	1						1		
Sample	Sampling time	Location	Depth	Salinity	DO	NO ₃ -	NO ₂ -	NH ₃	PO4 ³⁻
			(m)	(PSU)	$(mg \cdot L^{-1})$	$(\mu mol \cdot L^{-1})$			
ME3 SW	Jul. 2013	28.7 °N,	3	33.63	6.70	1.18	0.42	0.39	0.42
ME3 NBW		122.6 °E	59	34.41	5.03	7.28	0.49	0.39	0.93
P11 SW	Jul. 2013	28.7 °N,	3	33.61	6.09	0.29	0.16	0.54	0.16
P11 NBW		126.9 °E	193	34.39	4.75	18.29	0.18	0.23	1.54
P03 SW	Oct. 2015	32.0 °N,	4	30.13	7.00	_	_	_	_
P03 NBW		123.6 °E	50	33.73	4.73	_	_	_	_
P03 OSS			52	_	_	_	_	_	_

Table S1. Environmental parameters of ME3, P11 and P03 seawater and oxic surface sediment samples

Sample	Chl-a ($\mu g \cdot L^{-1}$)	DMSPt	$DMSPp > 0.7 \ \mu m$	DMSPp > 3 µm	DMSPp 0.22–3 μm
		(nmol·mL ⁻¹ or	$(nmol \cdot mL^{-1} \text{ or } g^{-1})$	$(nmol \cdot mL^{-1} \text{ or } g^{-1})$	$(nmol \cdot mL^{-1} \text{ or } g^{-1})$
		g ⁻¹)			
ME3 SW	0.35	0.0384 ± 0.0016	0.0317 ± 0.0022	0.0334 ± 0.0043	0.0029 ± 0.0008
ME3 NBW	0.02	0.0115 ± 0.0007	0.0082 ± 0.0010	0.0080 ± 0.0023	0.0016 ± 0.0007
P11 SW	0.07	0.0102 ± 0.0007	0.0077 ± 0.0009	0.0073 ± 0.0020	0.0011 ± 0.0006
P11 NBW	0.01	0.0032 ± 0.0002	0.0022 ± 0.43	0.0020 ± 0.0004	0.0005 ± 0.0002
P03 SW	0.69	0.0884 ± 0.0054	0.0838 ± 0.0050	0.0810 ± 0.0082	0.0044 ± 0.0009
P03 NBW	0.07	0.0086 ± 0.0007	0.0060 ± 0.0003	0.0058 ± 0.0007	0.0009 ± 0.0002
P03 OSS	0.11	16.29 ± 1.07		14.19 ± 1.70	

Table S2. Chl-a and DMSP-related factors of ME3, P11 and P03 seawater and oxic surface sediment samples

Abbreviation: SW, surface seawater; NBW, near bottom seawater; OSS, oxic surface sediment; PSU, practical salinity unit; DO, dissolved oxygen; Chl-*a*, Chlorophyll *a*; DMSPt, total DMSP; DMSPp, particulate DMSP.

Table 56. Hoportion of phytophankton plastic sequences in total 185 met in gene data non ampreon sequencing analysis.								
	P03 SW	P03 NBW	P03 SS	ME3 SW	ME3 NBW	P11 SW	P11 NBW	
Phytoplanktonic sequences proportion	$0.8\%\pm0.02\%$	$0.4\%\pm0.05\%$	$0.05\pm0.00\%$	$0.5\%\pm0.05\%$	$0.1\%\pm0.06\%$	$0.5\% \pm 0.1\%$	$0.1\%\pm0.02\%$	

Table S3. Proportion of phytoplankton plastid sequences in total 16S rRNA gene data from amplicon sequencing analysis.

Phylum/Species/Group*	Phytoplankton abundance (cells/ml) †								
	ME3SW	ME3NBW	P11SW	P11NBW					
Bacillariophyta	360.56	4.47	1.70	3.98					
Thalassiosira curviseriata	138.89 (22.2%)	0.21 (3.7%)	-	-					
Pseudo-nitzschia delicatissima	127.78 (20.4%)	-	-	-					
Skeletonema sp.	35.00 (5.6%)	-	-	-					
Leptocylindrus minimus	16.67 (2.7%)	-	-	-					
Thalassionema nitzschioides	13.33 (2.1%)	0.43 (7.5%)	-	-					
Paralia sulate	-	2.45 (42.7%)	-	3.01 (26.4%)					
<i>Plagiogramma</i> sp.	1.11 (0.2%)	0.21 (3.7%)	-	-					
Coscinodiscus decrescens	-	0.21 (3.7%)	-	-					
Nitzschia panduriformis	-	0.21 (3.7%)	-	-					
Chaetoceros compressus	-	-	0.43 (0.8%)	0.22 (1.9%)					
Chlorophyta	100.00	-	0.21	-					
Pachysphaera spp.	100.00 (16.0%)	-	-	-					
Dinophyta	88.89	1.06	32.3	3.44					
Karlodinium veneficum	35.00 (5.6%)	0.11 (1.9%)	12.1 (23.7%)	1.72 (15.1%)					
Scrippsiella trochoidea	23.89 (3.8%)	0.21 (3.7%)	5.53 (10.8)	0.32 (2.8%)					
Gyrodinium spirale	-	0.21 (3.7%)	-	-					
Akashiwo sanguinea	-	-	2.34 (4.6%)	-					
Heterocapsa circularisquama	-	-	1.81 (3.5)	0.32 (2.8%)					
Prorocentrum minimum	-	-	1.38 (2.7%)	0.11 (1.0%)					
Katodinium glaucum	-	-	1.17 (2.3%)	0.11 (1.0%)					

Table S4. The phytoplankton community structures of ME3 & P11 derived from flow cytometry.

Prorocentrum donghaiense	-	-	0.74 (1.4%)	0.22 (1.9%)
Alexandrium catenella	-	-	0.21 (0.4%)	0.22 (1.9%)
Cryptophyta	34.44	-	6.7	0.22
Hemiselmis sp.	26.67 (4.3%)	-	2.34 (4.6)	-
Plagioselmis prolonga	-	-	2.98 (5.8%)	0.11 (1.0%)
Prymnesiophyta	30.00	0.21	10.3	3.55
Coccolithaceae spp.	23.89 (3.8%)	0.21 (3.7%)	1.91 (3.7%)	0.32 (2.8%)
Coccolithaceae (ovoid, species uncertain)	-	-	7.66 (14.9%)	2.80 (24.6%)
Algirosphaera robusta	-	-	0.11 (0.2%)	0.22 (1.9%)
Euglenophyta	11.11	-	-	0.22
Chrysophyta	1.11	-	-	-
Picoeukaryotes‡	1.87×10^{4}	0.10 × 10 ⁴	NT\$	NT\$

*Phytoplankton abundance was listed at phylum level; the top ten most abundant species in each sample were listed (dominant species)

[†]Percentage indicated contribution of the species to the total phytoplankton abundance in the sample

‡Data were obtained by flow cytometry

\$Not determined

Samples	DMSP conc	concentration (pmol/µg			
	protein)				
	T1C	T1			
P03 SW	36.32	494.15			
P03 NBW	32.72	232.49			
P03 OSS	34.88	118.45			

Table S5. DMSP concentrations before and after enrichment incubation.

			16s rRNA	rpoB	Relative
	dsyB	mmtN	(copies · mL ⁻	(copies · mL⁻	abundance
Sample	(copies∙mL ⁻¹ or	(copies · mL ⁻¹	¹ or g ⁻¹)	¹ or g ⁻¹)	of DMSP
	g-1)	or g ⁻¹)			producer
					(%)
qPCR					
CW	$2.46\text{E}{+}03 \pm$	$2.75\mathrm{E}{+}02~\pm$	$5.13\text{E}{+}05 \pm$	ND	0.5
SW	7.86E+01	2.85E+02	1.32E+04		
NDW	$4.60\text{E}{+}03 \pm$	$2.13E+01 \pm$	$7.54\text{E}{+}05\pm$	ND	0.6
NBW	1.96E+02	8.63E-01	3.07E+04		
055	$6.68\text{E}{+}06 \pm$	$1.07\mathrm{E}{+}03~\pm$	$7.42\text{E}{+}08 \pm$	ND	0.9
035	3.63E+05	3.91E+02	3.12E+07		
RT-qPCR					
CIV	$8.17\text{E}{+}00 \pm$	$1.40\text{E}{+}00 \pm$	ND	$1.81\text{E}{+}03 \pm$	0.5
SW	7.03E+00	4.20E-01		3.06E+03	
NDW	$8.16\text{E}{+}00 \pm$	$6.08\text{E}{+}00\pm$	ND	$3.75\text{E}{+}02 \pm$	3.7
NBW	8.67E-02	4.34E-01		1.78E+01	
055	$2.96\text{E}{+}04 \pm$	$1.99\text{E}{+}04 \pm$	ND	1.08E+06 \pm	4.5
035	5.76E+03	1.12E+04		6.07E+04	

Table S6. qPCR and RT-qPCR analysis of dsyB and mmtN in P03 seawater and sediment samples. Data were obtained on two or three independent samples (n=2 or n=3) and expressed as mean \pm SD.

ND: not determined.

 Table S7. Characteristics of DMSP-producing bacterial isolates.

Strain code	Closest taxonomically related species	Isolation source\$	Growth medium*	DMSP production (pmol µg protein ⁻¹)	Estimated intracellular DMSP concentration (mM)	DsyB and/or MmtN presentation.	Detection Method
ADSW12	Amorphus suaedae	P03 SW T1	MB	6.5 ± 0.5	1.0 ± 0.07	DsyB	degenerate PCR
			MBM (minimal, 1 mM NH4Cl)	N.G.†	N.G.		
ADSW13	Amorphus suaedae	P03 SW T1	MB	5.4 ± 0.1	0.9 ± 0.02	DsyB	degenerate PCR
			MBM (minimal, 1 mM NH4Cl)	N.G.	N.G.		
ADSW14	Amorphus suaedae	P03 SW T1	MB	6.6 ± 0.3	1.0 ± 0.05	DsyB	degenerate PCR
			MBM (minimal, 1 mM NH ₄ Cl)	N.G.	N.G.		
ADSW24	Amorphus suaedae	P03 SW T1	MB	6.0 ± 0.4	0.9 ± 0.06	DsyB	degenerate PCR
			MBM (minimal, 1 mM NH4Cl)	N.G.	N.G.		
ADSW25-1	Amorphus suaedae	P03 SW T1	MB	10.4 ± 0.6	1.6 ± 0.1	DsyB	degenerate PCR
			MBM (minimal, 1 mM NH4Cl)	N.G.	N.G.		
ADSW29	Acuticoccus yangtzensis	P03 SW T1	MB	89.9 ± 11.5	14.1 ± 1.8	DsyB	degenerate PCR
			MBM (minimal, 1 mM NH4Cl)	79.5 ± 5.2	12.4 ± 0.8		
ADBW18	Pelagibaca bermudensis	P03 NBW T1	MB	55.3 ± 1.3	8.6 ± 0.2	DsyB	degenerate PCR

			MBM (minimal 1	9.7 ± 0.7	1.5 ± 0.1		
			mM NH ₂ Cl)	9.7 ± 0.7	1.3 ± 0.1		
ADSS11-1	Stappia taiwanensis	P03 OSS T1	MB	7.9 ± 0.8	1.2 ± 0.1	DsyB	degenerate PCR
			MBM (minimal, 1	22.9 ± 0.9	3.6 ± 0.1	·	C
			mM NH ₄ Cl)				
ADSS19	Stappia taiwanensis	P03 OSS T1	MB	9.6 ± 0.8	1.5 ± 0.1	DsyB	degenerate PCR
			MBM (minimal, 1	25.3 ± 0.1	4.0 ± 0.02		
			mM NH ₄ Cl)				
ADSS20	Stappia taiwanensis	P03 OSS T1	MB	12.7 ± 1.1	2.0 ± 0.2	DsyB	degenerate PCR
			MBM (minimal, 1	25.4 ± 1.3	4.0 ± 0.2		
			mM NH ₄ Cl)				
ADSS28	Stappia taiwanensis	P03 OSS T1	MB	14.5 ± 1.8	2.3 ± 0.3	DsyB	degenerate PCR
			MBM (minimal, 1	23.0 ± 0.6	3.6 ± 0.1		
			mM NH ₄ Cl)				
AESS21	Labrenzia suaedae	P03 OSS T1	MB	131.1 ± 2.6	20.5 ± 0.4	DsyB	degenerate PCR &
							genome sequencing
			MBM (minimal, 1	6.1 ± 0.1	1.0 ± 0.02		
			mM NH ₄ Cl)				
AESS44	Labrenzia suaedae	P03 OSS T1	MB	169.2 ± 5.0	26.5 ± 0.8	DsyB	degenerate PCR
			MBM (minimal, 1	6.0 ± 0.3	0.9 ± 0.05		
			mM NH ₄ Cl)				
AESS46	Labrenzia suaedae	P03 OSS T1	MB	186.0 ± 22.5	29.1 ± 3.5	DsyB	degenerate PCR
			MBM (minimal, 1	6.1 ± 0.02	1.0 ± 0.003		
			mM NH ₄ Cl)				
AESS41	Marinobacter	P03 OSS T1	MB	6.3 ± 0.3	1.0 ± 0.05	N.D.	degenerate PCR &
	lipolyticus						genome sequencing
			MBM (minimal, 1	N.D.‡	N.D.		

			mM NH ₄ Cl)				
AESS51-2	Marinobacter adhaerens	P03 OSS T1	MB	1.9 ± 0.1	0.3 ± 0.02	N.D.	degenerate PCR
			MBM (minimal, 1 mM NH4Cl)	N.D.	N.D.		
BDSW03	Pseudooceanicola antarcticus	P03 SW T1	MB	148.8 ± 23.6	23.3 ± 3.7	DsyB	degenerate PCR
			MBM (minimal, 1 mM NH4Cl)	36.5 ± 7.2	5.7 ± 1.1		
BDSW11	Pseudooceanicola antarcticus	P03 SW T1	MB	189.6 ± 4.3	29.7 ± 0.7	DsyB	degenerate PCR
			MBM (minimal, 1 mM NH4Cl)	29.6 ± 1.1	4.6 ± 0.2		
BDSW15	Pseudooceanicola antarcticus	P03 SW T1	MB	191.3 ± 6.6	29.9 ± 1.0	DsyB	degenerate PCR
			MBM (minimal, 1 mM NH4Cl)	30.9 ± 3.5	4.8 ± 0.5		
BDSW19	Pseudooceanicola antarcticus	P03 SW T1	MB	150.3 ± 29.0	23.5 ± 4.5	DsyB	degenerate PCR
			MBM (minimal, 1 mM NH4Cl)	31.3 ± 3.0	4.9 ± 0.5		
BDSW30	Pseudooceanicola antarcticus	P03 SW T1	MB	196.3 ± 22.3	30.7 ± 3.5	DsyB	degenerate PCR
			MBM (minimal, 1 mM NH4Cl)	17.8 ± 0.4	2.8 ± 0.1		
BDBW05	Pelagibaca bermudensis	P03 NBW T1	MB	28.7 ± 2.9	4.5 ± 0.5	DsyB	degenerate PCR

			MBM (minimal, 1 mM NH ₄ Cl)	11.2 ± 0.5	1.8 ± 0.1		
BDBW16	Pelagibaca bermudensis	P03 NBW T1	MB	32.0 ± 4.4	5.0 ± 0.7	DsyB	degenerate PCR
			MBM (minimal, 1 mM NH4Cl)	9.5 ± 0.3	1.5 ± 0.05		
BDSS02	Sulfitobacter dubis	P03 OSS T1	MB	2.9 ± 0.04	0.5 ± 0.007	DsyB	genome sequencing
			MBM (minimal, 1 mM NH4Cl)	N.G.	N.G.		
BDSS04	Sulfitobacter dubis	P03 OSS T1	MB	2.8 ± 0.4	0.4 ± 0.06	N.D.	degenerate PCR
			MBM (minimal, 1 mM NH ₄ Cl)	N.G.	N.G.		
BDSS12	Labrenzia aggregata	P03 OSS T1	MB	44.0 ± 1.3	6.9 ± 0.2	DsyB	degenerate PCR
			MBM (minimal, 1 mM NH4Cl)	20.2 ± 0.8	3.2 ± 0.1		
BDSS19	Sulfitobacter dubis	P03 OSS T1	MB	3.2 ± 0.4	0.5 ± 0.06	N.D.	degenerate PCR
			MBM (minimal, 1 mM NH ₄ Cl)	N.G.	N.G.		
BEBW06	Thalassospira profundimaris	P03 NBW T1	MB	1.2 ± 0.1	0.2 ± 0.02	MmtN	degenerate PCR
			MBM (minimal, 1 mM NH4Cl)	85.5 ± 6.3	13.4 ± 1.0		
BEBW11	Thalassospira profundimaris	P03 NBW T1	MB	1.1 ± 0.3	0.2 ± 0.04	MmtN	degenerate PCR
	1 V		MBM (minimal, 1 mM NH4Cl)	81.6 ± 1.6	12.8 ± 0.2		
BEBW19	Thalassospira	P03 NBW	MB	1.3 ± 0.1	0.2 ± 0.02	MmtN	degenerate PCR

	profundimaris	T1						
				MBM (minimal, 1 mM NH₄Cl)	86.0 ± 2.1	13.5 ± 0.3		
BEBW25-2	Thalassospira profundimaris	P03 T1	NBW	MB	1.2 ± 0.01	0.2 ± 0.001	MmtN	degenerate PCR
				MBM (minimal, 1 mM NH4Cl)	81.9 ± 0.7	12.8 ± 0.1		
BEBW28	Thalassospira tepidiphila	P03 T1	NBW	MB	8.6 ± 0.2	1.4 ± 0.04	MmtN	degenerate PCR & genome sequencing
				MBM (minimal, 1 mM NH4Cl)	339.9 ± 2.8	53.2 ± 0.4		
BEBW31-1	Thalassospira profundimaris	P03 T1	NBW	MB	1.2 ± 0.04	0.2 ± 0.01	MmtN	degenerate PCR
				MBM (minimal, 1 mM NH4Cl)	84.5 ± 1.0	13.2 ± 0.2		
BEBW31-2	Thalassospira profundimaris	P03 T1	NBW	MB	1.3 ± 0.1	0.2 ± 0.02	MmtN	degenerate PCR
				MBM (minimal, 1 mM NH4Cl)	391.6 ± 27.1	61.3 ± 4.2		
BEBW32	Thalassospira tepidiphila	P03 T1	NBW	MB	8.0 ± 0.1	1.3 ± 0.02	MmtN	degenerate PCR
				MBM (minimal, 1 mM NH4Cl)	336.6 ± 9.4	52.6 ± 1.5		
BESS04	Labrenzia suaedae	P03 0	OSS T1	MB	73.3 ± 0.4	11.5 ± 0.1	DsyB.	degenerate PCR
				MBM (minimal, 1 mM NH ₄ Cl)	5.0 ± 0.03	0.8 ± 0.004		
BESS05	Labrenzia suaedae	P03 (OSS T1	MB	84.7 ± 2.1	13.2 ± 0.3	DsyB	degenerate PCR

			MBM (minimal, 1	4.9 ± 0.1	0.8 ± 0.01		
			mM NH ₄ Cl)				
BESS10	Labrenzia suaedae	P03 OSS T1	MB	136.1 ± 6.0	21.3 ± 0.9	N.D.	degenerate PCR
			MBM (minimal, 1	4.7 ± 0.1	0.7 ± 0.02		
			mM NH ₄ Cl)				
BESS13	Labrenzia suaedae	P03 OSS T1	MB	77.8 ± 2.2	12.2 ± 0.3	DsyB	degenerate PCR
			MBM (minimal, 1	4.7 ± 0.3	0.7 ± 0.04		
			mM NH ₄ Cl)				
BESS15	Labrenzia suaedae	P03 OSS T1	MB	72.6 ± 4.0	11.4 ± 0.6	DsyB	degenerate PCR
			MBM (minimal, 1	4.4 ± 0.3	0.7 ± 0.04		
			mM NH ₄ Cl)				
BESS17	Labrenzia suaedae	P03 OSS T1	MB	133.7 ± 3.8	20.9 ± 0.6	DsyB	degenerate PCR of
			MBM (minimal, 1	14.0 ± 1.6	2.2 ± 0.2		
			mM NH ₄ Cl)				
BESS24	Labrenzia alexandrii	P03 OSS T1	MB	47.6 ± 0.7	7.4 ± 0.1	DsyB	degenerate PCR of dsyB
			MBM (minimal, 1	11.7 ± 0.4	1.8 ± 0.06		
			mM NH ₄ Cl)				
BESS25	Labrenzia suaedae	P03 OSS T1	MB	130.4 ± 0.03	20.4 ± 0.01	DsyB	degenerate PCR
			MBM (minimal, 1	11.1 ± 0.01	1.7 ± 0.002		
			mM NH ₄ Cl)				
DSW02	Labrenzia aggregata	P03 SW T0	MB	68.0 ± 7.3	10.6 ± 1.1	DsyB	degenerate PCR
			MBM (minimal, 1	28.6 ± 0.06	4.5 ± 0.009		
			mM NH ₄ Cl)				
DSW17	Poseidonocella	P03 SW T0	MB	49.0 ± 3.9	7.7 ± 0.6	DsyB	degenerate PCR
	pacifica						
			MBM (minimal, 1	33.8 ± 1.3	5.3 ± 0.2		
			mM NH ₄ Cl)				

DSW18	Marinobacter	P03 SW T0	MB	1.4 ± 0.3	0.2 ± 0.05	N.D.	degenerate PCR &
	salarius						genome sequencing
			MBM (minimal, 1 mM NH4Cl)	N.G.	N.G.		
EBW16	Oceanicola litoreus	P03 NBW T0	MB	4.3 ± 0.1	0.7 ± 0.02	DsyB	degenerate PCR & genome sequencing
			MBM (minimal, 1 mM NH4Cl)	N.D.	N.D.		
ESS08	Bacillus boroniphilus	P03 OSS T0	MB	0.9 ± 0.2	0.1 ± 0.03	N.D.	degenerate PCR & genome sequencing
			MBM (minimal, 1 mM NH4Cl)	N.G.	N.G.		
ZYFB032	Pelagibaca bermudensis	P11 SW T0	MB	86.9 ± 2.2	13.6 ± 0.3	DsyB	degenerate PCR
			MBM (minimal, 10 mM NH4Cl)	3.4 ± 0.1	0.5 ± 0.02		
			MBM (minimal, 1 mM NH4Cl)	10.7 ± 1.1	1.7 ± 0.2		
			MBM (minimal, 0.5 mM NH4Cl)	91.0 ± 3.6	14.2 ± 0.6		
LZB033	Labrenzia aggregata	ME3 SW T0	MB	62.4 ± 0.6	9.8 ± 0.1	DsyB	degenerate PCR & genome sequencing
			MBM (minimal, 10 mM NH4Cl)	4.9 ± 0.3	0.8 ± 0.05		
			MBM (minimal, 1 mM NH4Cl)	25.7 ± 0.3	4.0 ± 0.1		
			MBM (minimal, 0.5	99.8 ± 1.2	15.6 ± 0.2		

			mM NH ₄ Cl)				
LZB062	Pseudooceanicola nanhaiensis	ME3 SW T0	MB	43.6 ± 0.6	6.8 ± 0.1	DsyB	degenerate PCR
			MBM (minimal, 10 mM NH ₄ Cl)	8.4 ± 0.1	1.3 ± 0.02		
			MBM (minimal, 1 mM NH4Cl)	132.6 ± 12.2	20.7 ± 1.9		
			MBM (minimal, 0.5 mM NH ₄ Cl)	3051.2 ± 52.9	477.2 ± 8.3		
LZD001	Pelagibaca bermudensis	ME3 NBW T0	MB	63.8 ± 3.5	10.0 ± 0.5	DsyB	degenerate PCR
			MBM (minimal, 10 mM NH4Cl)	5.0 ± 0.4	0.8 ± 0.1		
			MBM (minimal, 1 mM NH4Cl)	11.5 ± 0.7	1.8 ± 0.1		
			MBM (minimal, 0.5 mM NH ₄ Cl)	145.2 ± 0.8	22.7 ± 0.1		
LZD012	Halomonas saccharevitans	ME3 NBW T0	MB	1.4 ± 0.2	0.2 ± 0.02	N.D.	degenerate PCR & genome sequencing
			MBM (minimal, 10 mM NH4Cl)	N.D.	N.D.		
			MBM (minimal, 1 mM NH4Cl)	N.D.	N.D.		
			MBM (minimal, 0.5 mM NH4Cl)	N.D.	N.D.		
LZD019	Pelagibaca bermudensis	ME3 NBW T0	MB	67.3 ± 0.1	10.5 ± 0.01	DsyB	degenerate PCR

			MBM (minimal, 10	5.1 ± 0.1	0.8 ± 0.01		
			mM NH4Cl) MBM (minimal, 1 mM NH4Cl)	10.8 ± 0.4	1.7 ± 0.06		
			MBM (minimal, 0.5	130.3 ± 2.7	20.4 ± 0.4		
LZD031	Pelagibaca hermudensis	ME3 NBW T0	MB	80.6 ± 5.0	12.6 ± 0.8	DsyB	degenerate PCR
			MBM (minimal, 10 mM NH4Cl)	5.1 ± 0.1	0.8 ± 0.02		
			MBM (minimal, 1 mM NH ₄ Cl)	11.6 ± 0.2	1.8 ± 0.03		
			MBM (minimal, 0.5 mM NH ₄ Cl)	162.2 ± 2.1	25.4 ± 0.3		
LZD033	Pelagibaca bermudensis	ME3 NBW T0	MB	66.9 ± 2.2	10.5 ± 0.3	DsyB	degenerate PCR
			MBM (minimal, 10 mM NH4Cl)	4.6 ± 0.3	0.7 ± 0.05		
			MBM (minimal, 1 mM NH4Cl)	9.2 ± 0.1	1.4 ± 0.02		
			MBM (minimal, 0.5 mM NH ₄ Cl)	165.0 ± 1.7	25.8 ± 0.3		
LZD040	Pelagibaca bermudensis	ME3 NBW T0	MB	69.1 ± 0.1	10.8 ± 0.02	DsyB	degenerate PCR
			MBM (minimal, 10 mM NH ₄ Cl)	5.5 ± 0.5	0.9 ± 0.08		
			MBM (minimal, 1	9.7 ± 0.1	1.5 ± 0.01		

			mM NH ₄ Cl)				
			MBM (minimal, 0.5	120.3 ± 3.2	18.8 ± 0.5		
			mM NH ₄ Cl)				
LZD042	Pelagibaca	ME3 NBW	MB	72.0 ± 1.0	11.3 ± 0.2	DsyB	degenerate PCR
	bermudensis	Τ0					
			MBM (minimal, 10	10.0 ± 0.5	1.6 ± 0.08		
			mM NH ₄ Cl)				
			MBM (minimal, 1	19.9 ± 2.1	3.1 ± 0.3		
			mM NH ₄ Cl)				
			MBM (minimal, 0.5	218.2 ± 5.5	34.1 ± 0.9		
			mM NH ₄ Cl)				
LZD043	Pelagibaca	ME3 NBW	MB	53.7 ± 1.7	8.4 ± 0.3	DsyB	degenerate PCR
	bermudensis	Τ0					
			MBM (minimal, 10	N.D.	N.D.		
			mM NH ₄ Cl)				
			MBM (minimal, 1	22.3 ± 3.9	3.5 ± 0.6		
			mM NH ₄ Cl)				
			MBM (minimal, 0.5	125.1 ± 2.1	19.6 ± 0.3		
			mM NH ₄ Cl)				
LZD044	Pelagibaca	ME3 NBW	MB	76.4 ± 0.1	12.0 ± 0.02	DsyB	degenerate PCR
	bermudensis	Τ0					
			MBM (minimal, 10	4.4 ± 0.4	0.7 ± 0.05		
			mM NH ₄ Cl)				
			MBM (minimal, 1	10.4 ± 0.3	1.6 ± 0.05		
			mM NH ₄ Cl)				
			MBM (minimal, 0.5	163.7 ± 3.4	25.6 ± 0.5		
			mM NH ₄ Cl)				

LZD059	Marinobacter	ME3 NBW	MB	1.7 ± 0.1	0.3 ± 0.02	N.D.	degenerate PCR
	algicola	Т0					
			MBM (minimal, 10	N.D.	N.G.		
			mM NH ₄ Cl)				
			MBM (minimal, 1	N.D.	N.G.		
			mM NH ₄ Cl)				
			MBM (minimal, 0.5	N.D.	N.G.		
			mM NH ₄ Cl)				
LZD060	Marinobacter	ME3 NBW	MB	2.0 ± 0.5	0.3 ± 0.07	N.D.	degenerate PCR
	salsuginis	Т0					
			MBM (minimal, 10	N.D.	N.G.		
			mM NH ₄ Cl)				
			MBM (minimal, 1	N.D.	N.G.		
			mM NH ₄ Cl)				
			MBM (minimal, 0.5	N.D.	N.G.		
			mM NH ₄ Cl)				

The values for DMSP production and estimated intracellular DMSP concentration are the averages of three biological replicates with the s.d. being shown.

\$"SW', 'NBW' and "OSS" present surface seawater, near bottom seawater and oxic surface sediment, respectively; T0 and T1 present natural and DMSP production process enriching samples, respectively.

*No added methylated sulfur compounds unless stated otherwise; 2 mM succinate + 2 mM glucose + 2 mM sucrose + 2 mM pyruvate + 2 mM glycerol were used as carbon source mixture for MBM media.

†N.G., no growth.

‡N.D., not detected.

MAGs	Sample	Taxonnamy	Completeness	Contamination	DMSP
					biosynthesis
					gene
MAG1	ME3 SW T0	d_Bacteria.p_Proteobacteria.c_Alphaproteobacteria.o_Rhodobacter	99.7	0.55	dsyB
		ales.f_Rhodobacteraceae			
MAG2	P03 NBW T1	d_Bacteria.p_Proteobacteria.c_Alphaproteobacteria.o_Rhodospirill	100	0	mmtN
		ales.f_Rhodospirillaceae			
MAG3	P03 OSS T1	d_Bacteria.p_Proteobacteria.c_Alphaproteobacteria	99.29	0.85	dsyB
MAG4	P03 SW T1	d_Bacteria.p_Proteobacteria.c_Alphaproteobacteria	90.1	2.36	dsyB
MAG5	P03 SW T1C	d_Bacteria.p_Proteobacteria.c_Alphaproteobacteria	96.55	4.34	dsyB
MAG6	P03 SW T1C	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Oceanospir	08 71	0.43	
	105.5 W 11C	illales.fHalomonadaceae	90.71	0.45	
MAG7	P03 SW T1C	d_Bacteria.p_Bacteroidetes.c_Cytophagia.o_Cytophagales	99.26	0.63	
MAG8	P03 SW T1C	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Oceanospir	96 1	1.08	
	105.5 ₩ 110	illales.fHalomonadaceae	20.1	1.00	
MAG9	P03 SW T1C	d_Bacteria.p_Planctomycetes.c_Planctomycetacia.o_Planctomyceta	96 55	4 34	
	105.5 ₩ 110	les.f_Planctomycetaceae	70.55	т.5т	
MAG10	P03 SW T1C	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Alteromon	87 55	1.67	
	105.5 ₩ 110	adales.f_Alteromonadaceae.g_Alteromonas.s_macleodii	07.55	1.07	
MAG11	P03 SW T1C	d_Bacteria.p_Bacteroidetes	100	0	
MAG12	P03 SW T1C	d_Bacteria.p_Proteobacteria.c_Alphaproteobacteria.o_Rhodospirill	94 98	1 49	
	105.5 ₩ 110	ales.f_Rhodospirillaceae	74.76	1.49	
MAG13	P03 SW T1	$d_Bacteria.p_Proteobacteria.c_Alphaproteobacteria.o_Rhodobacter$	99.6	1 51	
	105.5 11	ales.fRhodobacteraceae	<i>))</i> .0	1.51	
MAG14	P03 SW T1	$d_Bacteria.p_Proteobacteria.c_Alphaproteobacteria.o_Rhodobacter$	99.68	13	
	103 3 1 1	ales.fHyphomonadaceae	22.00	1.3	

 Table S8. MAGs recovered from the metagenomic data.

MAG15	P03 SW T1	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Oceanospir	94 7	1.03
	105.5 11	illales.fHalomonadaceae)-1.7	1.05
MAG16	P03 SW T1	d_Bacteria.p_Proteobacteria.c_Alphaproteobacteria.o_Rhodospirill	97 64	0
	105.500 11	ales.fRhodospirillaceae	57.01	0
MAG17	P03 SW T0	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria	84.88	1.51
MAG18	P03 SW T0	d_Bacteria.p_Verrucomicrobia.c_Verrucomicrobiae.o_Verrucomicr	95 89	3 63
	105.5 10	obiales.fVerrucomicrobiaceae	/5.0/	5.05
MAG19	P03 SW T0	d_Bacteria.p_Verrucomicrobia.c_Verrucomicrobiae.o_Verrucomicr	96.6	0.68
	105.500 10	obiales.fVerrucomicrobiaceae	90.0	0.00
MAG20	P03 SW T0	d_Bacteria.p_Proteobacteria.c_Alphaproteobacteria	89.14	2.23
MAG21	P03 OSS T1C	d_Bacteria.p_Bacteroidetes	98.68	0.85
MAG22	P03 OSS T1C	d_Bacteria.p_Proteobacteria.c_Alphaproteobacteria.o_Rhodobacter	99 38	1 04
	105 055 110	ales.fHyphomonadaceae	<i>уу</i> .30	1.04
MAG23	MAG23 P03 OSS T1C	d_Bacteria.p_Proteobacteria.c_Alphaproteobacteria.o_Rhodobacter	89.26	1 73
	105 000 110	ales.fHyphomonadaceae	09.20	1.75
MAG24	P03 OSS T1C	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Oceanospir	97 39	1 52
	105 000 110	illales	51105	1.02
MAG25	P03 OSS T1C	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Vibrionales	95.27	0.87
	100 000 110	.fVibrionaceae.gVibrio	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
MAG26	P03 OSS T1C	d_Bacteria.p_Bacteroidetes.c_Flavobacteria.o_Flavobacteriales.f_	98.42	0.25
	100 000 110	Flavobacteriaceae	,	0.20
MAG27	P03 OSS T1C	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Aeromona	90.09	0.54
		dales		
MAG28	P03 OSS T1	d_Bacteria.p_Bacteroidetes	90.44	1.64
MAG29	P03 OSS T1	d_Bacteria.p_Bacteroidetes.c_Flavobacteria.o_Flavobacteriales.f_	93.15	3.12
		Flavobacteriaceae		
MAG30	P03 OSS T1	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Alteromon	99.84	0.24

		adales.f_Alteromonadaceae.g_Alteromonas.s_macleodii		
MAG31	P03 OSS T1	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria	99.9	1.4
MAG32	D02 OSS T1	d_Bacteria.p_Bacteroidetes.c_Flavobacteria.o_Flavobacteriales.f_	07.2	5 22
105 055 11	Flavobacteriaceae	97.5	5.22	
MAG33	P03 OSS T1	d_Bacteria.p_Bacteroidetes	98.51	0.99
MAG34	D02 OSS T1	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Alteromon	09 65	0.20
	F05 055 11	adales.fIdiomarinaceae.gIdiomarina	98.03	0.39
MAG35	D02 OSS T1	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Oceanospir	06 19	4.74
	103 033 11	illales	90.18	4.74
MAG36	P03 OSS T1	d_Bacteria.p_Bacteroidetes	98.99	0.52
MAG37	D02 OSS T1	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Oceanospir	00.20	0.85
P03 088 11		illales.fHalomonadaceae	99.29	0.85
MAG38	D02 OSS T1	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Alteromon	05 40	0.69
P03 OSS 11	103 033 11	adales.f_Alteromonadaceae.g_Marinobacter	95.49	0.88
MAG39	P03 OSS T1	d_Bacteria.p_Proteobacteria.c_Alphaproteobacteria	93.29	0.7
MAG40	D02 OSS T1	d_Bacteria.p_Proteobacteria.c_Alphaproteobacteria.o_Rhodobacter	00.54	0.82
	103 033 11	ales.fRhodobacteraceae	99.34	0.85
MAG41	D02 OSS T1	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Vibrionales	07 79	1.12
	103 033 11	.fVibrionaceae.gVibrio	91.18	1.12
MAG42	DO2 NDW T1C	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Oceanospir	00.14	0.21
	PUS NBW TIC	illales	99.14	0.21
MAG43	DO2 NDW T1C	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Oceanospir	00.14	0.64
	PUS NBW TIC	illales	99.14	0.04
MAG44	DO2 NDW T1C	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Oceanospir	08.27	1.51
	PUS IND W TIC	illales.fHalomonadaceae	98.37 1.51	
MAG45	DO2 NDW T1C	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Alteromon	00 55	1.52
	PUS NBW IIC	adales.f_Alteromonadaceae.g_Alteromonas.s_macleodii	99.33	1.35

MAG46	P03 NBW T1C	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Oceanospir	90.04	1 36	
	1051000110	illales.fHalomonadaceae	20.04	1.50	1.50
MAG47	P11 NBW TO	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria.o_Oceanospir	94 85	3.1	
		illales.fHalomonadaceae	74.05	5.1	
MAG48	P11 NBW T0	d_Bacteria.p_Proteobacteria.c_Gammaproteobacteria	98.07	1.27	
MAG49	P11 NBW T0	d_Bacteria.p_Actinobacteria.c_Actinobacteria	97.09	0	
MAG50	ME3 SW T0	d_Bacteria.p_Actinobacteria.c_Actinobacteria	91.25	3.79	

Sample	Clean reads	Contig	Assembly	N50 (bp)	N75(bp)	CDS
		Number	Length (bp)			number
P11SWT0	18,474,140	94,043	68,751,933	699	576	899,663
P11NBWT0	17,723,312	28,681	21,594,513	723	582	279,816
ME3SWT0	18,962,344	53,042	40,923,951	747	588	560,755
ME3NBWT0	12,614,636	57,887	43,451,151	717	579	670,752
P03SWT0	14,570,444	39,499	49,367,974	1,359	699	604,531
P03NBWT0	20,865,496	947	673,425	696	582	31,750
P03OSST0	8,960,848	3,320	2,422,894	661	561	385,897
P03SWT1	20,746,884	16,633	41,182,818	32,366	1,442	105,705
P03NBWT1	21,760,928	13,566	39,374,403	12,644	1,916	82,333
P03OSST1	21,305,296	73,162	143,688,576	3,604	1,128	393,315
P03SWT1C	22,489,728	29,829	77,961,891	13,605	1,613	171,540
P03NBWT1C	22,230,216	6,494	15,074,973	90,873	1,189	50,053
P03OSST1C	22,015,280	31,582	80,915,269	7,185	1,690	186,178

Table S9. Basic information of metagenomic data.

Basal Media* (pH 7.5)	Tris	34.61 g
	K ₂ HPO ₄	0.17 g
	H_2O	1000 ml
1 M NH ₄ Cl stock solution	NH ₄ Cl	5.35 g
	H_2O	100 ml
FeEDTA stock solution*	FeEDTA	0.05 g
	H_2O	100 ml
0.5 M L-methionine (L-Met) stock solution [†]	L-Met	7.46 g
	H_2O	100 ml
Carbon source stock solution ⁺	Disodium succinate hexahydrate	54 g
	Glucose	36.3 g
	Sucrose	68.4 g
	Sodium pyruvate	22 g
	Glycerol	14.6 g
	H_2O	985.4 ml
Normal MBM (pH 7.0)	Sea Salts (Sigma-Aldrich, UK)	35 g
	Basal Media	250 ml
	FeEDTA stock	50 ml
	NH ₄ Cl stock	10 ml
	Vitamin supplement stock†§	10 ml
	Carbon source stock solution	10 ml
	H_2O	670 ml
For modified MBM (pH 7.0)	Sea Salts (Sigma-Aldrich, UK)	50 g
	Basal Media	250 ml
	FeEDTA stock	50 ml
	NH ₄ Cl stock	1 ml
	L-Met stock	1 ml
	Vitamin supplement stock†§	10 ml
	Carbon source stock solution	10 ml
	H_2O	678 ml

Table S10. Composition of normal or modified MBM medium

*Autoclaving to sterilize

†Filtering to sterilize

§Balch et al., 1979

	1 1 2	8	5
Protein	Source	NCBI Accession Number	Reference
DsyB	Labrenzia aggregata IAM 12614	EAV42226	Curson et al., 2017
	Pseudooceanicola batsensis HTCC2597	EAQ04968	Curson <i>et al.</i> , 2017
	Pelagibaca bermudensis HTCC2601	EAU45958	Curson <i>et al.</i> , 2017
	Amorphus coralli DSM 19760	WP_018697905	Curson <i>et al.</i> , 2017
MmtN	Thalassospira profundimaris PB8B	OAZ15224	Williams et al., 2019
	Novosphingobium sp. MBES04	GAM03459	Williams et al., 2019
	Roseovarius indicus B108	KRS18724	Williams et al., 2019
	Nocardiopsis chromatogenes YIM 90109	WP_017624909	Williams et al., 2019
	Streptomyces mobaraensis DSM 40847	EME99407	Williams et al., 2019
DSYB	Prymnesium parvum CCAP946/6	N.A.*	Curson et al., 2018
	Chrysochromulina tobin CCMP291	KOO32714	Curson <i>et al.</i> , 2018
	Lingulodinium polyedrum CCMP1936	N.A.	Curson <i>et al.</i> , 2018
	Alexandrium tamarense ATSP1-B	N.A.	Curson <i>et al.</i> , 2018
	Acropora cervicornis	N.A.	Curson <i>et al.</i> , 2018
	Fragilariopsis cylindrus CCMP1102	OEU17621	Curson <i>et al.</i> , 2018
	Symbiodinium microadriaticum CCMP2467	OLQ07620	Curson <i>et al.</i> , 2018
ТрММТ	Thalassiosira pseudonana CCMP1335	Tp23128	Kageyama et al., 2018
DmdA	Ruegeria pomeroyi DSS-3	AAV95190	Howard et al., 2006
	Pelagibacter ubique HTCC1062	WP_011281570	Howard <i>et al.</i> , 2006
	Dinoroseobacter shibae DFL 12	WP_012178987	Howard et al., 2008
	marine gammaproteobacterium HTCC2080	WP_007233625	Howard <i>et al.</i> , 2008
	Candidatus Pelagibacter sp. HTCC7211	WP_008546106	Howard et al., 2011
	Candidatus Puniceispirillum marinum IMCC1322	WP_013044947	Howard <i>et al.</i> , 2011
DddD	Marinomonas sp. MWYL1	ABR72937	Todd et al., 2007

Table S11. Reference protein sequences of the functionally ratified DMSP degradation and biosynthesis enzymes

	Oceanimonas doudoroffii	AEQ39135	Curson et al., 2012	
	Psychrobacter sp. J466	ACY02894	Curson et al., 2010	
	Halomonas sp. HTNK1	ACV84065	Todd et al., 2010	
	Sinorhizobium fredii NGR234	AAQ87407	Todd et al., 2007	
	Burkholderia ambifaria AMMD	WP_011659284	Todd et al., 2007	
	Pseudomonas sp. J465	ACY01992	Curson et al., 2010	
	Sagittula stellata E-37	EBA08656	Curson et al., 2011a	
DddL	Sulfitobacter sp. EE-36	ADK55772	Curson et al., 2008	
	Rhodobacter sphaeroides 2.4.1	YP_351475	Curson et al., 2008	
	Labrenzia aggregata LZB033	KP639184	Curson et al., 2017	
	Ahrensia marina LZD062	KP639183	Curson et al., 2017	
DddP	Roseovarius nubinhibens ISM	EAP77700	Todd et al., 2009	
	Ruegeria pomeroyi DSS-3	WP_044029245	Todd et al., 2011	
	Phaeobacter inhibens DSM 17395	AFO91571	Burkhardt et al., 2017	
	Oceanimonas doudoroffii DSM 7028	AEQ39091	Curson et al., 2012	
	Oceanimonas doudoroffii DSM 7028	AEQ39103	Curson et al., 2012	
	Aspergillus oryzae RIB40	BAE62778	Todd et al., 2009	
	Fusarium graminearum PH-1	XP_389272	Todd <i>et al.</i> , 2009	
	Candidatus Puniceispirillum marinum	WP_013046297	Choi et al., 2015	
	Ruegeria lacuscaerulensis ITI-1157	WP_005982191	Wang et al., 2015	
DddQ	Ruegeria pomeroyi DSS-3	WP_011047333	Todd <i>et al.</i> , 2011	
	Roseovarius nubinhibens ISM	EAP76002	Todd <i>et al.</i> , 2011	
	Roseovarius nubinhibens ISM	EAP76001	Todd <i>et al.</i> , 2011	
	Ruegeria lacuscaerulensis ITI-1157	WP_005978225	Li et al., 2014	
	GOS databases	ECW91654	Todd <i>et al.</i> , 2011	
	GOS databases	EBP74803	Todd <i>et al.</i> , 2011	

	GOS databases	ECX82089	Todd <i>et al.</i> , 2011
DddW	Ruegeria pomeroyi DSS-3	AAV93771	Todd et al., 2012
DddY	Alcaligenes faecalis M3A	ADT64689	Souza et al., 1995; Curson et al., 2011a; Lei et al., 2018
	Shewanella putrefaciens CN-32	ABP77243	Curson et al., 2011b; Lei et al., 2018
	Desulfovibrio acrylicus	SHJ73420	Van Der Maarel et al., 1996; Lei et al., 2018
	Ferrimonas kyonanensis DSM 18153	WP_028114584	Lei et al., 2018
	Acinetobacter bereziniae	ENV21217	Li et al., 2017
DddK	Candidatus Pelagibacter ubique HTCC1062	AAZ21215	Sun et al., 2016
	Alphaproteobacterium HIMB5	AFS47241	Sun <i>et al.</i> , 2016
	Candidatus Pelagibacter ubique HTCC9022	WP_028037226	Sun <i>et al.</i> , 2016
Alma1	Emiliania huxleyi CCMP1516	XP_005784450	Alcolombri et al., 2015
	Emiliania huxleyi CCMP1516	XP_005763983	Alcolombri et al., 2015
	Symbiodinium sp. clade D	P0DN22	Alcolombri et al., 2015

*N.A., not available.

Table S12.	Oligonucleotide	primers	used in	this s	studv.

Primer name	Sequence (5' to 3')	Use	Reference
27F	AGAGTTTGATCCTGGCTCAG	Amplification of	DeLong, 1992;
1492R	GGTTACCTTGTTACGACTT	cultivated strain's 16S rRNA gene	Lane et al., 1985
515F	GTGCCAGCMGCCGCGG	Preparing partial 16S	Caporaso et al.,
806R	GGACTACHVGGGTWTCTAAT	rRNA genes amplicon for pyrosequencing	2012
Eub338F	ACTCCTACGGGAGGCAGCAG	qPCR of 16S rRNA gene	Yin et al., 2013
Eub518R	ATTACCGCGGCTGCTGG		
dsyBF	CATGGGSTCSAAGGCSCTKTT	Degenerate primers for	Williams et al.,
dsyBR	GCAGRTARTCGCCGAAATCGTA	<i>dsyB</i> detection in DMSP producing bacterial isolates and qPCR of <i>dsyB</i>	2019
mmtNF	CCGAGGTGGTCATGAAYTTYGG	Degenerate primers for	Williams <i>et al.</i> ,
mmtNR	CCGAGGTGGTCATGAAYTTYGG	<i>mmtN</i> detection in DMSP producing bacterial isolates and qPCR and RT- qPCR of <i>mmtN</i>	2019

Fig. S1 Alpha- and beta diversity analyses from 16S rRNA amplicon sequencing data. All samples were rarefied to an even depth of 5,861 sequences per sample. Data shown are the averages of three biological samples. A, Rarefaction curves depicting the mean number of OTUs in each group of samples as a function of the number of sequences. B, Box plots illustrating Shannon Index diversity in each group. C, PCoA plot calculated using Bray-Curtis dissimilarity matrix. ME3, P11, and P03 refer to the different sample sites. SW: sea water; NBW: near sea water; OSS: oxic surface sediment; T0: natural samples; T1: enriched samples in the incubation experiment; T1C: control in the incubation experiment.

Fig. S2 Heatmap depicting the 50 most abundant genera from the 16S rRNA gene amplicon sequencing data from natural ECS samples (T0), the enriched (T1) and control incubation experiments after 14 days. *, p < 0.05 in Student's *t*-test comparing to the TIC samples.

Fig. S3 Relative abundance for each significant taxon in the LEfSe analysis of T1 & T1C samples. Error bars represent standard deviation from the mean value.

Fig. S4 Composition of eukaryotic plastid 16S rRNA genes in P03 SW and NBW samples. Total numbers of eukaryotic plastid 16S rRNA sequences identified in P03 SW and NBW were 339 ± 302 and 383 ± 230 .

Fig. S5 Canonical correspondence analysis (CCA) on bacterial communities at family level in samples of incubation experiments.

Fig. S6 Amino acid tree of representative DsyB and MmtN OTU sequences from clone libraries. Stars represent the source of different DsyB and MmtN OTUs. Non-functional DsyB and MmtN sequences were indicated in bold. Branch lengths are measured in the number of substitutions per site, as indicated on the scale bar.

Reference

- Alcolombri, U., Ben-Dor, S., Feldmesser, E., Levin, Y., Tawfik, D. S., and Vardi, A. (2015). Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle. *Science*. doi:10.1126/science.aab1586.
- Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R., and Wolfe, R. S. (1979). Methanogens: reevaluation of a unique biological group. *Microbiol. Rev.*
- Burkhardt, I., Lauterbach, L., Brock, N. L., and Dickschat, J. S. (2017). Chemical differentiation of three DMSP lyases from the marine: *Roseobacter* group. *Org. Biomol. Chem.* doi:10.1039/c7ob00913e.
- Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., et al. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. *ISME J.* doi:10.1038/ismej.2012.8.
- Choi, D. H., Park, K. T., An, S. M., Lee, K., Cho, J. C., Lee, J. H., et al. (2015). Pyrosequencing revealed sar116 clade as dominant dddp-containing bacteria in oligotrophic nw pacific ocean. *PLoS One.* doi:10.1371/journal.pone.0116271.
- Curson, A. R. J., Fowler, E. K., Dickens, S., Johnston, A. W. B., and Todd, J. D. (2012). Multiple DMSP lyases in the γ-proteobacterium *Oceanimonas doudoroffii. Biogeochemistry*. doi:10.1007/s10533-011-9663-2.
- Curson, A. R. J., Liu, J., Bermejo Martínez, A., Green, R. T., Chan, Y., Carrión, O., et al. (2017). Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. *Nat. Microbiol.* 2, 17009. doi:10.1038/nmicrobiol.2017.9.
- Curson, A. R. J., Rogers, R., Todd, J. D., Brearley, C. A., and Johnston, A. W. B. (2008). Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and *Rhodobacter sphaeroides*. *Environ*. *Microbiol*. doi:10.1111/j.1462-2920.2007.01499.x.
- Curson, A. R. J., Sullivan, M. J., Todd, J. D., and Johnston, A. W. B. (2011a). DddY, a periplasmic dimethylsulfoniopropionate lyase found in taxonomically diverse species of *Proteobacteria*. *ISME J.* doi:10.1038/ismej.2010.203.
- Curson, A. R. J., Todd, J. D., Sullivan, M. J., and Johnston, A. W. B. (2011b). Catabolism of dimethylsulphoniopropionate: Microorganisms, enzymes and genes. *Nat. Rev. Microbiol.* 9, 849– 859. doi:10.1038/nrmicro2653.
- Curson, A., Williams, B., Pinchbeck, B., Sims, L., Bermejo Martínez, A., Rivera, P., et al. (2018). DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. *Nat. Microbiol.* doi:10.1038/s41564-018-0119-5.
- De Souza, M. P., and Yoch, D. C. (1995). Comparative physiology of dimethyl sulfide production by dimethyl sulfoniopropionate lyase in *Pseudomonas doudoroffii* and *Alcaligenes* sp. strain M3A. *Appl. Environ. Microbiol.*
- DeLong, E. F. (1992). Archaea in coastal marine environments. Proc. Natl. Acad. Sci. 89, 5685–5689. doi:10.1073/pnas.89.12.5685.
- Howard, E. C., Henriksen, J. R., Buchan, A., Reisch, C. R., Bürgmann, H., Welsh, R., et al. (2006). Bacterial taxa that limit sulfur flux from the ocean. *Science (80-.).* doi:10.1126/science.1130657.
- Howard, E. C., Sun, S., Biers, E. J., and Moran, M. A. (2008). Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. *Environ. Microbiol.* doi:10.1111/j.1462-2920.2008.01665.x.

- Howard, E. C., Sun, S., Reisch, C. R., Del Valle, D. A., Bürgmann, H., Kiene, R. P., et al. (2011). Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom. *Appl. Environ. Microbiol.* doi:10.1128/AEM.01457-10.
- Kageyama, H., Tanaka, Y., Shibata, A., Waditee-Sirisattha, R., and Takabe, T. (2018). Dimethylsulfoniopropionate biosynthesis in a diatom *Thalassiosira pseudonana*: Identification of a gene encoding MTHB-methyltransferase. *Arch. Biochem. Biophys.* doi:10.1016/j.abb.2018.03.019.
- Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., and Pace, N. R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. *Proc. Natl. Acad. Sci.* U. S. A. 82, 6955–9. doi:10.1073/PNAS.82.20.6955.
- Lei, L., Cherukuri, K. P., Alcolombri, U., Meltzer, D., and Tawfik, D. S. (2018). The Dimethylsulfoniopropionate (DMSP) lyase and lyase-like cupin family consists of bona fide DMSP lyases as well as other enzymes with unknown function. *Biochemistry*. doi:10.1021/acs.biochem.8b00097.
- Li, C. Y., Chen, X. L., Xie, B. Bin, Su, H. N., Qin, Q. L., and Zhang, Y. Z. (2014). Reply to Tawfik et al.: DddQ is a dimethylsulfoniopropionate lyase involved in dimethylsulfoniopropionate catabolism in marine bacterial cells. *Proc. Natl. Acad. Sci. U. S. A.* doi:10.1073/pnas.1403460111.
- Li, C. Y., Zhang, D., Chen, X. L., Wang, P., Shi, W. L., Li, P. Y., et al. (2017). Mechanistic insights into dimethylsulfoniopropionate lyase DddY, a new member of the cupin superfamily. J. Mol. Biol. doi:10.1016/j.jmb.2017.10.022.
- Sun, J., Todd, J. D., Thrash, J. C., Qian, Y., Qian, M. C., Temperton, B., et al. (2016). The abundant marine bacterium *Pelagibacter* simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. *Nat. Microbiol.* doi:10.1038/nmicrobiol.2016.65.
- Todd, J. D., Curson, A. R. J., Dupont, C. L., Nicholson, P., and Johnston, A. W. B. (2009). The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. *Environ. Microbiol.* doi:10.1111/j.1462-2920.2009.01864.x.
- Todd, J. D., Curson, A. R. J., Kirkwood, M., Sullivan, M. J., Green, R. T., and Johnston, A. W. B. (2011). DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. *Environ. Microbiol.* doi:10.1111/j.1462-2920.2010.02348.x.
- Todd, J. D., Curson, A. R. J., Nikolaidou-Katsaraidou, N., Brearley, C. A., Watmough, N. J., Chan, Y., et al. (2010). Molecular dissection of bacterial acrylate catabolism - unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. *Environ. Microbiol.* doi:10.1111/j.1462-2920.2009.02071.x.
- Todd, J. D., Kirkwood, M., Newton-Payne, S., and Johnston, A. W. B. (2012). DddW, a third DMSP lyase in a model *Roseobacter* marine bacterium, Ruegeria pomeroyi DSS-3. *ISME J.* doi:10.1038/ismej.2011.79.
- Todd, J. D., Rogers, R., You, G. L., Wexler, M., Bond, P. L., Sun, L., et al. (2007). Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. *Science (80-.)*. doi:10.1126/science.1135370.
- Van Der Maarel, M. J. E. C., Van Bergeijk, S., Van Werkhoven, A. F., Laverman, A. M., Meijer, W. G., Stam, W. T., et al. (1996). Cleavage of dimethylsulfoniopropionate and reduction of acrylate

by Desulfovibrio acrylicus sp. nov. Arch. Microbiol. doi:10.1007/s002030050363.

- Wang, P., Chen, X. L., Li, C. Y., Gao, X., Zhu, D. Y., Xie, B. Bin, et al. (2015). Structural and molecular basis for the novel catalytic mechanism and evolution of DddP, an abundant peptidaselike bacterial Dimethylsulfoniopropionate lyase: A new enzyme from an old fold. *Mol. Microbiol.* doi:10.1111/mmi.13119.
- Yin, Q., Fu, B., Li, B., Shi, X., Inagaki, F., and Zhang, X. H. (2013). Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre. *PLoS One* 8. doi:10.1371/journal.pone.0055148.