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Abstract: The leishmaniases constitute a group of parasitic diseases caused by species of the proto-
zoan genus Leishmania. In humans it can present different clinical manifestations and are usually
classified as cutaneous, mucocutaneous, and visceral (VL). Although the full range of parasite—host
interactions remains unclear, recent advances are improving our comprehension of VL pathophysiol-
ogy. In this review we explore the differences in VL immunobiology between the liver and the spleen,
leading to contrasting infection outcomes in the two organs, specifically clearance of the parasite
in the liver and failure of the spleen to contain the infection. Based on parasite biology and the
mammalian immune response, we describe how hypoxia-inducible factor 1 (HIF1) and the PI3K/Akt
pathway function as major determinants of the observed immune failure. We also summarize existing
knowledge on pancytopenia in VL, as a direct effect of the parasite on bone marrow health and
regenerative capacity. Finally, we speculate on the possible effect that manipulation by the parasite of
the PI3K/Akt/HIF1 axis may have on the myelodysplastic (MDS) features observed in VL.

Keywords: leishmaniasis; visceral leishmaniasis; immunobiology; liver; spleen; microenvironment;
bone marrow dysplasia; pancytopenia

1. Introduction

The kinetoplastid Leishmania spp. is a unicellular parasitic microorganism that affects
the mammalian reticuloendothelial system (RES) [1]. The genus encompasses more than
20 species causing three clinical syndromes, cutaneous (CL), mucocutaneous (MCL), and
visceral (VL) leishmaniasis, which have several subdivisions each and exhibit overlap in
clinical manifestations and causative species, particularly in immunocompromised hosts [2].
The complex interplay of parasitic and host factors and the resulting clinical variability
render the understanding of pathophysiology and the treatment of leishmaniases most
challenging. Approximately 700,000 of VL and 1,200,000 cases of CL are estimated to
occur annually [3]. Of the infected patients, only a small fraction develop symptomatic
disease [3].

The visceral form (VL) is a debilitating, chronic wasting syndrome caused by members
of the L. donovani complex (L. donovani and L. infantum) in the Old World and L. chagasi
(syn. L. infantum) in the New World. Nearly all patients suffering from symptomatic
disease succumb to VL-related complications within two years if left untreated [1,3,4],
while the disease is universally fatal in immunocompromised hosts. The asymptomatic to
symptomatic ratio of infected individuals varies greatly among endemic countries (from
1:2.4 in Sudan to 50:1 in Spain) [5]. This wide variability most likely reflects the population’s
health status with socioeconomic factors and acquired immunodeficiencies, mostly HIV
infection, decreasing the ratio. An inherent variability of the immune response in different
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populations also exists [5]. The therapeutic options are limited to a few relatively toxic
classical drugs, with a profound paucity of newer agents. A cure is far from guaranteed
since Leishmania eradication requires an effective immune response, so the parasite persists
in the immunocompromised patients [2].

In subjects with asymptomatic VL and a Th1-polarized T helper immune response that
primes macrophages toward a leishmanicidal M1 phenotype, it efficiently clears the para-
sitic load [6,7]. Self-healing is associated with the regulated production of proinflammatory
cytokines, mostly INF-γ, IL-12 and TNF-α [8], highlighting the pivotal role of cell-mediated
response in effective immunity [9,10]. Despite continuing research, the immunobiology of
symptomatic disease is still poorly understood. While all Leishmania species are capable
of immunologic manipulation of their host, only visceralising ones possess the ability to
survive and disperse inside the mammalian host, infecting its internal organs [11,12]. These
species reach the spleen and initiate an immunologic cascade of overwhelming dendritic
cell activation, loss of stromal cells, complete splenic disorganization, and priming of
macrophages to a disease-amplifying phenotype [6,8,13–16]. In contrast, the liver is more
efficient in clearing the intruders [6]. Over 70% of the parasitic load is cleared from the
hepatic parenchyma by granuloma formation [6,8]. The biology of this marked distinction
between the two organs has not been clearly explained.

The bone marrow (BM) is another organ seriously affected by parasitic infestation [17],
with pancytopenia completing the VL defining triptych of splenomegaly and hypergam-
maglobulinemia [1]. Although reduction of platelets (PLTs) and red blood cells (RBCs) is
attributed to peripheral destruction and increased pooling, an in-depth investigation of the
pathophysiologic processes underlying pancytopenia has only recently begun [18–20]. The
natural course of VL is characterized by delayed correction of cytopenias and BM pheno-
typic changes, suggesting that Leishmania directly affects the BM in a manner resembling
acquired myelodysplastic syndromes (MDS) (Figure 1) [12,21–23].
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Figure 1. Schematic presentation of the liver (left) and spleen (right) immune response elicited 
by leishmanial infection. In the liver, the immune response orchestrated by the liver dendritic 
cells (DCs) is marked by their releasing interleukin 12 (IL12) that polarizes CD4+ T cells toward 
the Th1 phenotype. Those along with bystander CD8+ T cells release interferon-gamma (INFγ) 
that polarize the liver Kupffer cells (liver monocytes-Μφ) toward the M1 leishmanicidal phe-
notype. The whole immune response dominated by eventual tumor necrosis factor-alpha (TNF-
α) production from M1 Μφs is a granulomatous immune response that is adequately balanced 
from interleukin 10 (IL10) and transforming growth factor-beta (TGFβ) produced from by-
stander stellate cells. Contrarily, the splenic DCs react to leishmanial infection producing large 
amounts of TNF-α and B cell-activating factor (BAFF). TNF-α attracts myeloid-derived sup-
pressor cells (MDSCs) that secrete IL10 and TGFβ. Thereafter, the polarization of splenic Mφs 
toward regulatory M2 Mφ occurs, allowing parasitic survival. BAFF attracts plasma cells (PCs) 
that also secrete large amounts of IL10. Large amounts of TNF-α also cause downregulation of 
key stromal cell chemokines, CCL19/CCL21, that regulate homing of T cells and thus splenic 
architecture. Eventually, further downregulation of CCL19 ligand CCR7 on splenic DCs seals 
the complete splenic disorganization. 

2.2. Overview of the Ineffective Splenic Response 
The importance of granuloma formation, a response that stands at the intersection of 

innate and adaptive immunity, is evident in humans with active VL. Splenomegaly, lym-
phadenopathy, and varying degrees of hepatomegaly are the hallmarks of visceralisation 
in leishmaniasis [13,16] and confirm the failure of the host’s granulomatous responses to 
control the parasitic load and thus prevent the establishment of the infection. The stark 
contrast between the hepatic and the splenic response can be explained to some extent by 
the fact that activation of macrophages, the host cells of Leishmania, takes place within a 
different microenvironment [37]. Histologically, splenic failure progresses in four sequen-
tial stages, which overlap significantly [16]. Since these models have been established us-
ing a mixture of human, canine, and rodent splenic tissues, any extrapolation to humans 
should be attempted with care. 

The spleen can rapidly produce nonspecific, polyreactive antibodies, which effi-
ciently contain infectious agents until the antigen-specific immune reaction occurs in the 

Figure 1. Schematic presentation of the liver (left) and spleen (right) immune response elicited by leishmanial infection. In
the liver, the immune response orchestrated by the liver dendritic cells (DCs) is marked by their releasing interleukin 12 (IL12)
that polarizes CD4+ T cells toward the Th1 phenotype. Those along with bystander CD8+ T cells release interferon-gamma
(INFγ) that polarize the liver Kupffer cells (liver monocytes-Mϕ) toward the M1 leishmanicidal phenotype. The whole
immune response dominated by eventual tumor necrosis factor-alpha (TNF-α) production from M1 Mϕs is a granulomatous
immune response that is adequately balanced from interleukin 10 (IL10) and transforming growth factor-beta (TGFβ)
produced from bystander stellate cells. Contrarily, the splenic DCs react to leishmanial infection producing large amounts
of TNF-α and B cell-activating factor (BAFF). TNF-α attracts myeloid-derived suppressor cells (MDSCs) that secrete IL10
and TGFβ. Thereafter, the polarization of splenic Mϕs toward regulatory M2 Mϕ occurs, allowing parasitic survival. BAFF
attracts plasma cells (PCs) that also secrete large amounts of IL10. Large amounts of TNF-α also cause downregulation
of key stromal cell chemokines, CCL19/CCL21, that regulate homing of T cells and thus splenic architecture. Eventually,
further downregulation of CCL19 ligand CCR7 on splenic DCs seals the complete splenic disorganization.
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In this review, we outline the immunobiology of splenic failure and hepatic success in
dealing with the parasite, and we attempt to elucidate the effects of visceralising Leishmania
on the hematopoietic system based on the existing literature. The potential pathophysio-
logical mechanisms involved in the VL-associated pancytopenia are also discussed [21].
It should be borne in mind that almost all existing literature derives from non-human
mammal models, mostly murine [8,24]. Regarding the mechanisms discussed below, we
attempt to clearly specify whether the data derives from an animal, a human, or an in vitro
model, but in any case, extrapolation to the human host should be attempted with caution.

2. Immunobiology of Hepatic versus Splenic Leishmanial Responses
2.1. Overview of the Leishmanicidal Response in the Liver

During this initial phase, which corresponds to the second–third week post-infection
(p.i.) in VL murine models, most parasites are cleared from the liver parenchyma by the
hepatic immunologic response [6,16,25]. In other mammalian models, namely dogs and
macaques, the presence of infected reticuloendothelial liver cells (Kupffer cells) can be
observed as early as 2 days p.i. and can indefinitely expand to months or years [26]. Briefly,
with the help of both CD4+ Th1 and CD8+ cytotoxic cell responses, Kupffer cells (KCs)
that are either infected or gather toward the core of the granuloma from adjacent sinusoids
transform to the activated M1 phenotype and kill internalized parasites mainly through
nitric oxide synthase (iNOS/NOS2) [8]. KCs are at the core of the granuloma and form the
meshwork in which its maturation occurs. This reaction that, in most immunocompetent
VL in vivo models suffices to confer parasitic clearance and a degree of tissue-specific
memory, is a granulomatous response within the hepatic microenvironment, orchestrated
by the KC [26,27]. A subset of T cells that plays a vital role in the effectiveness of the newly
formed granuloma is the invariant natural killer T cells (iNKTs), which can secrete both
INF-γ (immunostimulatory and modulatory) and IL-4 (immunosuppressive cytokines),
depending on their cytokine input [28,29]. Physiologically, these cells react to glycolipid
antigens presented through the CD1d surface receptor [30]. Although it has been experi-
mentally shown in animals that iNKTs facilitate the effective liver granulomatous response,
some studies suggest the opposite [28,31]. This discordance could be explained by the
observation that excessive stimulation of iNKTs leads to anergy [28,32]. Therefore, the
variable response of iNKTs, which are essential for the initiation of the granulomatous re-
sponse, depending on the cytokine mixture they are exposed to in their microenvironment,
may partially account for the differential immune response observed in different organs of
the host.

Following KC and iNKT activation, the secretome of the developing granuloma
attracts CD4+ and CD8+ T cells that facilitate further granuloma maturation [26]. Further-
more, parasites that are released from dying KC are taken up by liver dendritic cells (DCs).
Upon contacting and internalizing the parasite, DCs maturate, reduce their phagocytic
activity, and acquire a professional antigen-presenting function, characterized by increased
MHC II expression and IL-12/ tumor necrosis factor-alpha (TNF-α) secretion [7,8,33].

Both T cell subtypes are indispensable for effective immune response and parasite
clearance. Under the influence of this cytokine mixture, bystander and attracted CD4+ T
helper cells polarize toward the Th1 phenotype and begin secreting [8]. Of the cytokines
produced by CD4+ Th cells, INF-γ activates the effector M1 macrophage phenotype that
produces large amounts of TNF-α in a self-stimulatory loop, that in this microenvironment
drives a granulomatous immune response [8,34]. Hepatic stellate cells regulate the immune
response through anti-inflammatory cytokines, mostly IL-10 and transforming growth
factor-beta (TGF-β), which are produced either in direct response to infection or to increased
TNF-α in the surrounding microenvironment [8,33,35] (Figure 1).

Several non-human mammalian models have proved the granuloma is so effective in
eradicating the parasites that there is a resolution of infection upon adequate granuloma
organization. This could also indicate that splenic dissemination in the presence of an
effective liver response occurs during the initial parasitemia, namely on the second day p.i.
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in mice [25,26,29]. Epithelioid granulomas in various stages of maturation have been found
in human liver and spleen samples from hosts with asymptomatic infections [36]. On the
contrary, at almost 24 weeks p.i. absence and/or poor organization of liver granulomas
translates to increased parasite burden and poor prognosis for the host [26]. An impressive
distinction in the hepatic vs. splenic response is almost uniformly observed in murine
models that constitute the bulk of experiments performed [26]. While the liver forms
granulomas that effectively eradicate the parasite from as early as the fourth day p.i., the
spleen is almost always overwhelmed by the infection [26].

2.2. Overview of the Ineffective Splenic Response

The importance of granuloma formation, a response that stands at the intersection of
innate and adaptive immunity, is evident in humans with active VL. Splenomegaly, lym-
phadenopathy, and varying degrees of hepatomegaly are the hallmarks of visceralisation
in leishmaniasis [13,16] and confirm the failure of the host’s granulomatous responses to
control the parasitic load and thus prevent the establishment of the infection. The stark
contrast between the hepatic and the splenic response can be explained to some extent by
the fact that activation of macrophages, the host cells of Leishmania, takes place within a dif-
ferent microenvironment [37]. Histologically, splenic failure progresses in four sequential
stages, which overlap significantly [16]. Since these models have been established using a
mixture of human, canine, and rodent splenic tissues, any extrapolation to humans should
be attempted with care.

The spleen can rapidly produce nonspecific, polyreactive antibodies, which efficiently
contain infectious agents until the antigen-specific immune reaction occurs in the germinal
center (GC). This essential survival trait, which is afforded by short-lived plasma cells
residing in its marginal zone (MZ), is hijacked by visceralising Leishmania spp., leading to
complete splenic anatomical and functional disorganization [8,38]. Initially, there is an ex-
pansion of the white pulp, in which there are increased numbers of activated macrophages
surrounding hyperplastic lymphoid follicles with increased marginal zones (MZ) [15,16].
Upon initial contact with the parasite, marginal zone macrophages (MZM) present para-
sitic promastigote antigens [8,33]. This would normally lead to TNF-α production from
macrophages and an effective killing response [7,8]. However, contrary to what occurs with
other microorganisms, internalization of visceralising Leishmania through TLR-mediated
PAMP (pathogen associated molecular pattern) recognition fails to elicit the appropriate
TNF-α production in macrophages [8,39–41], possibly due to an effect Leishmania promastig-
otes have on the hypoxia-inducible factor 1 (HIF1) regulatory system (further discussed
later) [42]. Research has shown that upon stabilization of HIF1 in naive macrophages, M2
regulatory polarization occurs [43,44]. The role of HIF1 in VL is summarized in Figure 2
and also further discussed in the BM section.

As expected, marginal zone B cells begin producing large amounts of nonspecific,
polyreactive IgM antibodies (Ab) [8,14]. Opsonization of the parasite with these Ab
facilitates its phagocytosis by splenic DCs, the resident professional antigen-presenting
cells (APCs) [45], but due to poor Ab specificity, DCs fail to mature and migrate to regional
lymph nodes and/or initiate the GC reaction [33,46]. At the same time, both splenic DCs
that have phagocytosed opsonized parasites and MZ B cells secrete IL-10, a cytokine
that directs monocyte maturation toward a regulatory M2 phenotype, further dampening
macrophage response [8,47].

Splenic DCs are significantly more sensitive to antigenic stimulation than liver DCs,
and after maturation, they produce increased amounts of proinflammatory cytokines,
mainly TNF-α and B cell-activating factor (BAFF) [8,48].
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Figure 2. Schematic presentation of the suggested role of hypoxia-inducible factor 1 (HIF1) in visceral
leishmaniasis (VL). HIF1 aberrant stabilization either directly following promastigote infestation
in the reticuloendothelial host system (RES) cells or secondarily via continuous activation of the
PI3K/Akt axis on the amastigote plasma membrane is demonstrated. If the activation occurs in a
naive macrophage (Mϕ), then the Mϕwill acquire a regulatory M2 phenotype instead of an activated
M1, thus promoting parasite survival and disease. If HIF1 stabilization occurs in a hematopoietic
stem cell (HSC), myelodysplastic phenomena arise that largely contribute to the cytopenias observed
in VL.

The increased proinflammatory pressure attracts bone marrow-derived immature
myeloid cells that home in on the splenic microenvironment and, as splenic myeloid cells,
begin secreting large amounts of TNF-α as well [41,49,50]. Increased TNF-α leads to loss of
MZ stromal cells and reduces their expression of key homing receptors, CCL19/CCL21,
which are required for the migration of both T cells and DCs from the MZ toward the
PeriArteriolar Lymphoid Tissue (PALS), a process that is crucial for their effective differen-
tiation [8,51]. The concomitant hypersecretion of IL-10 by both DCs and M2 macrophages
further downregulates the CCL19 ligand and CCR7 expression on the DCs as a reflex
compensatory reaction to TNF-α [8,47].

The inflammatory state that is elicited, either by Leishmania or by other pathogens,
drives the release of immature myeloid lineage from the BM [49,52]. These cells, as we
explain later, are conditioned by the BM microenvironment and/or by their infection with
Leishmania to become myeloid-derived suppressor cells (MDSC) in the spleen [52,53]. They
induce a strong anti-inflammatory response, with increased amounts of IL-10 and TGF-β,
further dampening an effective immune response and perpetuating the infection [7,49,52–55].
DCs residing in the disorganized, inflammatory, and markedly hypoxic splenic environ-
ment show increased HIF1 stabilization, which hampers their ability to produce the proin-
flammatory cytokine IL-12 and diverts them further toward IL-10 secretion [56–59].

Without the stromal cell meshwork to support MZ and PALS integrity, further desta-
bilization of the lymphoid follicle occurs [16,51]. At this point, after the fourth week of
infection, the spleen presents a deregulated architecture, with dilated erythroid channels,
absence of definitive red-white pulp borders, and scattered small, ill-defined follicles with
diminished MZ [14,16]. The remaining DCs produce BAFF, leading to increased homing
and survival of mature IgG-producing long-lived plasma cells. These are drawn to the
spleen from the periphery and BM and secret large amounts of Ab, causing the polyclonal
hypergammaglobulinemia observed in VL [8,14,16,46]. Their relocation and expansion
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further damage splenic architecture, transforming it into a plasma cell survival niche [16].
The whole splenic immune response is summarized in Figure 1.

The disrupted microenvironment also has a pronounced effect on macrophage polar-
ization [15]. Cytokine profiling of splenic macrophages reveals increased production of
both pro- and anti-inflammatory cytokines. Notably, the increase in INF-γ observed both in
the spleen and the liver suggests that increased INF-γ levels are not sufficient to prime an
M1 effector phenotype, thus underlining the dominant role the microenvironment plays on
cellular conditioning [53]. In chronic VL, stimulation of splenic macrophages with IFN-γ in-
duces IL-10 production through STAT-3 activation, thus maintaining the disease-promoting
M2 phenotype [53]. STAT-3 activation could additionally occur through the PI3K-Akt-
mTOR pathway, which is also active in chronic VL. It has been shown that IL-10 can be
induced through the PI3K/Akt pathway in infected myeloid cells [38,60–62]. Furthermore,
as shown by Beattie L et al., the transcriptional profile of infected KCs differs significantly
from that of uninfected KCs, which can effectively kill the parasite. An important pathway
identified as being manipulated by the parasite was the retinoid X receptor alpha (RXRa)
network, whose functions include regulation of lipid metabolism [63]. This network is
known to indirectly activate the PI3K/Akt pathway through lipid modulation [64]. Thus,
activation of the PI3K-Akt pathway appears to have multiple triggers and shows potential
as a therapeutic target [65].

To conclude, regarding the immunopathology of VL, it should be borne in mind
that much remains unknown, especially in human subjects. Furthermore, reaction to the
parasite varies between individuals due to the inherent variability of immune responses.
More than 90% of infected subjects clear the parasite in a subclinical fashion through
granuloma formation, maturation, and resolution in both the liver and the spleen [26,41].
Although several cytokines can induce or inhibit this effective response, many of which are
mentioned here, the etiology of this heterogeneity remains elusive [66,67].

3. Pathophysiology of Pancytopenia in VL

Peripheral blood cytopenia with variable involvement of the three hematopoietic
lineages, the megakaryocytic, erythroid, and to a much lesser extent, the myeloid, is a
hallmark of chronic inflammation [68]. VL, a parasitic infection of both the BM and the
spleen, is commonly associated with pancytopenia [19] of unclear etiology [17,18,20].

3.1. Pathophysiology of Thrombocytopenia

Increased peripheral consumption with an inadequate BM response circumscribes
the pathophysiology of VL-associated thrombocytopenia [18]. Several studies have failed
to establish statistically significant differences in thrombopoietin (TPO) levels between
kala-azar patients with thrombocytopenia and controls, indicating a lack of stimulation of
the BM to produce platelets [69,70]. Histologically, defective TPO production is inferred
by the relative cytoplasmic immaturity of differentiating megakaryocytes [69]. Coating of
platelets with polyreactive antibodies that are produced by polyclonal B cell expansion and
blood pooling in the expanded spleen, where they are phagocytosed by macrophages and
dendritic cells, account for decreased peripheral PLT survival [18].

3.2. Hemichromes and the Effects of Increased Oxidative Stress on the Erythroid Lineage

Apart from Ab coating, splenic pooling, and failure to upregulate their production
through erythropoietin (EPO) increase, red cell life span in VL is further shortened by
a cell-disruptive mechanism involving hemichromes [19,20,71]. Hemichromes are dena-
tured hemoglobin chains that result from the oxidation of precipitating free a- and/or
b- hemoglobin (Hgb) chains [72,73]. The pathogenesis of the damage they cause has
been studied in thalassemias, where unbalanced Hgb subunit synthesis results in cluster-
ing, oxidation, and subsequent denaturation of an excess of free hemoglobin chains [72].
Hemichrome accumulation in polychromatophilic erythroblasts, the stage of maximal
hemoglobin production, causes ineffective erythropoiesis in thalassemia [72,74].
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Experiments in dogs have shown an accumulation of hemichromes in VL [75]. The in-
creased production of reactive oxygen species (ROS) creates a highly oxidative environment
that depletes the RBC-reducing potential, leading to the formation of hemichromes [75].
Studies in thalassemia have shown that hemichromes bind to RBC membrane protein band
3, the most abundant RBC integral protein and the major link between the membrane
and the cytoskeleton [76,77]. More specifically, they bind to band 3 and release heme iron
onto the RBC membrane, forming ROS that alter band 3 conformations, thus exposing
its Cys residues to phosphorylation by Syk kinases [77]. Consequently, phosphatases
and GSH (reduced glutathione) that naturally comprise the RBC redox armamentarium
spontaneously dephosphorylate the protein to its natural state and buffer the released ROS
accordingly [77]. Low-grade band 3 phosphorylation, by a small amount of hemichromes,
leads to conformational changes in the membrane with band 3 clustering and a release
of hemichrome-containing membrane microparticles that rescue the cell from membrane
damage and thus erythrophagocytosis [74,77]. Since RBC membrane integrity is the major
criterion for the recycling of damaged or aged RBC by the RES, band 3 acts as a major
regulator for RBC phagocytosis by communicating the intracellular redox conditions to the
membrane [74,76,77]. Under conditions of overwhelming stress, heavy hemichrome accu-
mulation leads to increased band 3 clustering and formation of membrane microdomains
that fix autologous circulating Ab and complement C3 fractions, causing increased RBC
destruction [74,77].

This model that has been described in thalassemia might also explain RBC destruction
in VL, which could be further exacerbated by the concurrent hypergammaglobulinemia. It
is also likely that, as in thalassemia, hemichrome accumulation in VL may contribute to
limiting the life span and differentiation potential of the maturing erythroid lineage.

3.3. Bone Marrow Suppression in Visceral Leishmaniasis

Morphologically, BM aspirates of chronically infected VL patients exhibit marked
expansion of the erythroid and myeloid-monocytic lineages, variable suppression of the
megakaryocytic lineage, and diffuse plasmacytic infiltration, consistent with the coincident
hypergammaglobulinemia [22]. The apparent contradiction between BM hyperplasia and
peripheral cytopenias can partially be attributed to the increased destruction of mature
blood cells in the periphery. There are also morphologic features indicative of differenti-
ation blockage and dyserythropoietic changes of the erythroid precursors [22]. All these
changes constitute ineffective erythropoiesis, which means the increased premature intra
BM death of differentiating precursors. Herein, we summarize the updated knowledge
regarding the pathophysiologic pathways leading to dysplastic changes in the BM of VL
patients. It should be noted, however, that all relevant data have been derived from experi-
mental infections in animals. Therefore, any extrapolation to humans should be attempted
with care.

Studies in infected mice have shown effector CD4 T cell accumulation and expansion
in a self-stimulatory paracrine loop via intrinsic TNF-α/IFN-γ production and signaling.
These cytokines induce loss of stromal cells, with a mechanism similar to that described
above for the spleen. Activation and mobilization of hematopoietic stem cells (HSCs) are
common in many chronic inflammatory states [23]. Furthermore, during VL, BM stromal
macrophages produce GM-CSF and TNF-α that lead to substantial expansion of CFU-GM
and to a lesser extent BFU-e/CFU-e in the BM [78]. Despite the expansion of erythroid
progenitors, erythropoiesis ceases at the erythroblast stage, followed by differentiation
failure and eventual apoptotic death [18]. Apart from heavy hemichrome accumulation,
cytokines in the BM microenvironment also significantly disrupt the function of erythrob-
lasts. This process is mediated primarily by INF-γ that silences erythroid differentiation
genes and through the upregulation on macrophages of FAS (apoptosis antigen 1), TRAIL
(TNF-related apoptosis-inducing ligand), and other apoptotic mediators [79]. The concur-
rent INF-γmediated upregulation of their ligands on the surface of erythroid precursors
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sensitizes them to the pre-apoptotic environment, contributing to their premature intra BM
death [79].

Likewise, the mobilization of immature erythroid cells from the BM to the spleen also
results in their increased destruction since the splenic environment is extremely hostile for
developing erythroblasts in chronic VL.

Regarding the myeloid lineage, the priming and mobilization of differentiating cells
by the proinflammatory BM microenvironment, their subsequent relocation in the dis-
turbed splenic parenchyma, and the emergency myelopoiesis are detrimental for parasitic
clearance [49,50,78]. Differentiated monocytes are primed by the BM toward a regulatory
M2 phenotype [49], which is further consolidated when combined with the effects of
HIF1 stabilization in the severely hypoxic VL spleen, as already described above. The
combination of the parasite’s proinflammatory effects on the BM and the disorganization
of the splenic parenchyma engage the host in a vicious circle of regulatory myeloid cell
production that not only is ineffective against the parasite but is used by Leishmania for
replication.

3.4. Bone Marrow Dysplasia in Visceral Leishmaniasis

Eventually, niche disruption and priming of HSCs with GM-CSF and TNF-α produced
by bystander BM stromal macrophages allow HSCs to become infected with Leishmania
amastigotes, which, as has been experimentally shown in vitro, disorganize their differenti-
ation commitment and success (Figure 3) [80].
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Figure 3. Bone marrow (BM) aspirate from a patient with L. infantum infection. Leishmania amastig-
otes are seen within the macrophages (white arrow). Additionally, the patient’s BM exhibits marked
dysplasia. Dyserythropoiesis, manifested by asynchronous nuclear-cytoplasm maturation of de-
veloping erythroblasts, some with vacuolated cytoplasm (black arrows). Dysgrulopoiesis is also
prominent with dysplastic huge agranular metamyelocytes (lower arrowhead) and promyelocytes
with abnormal nuclear/cytoplasmic ratio (upper arrowhead) (A.P. personal collection).
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The HIF1 pathway is manipulated by Leishmania in macrophages with a significant
impact on the course of the infection. HIF1 is a transcription factor crucial for cellular
metabolic adaptation under hypoxic conditions, particularly glucose availability and lipid
use. Normally, HIF1 stability is regulated by oxygen tension via its degradation by prolyl
hydroxylase 2 (PHD2), a pathway known as the canonical pathway [81]. PKB/Akt, a
serine-threonine kinase, directly increases HIF1 gene transcription independently of oxygen
concentration. It has been shown that promastigotes directly interfere with the canonical
oxygen-sensitive regulation of HIF1 stability by dampening the activity of PHD2, whereas
amastigotes can non-canonically (oxygen-independently) stabilize it through activation of
the PI3K/Akt axis in different cell types, including macrophages (Figure 3) [38,61].

Most available data on the bioenergetic profile of Leishmania spp. derive from their
similarities with other members of the kinetoplastid family, especially trypanosomes. Flag-
ellated forms such as the promastigote acquire energy primarily through glycolysis [82–84].
Compartmentalization of glycolysis inside a specialized organelle, the glycosome, protects
glucose from oxidation inside the mitochondrion and also the cell itself from overactive
glycolysis that would consume more ATP than can be produced by it [85–87]. In these
protozoa, the single mitochondrion plays an essential role in lipid synthesis and the produc-
tion from glutamate of trypanothione and glutathione (both essential for maintaining the
parasite’s redox balance in the mammalian host cells) [84,88–90]. Transition to the amastig-
ote stage is marked by a profound downregulation of almost all metabolic pathways to
compensate for the nutrient-depleted parasitophorus vacuole (PV) microenvironment [91].
In this metabolic state, the amastigotes protect glucose from degradation and shunt it
toward the pentose phosphate pathway for the generation of nucleotides to be used in
the division and redox regeneration [91]. In the amastigote, the mitochondrion synthe-
sizes glutamate and glutamine to increase redox potential, using fatty acids that undergo
beta-oxidation [91]. The source of these lipids remains unknown and could potentially
be the PV itself. After all, the PV membrane is formed by mutual lipid contribution from
the host cell and the amastigote [92–94]. Leishmania infestation also upregulates host cell
autophagy and, possibly, the fusion of the autophagosome with the PV leading to increased
lipid availability [95,96]. Autophagosomal membranes are mostly formed from the ER by
budding, while the PV membrane contains an abundance of ER and lysosomal membrane
proteins [97,98]. Subsequently, the sustained activation of the Pi3k/Akt pathway with
induction of autophagy and HIF1 stabilization maintain the conditions needed for parasite
survival [99].

Research has shown that the PV of several Leishmania spp. becomes the focus of
continuous Akt activation through a currently uncharacterized pathway [100]. Various
PI3K isoforms have been shown to favor Leishmania survival, but the exact source of
the specific phospholipids on the PV membrane that are modified by PI3K to form Akt
anchoring sites remains unidentified [100]. The assumptions that they may be synthesized
by the parasite itself or that they may derive from the Golgi apparatus or the plasma
membrane have been disproven [100].

HIF1 pathway manipulation in the macrophage favors parasite survival as it increases
available glucose, reduces immunologic reaction, and prolongs the life span of the infected
cell. Bearing in mind that effective HSC differentiation depends on HIF1 degradation
and failure to do so causes MDS changes in the bone marrow [101,102], it is plausible to
hypothesize that a HIF1-mediated mechanism might contribute to the myelodysplastic
phenomena observed in visceral leishmaniasis and should be studied. Another aspect of
the infection that merits further investigation is the possibility of histone acetylation in
HSCs that is known to occur in macrophages [103,104].

The effects of BM Leishmania parasitism are summarized in Figure 4.
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Figure 4. Schematic presentation of the effects of Leishmania infestation on bone marrow (BM). Stro-
mal macrophages (stromal Mϕs) infected with the parasite secrete large amounts of tumor necrosis
factor-alpha (TNF-α) that stimulate bystander CD4 + T cells to acquire an effector phenotype marked
by interferon-gamma (INFγ) release. INFγ further stimulates stromal cells to release TNF-α and
forms a self-stimulatory proinflammatory loop. The increased proinflammatory pressure upregulates
the proapoptotic molecules released from the BM microenvironment (FasL and TRAIL) along with
their receptors on developing erythroblasts (Fas and TRAILr). Furthermore, the proinflammatory
microenvironment causes the hematopoietic stem cells (HSCs) to differentiate into the myeloid lin-
eage. Both phenomena cause skewing of hematopoiesis toward myeloids at the expense of erythroid
lineage, largely contributing to VL anemia. Furthermore, infection of HSCs leads to Akt docking on
the parasitophorus vacuole membrane and thereafter phosphorylation and activation. Activation of
Akt further leads to non-canonical, namely oxygen-independent HIF1 stabilization inside the HSCs,
which translates to acquired myelodysplasia.

4. Conclusions

Clinicians usually encounter VL as an opportunistic infection in patients with cell-
mediated immunosuppression or, since the clinical presentation is not specific, in the
differential diagnosis of myeloproliferative diseases. Recent advances have enhanced our
comprehension of the role the liver, spleen, and bone marrow microenvironments play
in the shaping of host-parasite interactions and their defining effect on clinical expres-
sion and infection outcome. Thus, in this review, we opted for a presentation focusing
mainly on the pathophysiologic processes involved in splenic disorganization and bone
marrow dysfunction in the course of VL. Based on the parasite’s biology and the mam-
malian immune response, we describe how HIF1 and the PI3K/Akt pathway function as
major determinants of the observed immune failure. We further explain how microen-
vironmental changes in the spleen and the bone marrow play a crucial role in shaping
a disease-permissive space and have a detrimental effect on bone marrow health and
regenerative capacity. Finally, we speculate that manipulation of the PI3K/Akt/HIF1 axis
may contribute to the MDS features of VL and merits further investigation.

Author Contributions: A.P. and E.-T.P. wrote the manuscript. A.P. sketched and edited the image-
figures. M.V. contributed essential tools and supervised the manuscript's final drafting. A.P. and
E.-T.P. contributed to the manuscript equally. All authors have read and agreed to the published
version of the manuscript.
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