in bovine peripheral blood mononuclear cells
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(PBMC) [53,54]. Similar reports have showed that infection of bovine macrophages with
MAP resulted in reduced apoptosis of macrophages [51,55] which enhances MAP survival.
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disabling the host defense mechanism and metabolism. Because limited information is available concerning the expression
and actions of virulence factors in MAP, most of the current understanding of MAP virulence is imputed from the functions
of such factors in related mycobacteria.

Mycobacteria, unlike other pathogenic bacteria, lack the classical virulence factors
such as toxins; they uses other virulence mechanisms which enable them to survive in the
macrophage intracellular environment [56]. The mechanisms utilised by MAP to enter
and survive in the host macrophages include resistance to intracellular degradation by
macrophages and inhibition of apoptosis and interference with cytokines production by
macrophages. Cytokines control different processes in the cell through protein regulation to
overcome the infection. MAP, however, modifies the response of macrophages to infection
so that it is able to survive inside the macrophage [26].

Although the mechanisms for the intracellular survival of MAP within macrophages
are not entirely understood, several reports suggest that these mechanisms have a ge-
netic basis [8,57]. Khalifeh and Stabel reported that formation of persistently infected
macrophages is associated with upregulation of IL-10, transforming growth factor beta
(TGFβ) and reduction in IFNγ [58]. It has been shown that MAP interferes with CD40
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signalling, which is mediated by IL–12P40 and inducible Nitric oxide synthase (iNOS) in
monocytes-derived macrophages [59]. The CD40 pathway is responsible for the activation
of macrophages by the T cells. Failure of T cell activation and consequently macrophage
activation leads to persistently infected macrophages incapable of destroying the pathogen
that instead act as a vehicle for propagation and dispersal of the organism leading to
infection [25,60]. Activated macrophages are capable of killing MAP and control their
growth; however, at high multiplicity of infection, MAP is cytotoxic to macrophages and
also inhibits apoptosis [61,62].

6. MAP Virulence Factors

Virulence factors facilitate adhesion, invasion and colonisation of host cells by pathog-
enic bacteria; they include enzymes of several lipid pathways, cell surface protein regulators
and signal transduction systems molecules (Figure 2). Bacterial virulence genes may be
located on transmissible genetic elements such as transposons, bacteriophages, plasmids or
within the bacterial genome organised in a contiguous region known as the pathogenicity
island [63]. A gene will probably contribute to virulence if it is present in a pathogen
but absent in a closely related nonpathogenic organism or inactivation of the gene results
in attenuation of the virulence phenotype and replacement with an intact copy of the
inactivated gene restores virulence [64].

6.1. Factors That Facilitate Adhesion, Colonisation, Entry and Persistence

From studies so far conducted, it has been demonstrated that certain genetic elements
within the pathogen genome are responsible for virulence. Once removed or disrupted,
the organism displays an attenuation phenotype. The disruption of genes can be achieved
experimentally by means of insertion or deletion mutagenesis and construction of trans-
poson mutant libraries. Using a transposable element Tn5367 introduced into the MAP
genome by means of a conditionally replicating mycobacteriophage phAE94, Harris and
colleagues generated a library of 5620 MAP insertion mutants and also demonstrated that
the transposon insertion sites are distributed relatively randomly throughout the MAP
genome [65]. In a related study, Shin and coworkers constructed a library of transposon
mutants whose genes were phenotypically involved in membrane transport protein, iron,
tryptophan, or mycolic acid metabolic pathways [66]. In the aforementioned study, the
transposable element Tn5367 was used to generate a library of MAP mutants. A total of
5060 mutants were generated, of which 1150 mutants were characterised by sequencing
and bioinformatics analysis. Out of these, using a mouse model of paratuberculosis, seven
novel virulence determinants were identified. Bacteriological and histological analyses em-
ployed in the study were able to categorise the putative colonisation virulence factors into
two classes: those that exhibited impaired organ colonisation and low inflammatory scores;
and those that showed low colonisation rates but at a later stage of infection, implying a
role for persistence in macrophages. These genetic factors are involved in M. tuberculosis
(MTB) virulence and might have significance in MAP virulence as well.

In Table 1, we present a list of virulence factors of MAP and related mycobacteria
which are believed to play a role in MAP virulence and pathogenesis. The gene gcpE
encodes a protein involved in isoprenoid biosynthesis via the mevalonate-independent
2-C-methyl-D-erythritol-4-phosphate (MEP) pathway [67]. It is considered an essential
gene in Escherichia coli (E. coli) [68]. In a study using a calf model in which MAP strains
were deposited in the ileum, mutants of the gcpE gene were unable to traverse the intestinal
barrier to the mesenteric lymph nodes, unlike the wild-type strain. This indicated that the
mutant was less invasive, throwing more light on the process of MAP pathogenesis and
virulence mechanism [69]. However, more information is required on the probable use of
the gcpE gene as a potential target for vaccine development in paratuberculosis control.

The nonribosomal peptide synthetase gene (pstA) encodes an enzyme involved in
glycopeptidolipid biosynthesis which is associated with biofilm formation [70]. It has been
described in mycobacteria such as MTB, M. smegmatis and M. avium [71–73]. Glycopepti-
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dolipids are species-specific mycobacterial lipids and have been demonstrated to be major
constituents of cell envelopes of several nontuberculous mycobacteria, both pathogenic
and nonpathogenic [74]. Biofilm formation is believed to contribute to bacterial virulence
by inducing a persistent source of infection and may contribute to antibiotic resistance [75].
According to Shin and coworkers, pstA mutants showed significant reduction in tissue
colonisation in a mouse model of paratuberculosis [66]. In a more recent study, pstA
mutants were shown to be deficient in the ability to form biofilm when compared with
the intact MAP strain [70], an indication that PstA could contribute to biofilm formation
in MAP. In the same study, it was observed that pstA mutants also exhibited significant
reduction in bacilli length compared to the parent strain, which raises the question of
whether cell elongation could contribute to biofilm formation. The exact role of PstA in
MAP pathogenesis requires further scrutiny.

Table 1. Factors believed to influence virulence in MAP and other mycobacteria.

Virulence Factor Name/Function Probable Role in MAP Virulence References

GcpE Protein involved in isoprenoid
biosynthesis

Involved in the MEP pathway. Important in
tissue invasion during early MAP infection [69]

PstA Non-ribosomal peptide
synthetase

Glycopeptidolipid biosynthesis and associated
with biofilm formation [70]

KdpC
Probable

potassium-transporting
ATPase C chain

An inducible high-affinity potassium uptake
system. In MAP it has been associated with

organ colonisation and granuloma formation
[66,76]

PapA2 Conserved polyketide
synthase-associated protein

Virulence-enhancing lipids of MTB. In MAP it
is associated with tissue colonisation [66,77]

ImpA Inositol monophosphatase
protein

Involved in cell wall permeability and
persistence in macrophages [66,78]

FabG2_2 Putative oxidoreductase Involved in colonisation and persistence in
macrophages during MAP infection [66,79]

UmaA1 Mycolic acid
methyltransferase

Involved in cell wall biosynthesis and
tissue/organ colonisation [79,80]

MptD (MAP3733c) Putative ATP binding cassette
transporter

Important in MAP adaptation during early
infection through lipid metabolism [81]

PknG (MAP3893c) Serine/threonine protein
kinase G

Contributes to biofilm and granuloma
formation in MTB. In MAP it induces

production of IFNγ leading to macrophage
phosphorylation

[82,83]

MAP0949 Probable diguanylate cyclase
Involved in bacterial cell surface adhesions.
Important in adaptation and evasion of the

host immune system.
[84,85]

MAP2291 Haemoglobin-like oxygen
carrier—glbO Protects MAP against oxidative stress [86]

MAP3634
Hypothetical protein of

mycobacterial
L,D-transpeptidases

Involved in bacterial cell wall synthesis
through polymerisation of peptidoglycans [86]

The kdpC gene is a probable potassium-transporting ATPase C chain which encodes
an inducible high-affinity potassium uptake system of E. coli. It is part of the Kdp complex,
which are membrane bound subunits comprising the KdpC, KdpF, KdpB and KdpA [76].
The role of the kdpC gene in mycobacterial pathogenesis is not yet clear. From the study
by [66], mutants for this gene were deficient in the ability to colonise mouse organs (liver
and intestines) and this could possibly be due to a defect in the potassium-shuttling
mechanism which resulted in the attenuation phenotype exhibited by the mutants. The
kdpC-deficient mutants showed limited granuloma formation compared to the wild types.
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Similarly, disruption of the papA2 gene in MAP resulted into attenuation in a murine
model of paratuberculosis [66]. The papA2 gene is a member of the conserved polyke-
tide synthase-associated protein (Pap) family which encodes virulence-enhancing lipids
of MTB [77].

The impA gene encodes an inositol monophosphatase protein which earlier studies
showed that it played a role in cell wall permeability in M. smegmatis and in the synthesis
of phosphatidylinositol dimannoside [78,87]. On the other hand, fabG2_2 gene encodes a
putative oxidoreductase activity in MAP [79]. Both mutants of impA and fabG2_2 genes
exhibited low colonisation levels late in the infection experiment, which implied that they
could possibly play a role in bacterial defense in the persistence stage of MAP infection [66].

The umaA1 gene, which encodes a mycolic acid methyltransferase, is involved in
cell wall biosynthesis [79]. Disruption of umaA1 resulted in reduced colonisation levels
of mutants in mice [66]. This is, however, in contrast to a similar model for MTB in
which umaA1 mutants exhibited a hypervirulence phenotype [88] and this may suggest a
difference in role played by the gene in MTB from that of MAP. MAP umaA1 together with
fabG2_2 gene mutants have been tested for their vaccine potential in mice and were found
to induce a MAP specific IFN-γ important for eliciting cell-mediated immunity. The umaA1
mutants further induced production of IL-17a, a cytokine important for mycobacterial
protective immunity. Indeed, mice vaccinated with the umaA1 and fabG2_2 gene mutants
exhibited significant reduction in organ colonisation and low histological scores compared
to control animals when challenged with a virulent MAP strain [80].

Though the above-described virulence genes have been identified, there is little under-
standing of the pathways through which they act and whether the same effects observed
in vitro and in mouse models can be observed in ruminant models of paratuberculosis.
Moreover, similar genes in closely related species may play different roles in pathogenesis
due to differences in gene organisation on the genomic island, as was observed in MAP
and Mycobacterium avium subsp. avium [89,90]. How virulence factors affect host–pathogen
interactions is still only left to speculation. These probable virulence determinants could
represent novel functional classes necessary for mycobacterial survival during infection
and could provide suitable targets for vaccine and drug development.

6.2. Factors Which Affect Metabolism of MAP

Different pathogenic bacteria have been demonstrated to undergo metabolic adapta-
tions that enable them to utilise the host metabolites that would otherwise have been toxic.
An example is M. tuberculosis, which has the ability to break down the host fatty acids,
detoxify the products and utilise the resulting molecules to acquire carbon during intracel-
lular infection. The ability of pathogens to acquire nutrients within the host environment is
part of the crucial processes contributing to bacterial virulence [91].

MAP has been shown to undergo significant genetic modifications during host–
pathogen interaction within macrophages. One such modification is iron limitation, which
triggers nitric oxide build-up linked to nitric oxide synthase production, which prompts
MAP to enter into an iron sequestration program. This kind of pathway is likely to con-
tribute to MAP virulence by aiding MAP establishment and long-term survival within
host macrophages [92]. However, it is not known how MAP influences the host metabolic
state for its benefit and whether the genetic factors contributing to MAP virulence are also
involved in these processes. To date, only a couple of genes have been shown to modulate
MAP virulence within macrophages (Figure 2).

Meissner and others [81] studied the role of MAP mptD gene (map3733c) to deduce
its potential role in the host during MAP infection. The mptD gene whose operon is
predicted to encode a putative ATP-binding cassette transporter belongs to a small group
of functionally uncharacterised genes. Macrophage infection experiments were performed
in which the gene was observed to have a significant role in MAP adaptation during early
infection. Metabolic profiling revealed profound disorders in lipid metabolism, hence
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pointing to the probable importance of mptD gene in metabolic adaptation required for
MAP persistence in the host.

In a recent study, Philips and others used an Acanthamoeba castellanii (amoeba) model to
predict virulence mechanisms of MAP [86]. A library of gene knockout mutants generated
by Mycomart7 (Mmt7) transposon was used to identify MAP clones that can either enhance
or inhibit the amoeba metabolic activity, and this mirrored the pattern of MAP survival
or attenuation in macrophages. They observed that MAP mutants that induced high
amoeba metabolic activity were defective in the intracellular growth inside macrophages.
From bioinformatic analysis of mutant sequences, several genes were identified that could
possibly be responsible for the altered ability for survival of MAP mutants in the RAW
264.7 macrophages [86].

The map3893c gene encodes the serine/threonine-protein kinase G (PknG) which is
a well-characterised virulence factor in MTB where it is known to contribute to biofilm
development and granuloma formation [82,93]. It is also known to block the recruitment of
active Rab711-GTP to phagosomes containing the pathogen, thereby inhibiting the phago-
lysosome fusion [94,95]. It appears that the role of PknG in MAP pathogenesis contributes
to macrophage phosphorylation signalling and other adaptor molecules by inducing an
immune response through production of IFN-γ [83]. The exact role of PknG in MAP is not
fully understood, but because it shares high homology with that of the MTB complex, it is
anticipated to perform similar roles. This, however, needs further investigation.

The second macrophage-related putative virulence factor is MAP0949, a probable
diguanylate cyclase whose absence results in severe attenuation of MAP during macrophage
infection. Its wild phenotype is, however, restored once the disrupted gene is comple-
mented by the functional gene [86]. In other bacteria, it has been postulated that it is
involved in stimulating degradation of second messenger cyclic di-GMP (c-di-GMP) in-
volved in bacterial cell surface adhesions [84]. The c-di-GMP and c-AMP second messenger
signalling molecules control expression of a variety of environmental and quorum sens-
ing signals as well as regulating several key virulence mechanisms required for bacterial
adaptation and evasion of the host immune system [85,96,97].

Inducible nitroxide synthase (iNOS) is an important enzyme responsible for the
activation of reactive nitrogen oxide species that kill intracellular mycobacteria. Virulence of
mycobacteria is probably mediated by the map2291 gene, a haemoglobin-like oxygen carrier
(glbO) which encodes the globin protein occurring across the Mycobacterium avium complex
(MAC). It is 86% homologous to MTB oxygen-binding glbO which have a function related
to oxygen affinity and reactivity [98]. MTB-truncated haemoglobin O (trHbO) displays
moderate NO-scavenging activity which signifies involvement in both NO detoxification
and aerobic respiration [99]. Since map2291 consists of MTB glbO-like domain, it can be
hypothesised that the map2291 gene prevents intracellular killing of MAP by protecting the
pathogen from microaerophilic conditions and oxidative stress [86]. Moreover, one study
also showed evidence of limited iNOS activity in MAP granulomas [46].

Virulence of MAP may also be determined by the map3634 gene, which encodes a hypo-
thetical protein that contains IgD-like repeat domain of mycobacterial L,D-transpeptidases
and is responsible for the final polymerisation steps involved in the formation of glycan
strands and cross-linking peptide stems of the peptidoglycan cell wall in most bacteria [100].
Inactivation of these transpeptidases has been demonstrated to be detrimental to MTB
and M. abscessus [101,102], signifying its importance as a virulence factor in these organ-
isms. MAP mutants lacking map3634 gene exhibit reduced survival rate in macrophages,
presumably due to defective bacterial cell wall synthesis [86].

6.3. Factors That Affect Aggregation and Clumping

The PE/PPE proteins are among the probable factors contributing to MAP virulence.
The PE/PPE proteins are large families of proteins with each member sharing a conserved
N-terminal domain with the characteristic motifs Proline–Glutamate (Pro–Glu or PE) or
Proline–Proline–glutamate (PPE) that are an important domain in mycobacteria and have
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been for long believed to play a role in virulence [103]. They have been well characterised
in MTB, though they also occur in other mycobacteria such as M. leprae, M. avium and M.
bovis [104]. They are thought to be virulence factors responsible for evasion of host immune
responses and a potential source of antigenic variation in MTB [105]. It is reported that
some PE/PPE families are deleted from avirulent Mycobacterium tuberculosis [106]. Zheng
and colleagues also showed that a number of PE/PPE genes found in virulent strains
of MTB contain single nucleotide variations [107]. Differential expression of PE/PPE
genes in M. tuberculosis and M. bovis seems to suggest host specificity. At least one M.
tuberculosis PE protein is known to cause cell death while another causes apoptosis of
host macrophages [108]. There is some evidence that inactivation of the PE-polymorphic
GC-rich repetitive sequence (PE-PGRS) gene in M. bovis BCG strain will lead to loss of cell
aggregation (clumping), dispersed growth and reduced infection of macrophages [109].
The iron-dependent regulator (IdeR) of MTB has been reported to control several PE/PPE
proteins such as Rv0279, Rv0285 and Rv2123, and the fact that iron is necessary for virulence
points to the PE/PPE proteins being virulence factors [110,111]. In MAP the PE/PPE family
comprises 1% of the genome and lacks the intact PE-PGRS subfamily present in MTB and
other mycobacteria such as M. bovis and M. marinam [79].

The exact role of PE/PPE proteins in MAP virulence has, however, not yet been
elucidated. PE-PGRS family proteins Rv0834c, Rv3097c, Rv097 are expressed within 24 h
post infection in macrophages and are believed to aid the establishment of the infection in
macrophages [105]. It is suggested that PE-PGRS Rv1759 binds to the cytoskeletal protein,
fibronectin thereby facilitating entry of MAP into the host through opsonisation [112].
Another PE-PGRS protein, Rv1787 (PPE25) has been shown to be important for growth
of M. smegmatis within macrophages, while Rv1196 (PPE18) and PPE44 trigger responses
that favour a switch from Th1 to Th2 by shifting IL-10/IL-12 balance and down regulating
IL-12/TNFα. Because of the high degree of polymorphisms among the PE-PGRS genes
observed even among the different strains of mycobacteria [113], they are potential deter-
minants of differential virulence in mycobacterial strains. As has been recommended for
other mycobacteria, the macrophage infection model of MAP can be used to answer ques-
tions about activation of various PE/PPE genes, their regulators and mRNA stability [111].
Another aspect of MAP pathogenesis and virulence is to understand how this organism
modulates IL-10/IL-12 response.

6.4. Global Gene Regulators and Stress Induced Genes

Global gene regulators (GGR) are involved in the control of several other genes such
as the sigma factors which have been shown to be important in regulating MAP virulence.
In one of the studies by [92], of the 19 alternative sigma factors encoded in MAP [79],
only SigL was induced at an early stage when subjected to stressors to mimic the host
microenvironment such as oxidative and cell wall stressors. It has been suggested that sigL
regulates the synthesis of cell envelope lipids and is responsible for modification of secreted
proteins in MTB [114]. The importance of SigL in MAP survival in macrophages during
early adaptation and the ability of mutants to produce protective immune response against
paratuberculosis [57] further highlighted the importance of GGR in possible development
of effective live attenuated vaccines.

Wu and colleagues studied the gene expression profiles of MAP under different stress
conditions such as heat shock, acidity and oxidative stress. Several sigma factors such
as SigH, SigE were differentially coregulated with a large number of genes. Deletion
mutagenesis revealed attenuation of gene mutants that included; lipN, lpqP, aceAB, and
prrA in a murine model of paratuberculosis which could participate in tissue colonisation
indicating their role in MAP pathogenesis [115]. Pribylova and coworkers also reported
that SigE, SigL, SigF, alkyl hydroperoxide reductase (AhpC) and the major membrane
protein (MMP) are over expressed during heat stress in MAP [116]. Further analysis of the
role of stress-induced genes in MAP pathogenesis and virulence is needed.
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6.5. The Role of Polymorphism in the MAP Genome on its Virulence

Microbial genetic variations may be as a result of spontaneous mutations due to the
unstable nature of the purine and pyrimidine bases, as a result of errors that may occur
during replication or be induced by exposure to certain environmental factors such as
UV light [8].

Whole genome sequence analysis of the MAP genome has revealed occurrence of
large sequence polymorphisms (LSPs) emanating from deletions, insertions, inversions,
duplications or dislocations. These events can cause DNA rearrangements resulting in
major phenotypic changes such as acquisition of virulence genes through insertions. Other
sources of genetic variations include: insertion sequences, repeat sequences and single-
nucleotide polymorphisms (SNPs) [8]. The MAP genome comprises 19 different insertion
sequences which are useful in mycobacterial species and subspecies differentiation such
as IS1311 and IS900, which is MAP-specific [117]. Repeat sequences are also important in
genomic typing for strain differentiation and molecular diagnosis such as the mycobac-
terial interspersed repetitive units–variable-number tandem repeats (MIRU-VNTRs) and
short-sequence repeats (SSRs) [118]. SNPs are the substitutions of a single nucleotide
with another or a deletion or insertion of one nucleotide. Single-nucleotide substitutions
in protein synthesis can be synonymous—resulting in no amino acid change—or non-
synonymous, which results in amino acid changes. SNPs can be utilised in intra-strain
differentiation and offer the greatest microbial genomic variation and may contribute to
variations in pathogenicity among MAP strains [8,14,117]. Genetic variations, including
single nucleotide polymorphisms in PE/PPE-PGRS genes, have been found to occur more
frequently in virulent strains of M. tuberculosis compared to the avirulent ones. All these
different polymorphisms could play important roles in differential virulence in MAP but
further study is required to determine if this is true.

7. Conclusions

Differences in MAP strain virulence have been reported by several studies, but the
slow growth of MAP and its long incubation period have made it very difficult to under-
stand the mechanisms for its pathogenesis and virulence in its natural hosts. Most of the
current understanding is based on inference from other mycobacteria, with a few studies
attempting to replicate these studies using MAP itself. The key highlights of MAP virulence
focus on genes such as the PE/PPE—PGRS family, mycobacterial protein kinases (PknG)
and the modulation of IL-12/IL-10 switch during infection. There are still many knowledge
gaps in our understanding of how differential expression, stability and secretion of these
gene products affect MAP uptake, persistence, frustration of phagocytosis and toxicity,
which are the hallmarks of mycobacterial virulence in its hosts. Future studies need to focus
on elucidating the different protein pathways involved during mycobacterial pathogenesis.
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