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Abstract: Streptococcus suis is an important zoonotic pathogen causing severe infections in swine and
humans. Induction of the Vibrio parahaemolyticus YoeB toxin in Escherichia coli resulted in cell death,
leading to the speculation that YoeBVp can be a counterselectable marker. Herein, the counterselection
potential of YoeBVp was assessed in S. suis. The yoeBVp gene was placed under the copper-induced
promoter PcopA. The PcopA-yoeBVp construct was cloned into the S. suis-E. coli shuttle vector pSET2
and introduced into S. suis to assess the effect of YoeBVp expression on S. suis growth. Reverse
transcription quantitative PCR showed that copper induced yoeBVp expression. Growth curve
analyses and spot dilution assays showed that YoeBVp expression inhibited S. suis growth both in
liquid media and on agar plates, revealing that YoeBVp has the potential to be a counterselectable
marker for S. suis. A SCIY cassette comprising the spectinomycin-resistance gene and copper-induced
yoeBVp was constructed. Using the SCIY cassette and peptide-induced competence, a novel two-step
markerless gene deletion method was established for S. suis. Moreover, using the ∆perR mutant
generated by this method, we demonstrated that PmtA, a ferrous iron and cobalt efflux pump in
S. suis, was negatively regulated by the PerR regulator.

Keywords: Streptococcus suis; markerless gene deletion; toxin; YoeB; counterselectable marker

1. Introduction

Streptococcus suis is a Gram-positive, facultative anaerobe that threatens the swine
industry and public health worldwide [1]. It is responsible for various swine diseases,
including meningitis, septicemia, pneumonia, endocarditis, and arthritis [2]. Generally,
S. suis is considered one of the most important bacterial pathogens that lead to significant
economic losses to the swine industry [3]. Indeed, a recent survey revealed that its isolation
rate was 16.9%, ranking first among the bacterial pathogens isolated from Chinese pig
farms from 2013 to 2017 [4]. More seriously, S. suis can be transmitted to humans by
minor skin injuries or the gastrointestinal tract, causing meningitis, streptococcal toxic
shock-like syndrome, and some other clinical symptoms [5]. In 1968, the first human case
of S. suis infection was described in Denmark; since then, over 1600 human cases have been
reported worldwide by the end of 2013, some of which were fatal [6]. Remarkably, two
great outbreaks of human S. suis infections occurred in China in 1998 and 2005, resulting in
25 cases with 14 deaths and 215 cases with 39 deaths, respectively [7,8]. In recent years,
S. suis still frequently caused sporadic human cases worldwide [9–14].

Over the past few decades, significant progress has been made toward understand-
ing the physiology and pathogenesis of S. suis. A number of virulence-related factors
have been described in S. suis [15,16]. Recently, in vivo transcriptomes and transposon
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mutant libraries have been applied to identify genes involved in the virulence traits of
S. suis [17–19]. Usually, studies related to the physiology and pathogenesis of S. suis rely
on gene deletion mutants. In S. suis, the most frequently used gene deletion system is the
pSET4s thermosensitive suicide vector [20]. For gene deletion using pSET4s, a knockout
vector is constructed and introduced into the wild-type (WT) S. suis strain by electropo-
ration; subsequently, the mutant is selected after two steps of allelic exchange. As this
system contains no counterselectable marker, the mutant must be picked out from many
potential colonies. In addition, electrotransformation does not work well for certain S. suis
isolates [21]. Except for allelic exchange using the pSET4s vector, a cloning-independent
method employing peptide-induced competence has been established in S. suis [22]. This
method allows high-throughput mutation; however, the mutant carries a spectinomycin
resistance gene, limiting its vaccine potential. Only recently, Zhu et al. developed a marker-
less gene deletion method in S. suis Chz serotype with the utilization of the ComRS system
and sucrose sensitivity [21].

Toxin-antitoxin (TA) systems are small genetic modules widely distributed in the
plasmids or chromosomes of bacteria and archaea [23]. Typically, they are composed of
a gene encoding a stable toxin and a gene encoding an unstable antitoxin [24,25]. Under
stress conditions, toxins are released from the TA complex and target various cellular
functions to inhibit cell growth, making them valuable for counterselection [26–30]. In a
previous study, we identified a chromosomal type II toxin-antitoxin system, YefM-YoeB,
in Vibrio parahaemolyticus; induction of YoeBVp in Escherichia coli resulted in cell death [31].
This result has led us to speculate that YoeBVp can be a counterselectable marker for S. suis.

In this study, the YoeBVp toxin was tested for the counterselection potential in S. suis.
Using YoeBVp as a counterselectable marker, we successfully established a novel two-step
markerless gene deletion method for S. suis. Finally, using the ∆perR mutant generated by
this method, we demonstrated that pmtA, a gene encoding a ferrous iron and cobalt efflux
pump in S. suis [32] was negatively regulated by the PerR regulator.

2. Materials and Methods
2.1. Bacterial Strains, Plasmids, Primers, and Culture Conditions

Bacterial strains and plasmids used in this study are listed in Table 1. All primers are
listed in Table S1. Unless otherwise specified, S. suis strains were cultured at 37 ◦C in Tryptic
Soy Broth (TSB) or on Tryptic Soy Agar (TSA; Becton, Dickinson and Company, Suzhou,
China) supplemented with 5% (vol/vol) newborn bovine serum (Sijiqing, Hangzhou,
China). E. coli strains were grown in Luria–Bertani (LB) broth or on LB agar. When
required, spectinomycin was added to the medium at 50 µg/mL for E. coli and 100 µg/mL
for S. suis.

Table 1. Bacterial strains and plasmids used in this study.

Strain or Plasmid Relevant Characteristics 1 Source or Reference

Strains

SC19 Virulent S. suis strain isolated from the
brain of a dead pig [33]

SC19/pSET2-PcopA-yoeBVp
Strain SC19 expressing the

copper-inducible YoeBVp toxin This study

SC19/pSET2-PcopA-yoeBSs
Strain SC19 expressing the

copper-inducible YoeBSs toxin This study

SC19/pSET2 Strain SC19 carrying the pSET2 vector This study

∆pmtA pmtA deletion mutant of strain SC19 This study

∆perR perR deletion mutant of strain SC19 This study

∆lysR lysR deletion mutant of strain SC19 This study

MC1061 Cloning host for recombinant vector AngYuBio, Shanghai, China
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Table 1. Cont.

Strain or Plasmid Relevant Characteristics 1 Source or Reference

Plasmids

pSET2 E. coli-S. suis shuttle vector; SpcR [34]

pSET2-PcopA-yoeBVp
pSET2 containing the yoeBVp gene and

PcopA promoter This study

pSET2-PcopA-yoeBSs
pSET2 containing the yoeBSs gene and

PcopA promoter This study

1 SpcR, spectinomycin resistant.

2.2. Preparationof Synthetic Peptide and Natural Transformation Experiment

The peptide (GNWGTWVEE) was synthesized by Sangon Biotech (Shanghai, China)
at 90–95% purity. It was dissolved in deionized water at a final concentration of 5 mM,
divided into aliquots of 50 µL, and stored at −80 ◦C.

A natural transformation experiment was performed as previously described [22],
with slight modifications. Overnight culture of S. suis was diluted 1:100 in fresh medium
and grown to an OD600 of 0.035–0.05 (about 1–2 h). Next, a 100 µL sample was removed
from the culture; 5 µL of the peptide and 1.2 µg of DNA (plasmid or PCR products) were
added to the sample. Following 2 h of incubation, the sample was plated on agar plates
containing spectinomycin or diluted in fresh media containing 0.5 mM CuSO4.

2.3. Construction of a S. suis Strain Expressing the Copper-Inducible YoeBVp Toxin

The promoter PcopA was amplified from the S. suis SC19 genome using primers
PcopA-F/PcopA-R. The DNA fragment containing yoeBVp and its terminator was ampli-
fied from V. parahaemolyticus RIMD 2210633 genome using primers yoeBVp-F/yoeBVp-R.
The two DNA fragments were fused into a fragment using overlap PCR with primers
PcopA-F/yoeBVp-R. Following digestion with the BamH I and EcoR I enzymes, the fused
DNA fragment was cloned into the pSET2 vector, to generate pSET2-PcopA-yoeBVp. Next,
the vector was introduced into the S. suis SC19 strain by natural transformation. The
resultant strain, SC19/pSET2-PcopA-yoeBVp was confirmed by PCR, DNA sequencing, and
reverse transcription quantitative PCR (RT-qPCR).

2.4. RNA Extraction

The SC19/pSET2-PcopA-yoeBVp strain was grown to an OD600 of 0.6–0.8 and divided
into four aliquots of 1 mL, which were supplemented with deionized water or CuSO4 at
final concentrations of 0.1 mM, 0.2 mM, or 0.5 mM. After 15 min of incubation, bacterial cells
were collected and subjected to RNA extraction using an Eastep Super Total RNA Isolation
Kit (Promega, Shanghai, China). RNA was evaluated for integrity by gel electrophoresis
and determined for concentration using a Nanodrop 200.

In another assay, the WT and ∆perR strains were grown to an OD600 of 0.6–0.8; each
strain was then divided into four aliquots of 1 mL. Three of the aliquots were supplemented
with 1 mM FeSO4, 1 mM CoSO4, and 1 mM NiSO4, respectively; the remaining aliquot
was supplemented with deionized water. After 15 min of incubation, bacterial cells were
collected for RNA extraction.

2.5. RT-qPCR Analysis

cDNA was generated from approximately 0.2 µg of RNA using the NovoScript Plus
All-in-one 1st Strand cDNA Synthesis SuperMix (gDNA Purge) (novoprotein, Shanghai,
China). Quantitative PCR was performed using NovoStart SYBR qPCR SuperMix Plus
(novoprotein, Shanghai, China) and the specific primers listed in Table S1. The reaction
mixture was as follows: 2×NovoStart SYBR qPCR SuperMix Plus 10 µL, each primer
0.5µM, 10-fold diluted cDNA 1 µL, ROX 0.4 µL, and finally RNase-free water added
to 20 µL. Quantitative PCR was conducted on the StepOnePlus Real-Time PCR System
(Applied Biosystems). The procedure was 95 ◦C for 1 min, followed by 40 cycles of 95 ◦C
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for 20 s, and 60 ◦C for 1 min. A melting curve analysis (starting from 60 ◦C and continuing
to 95 ◦C, with 0.3 ◦C increments for 5 s each) was performed to verify the specificity of the
products. The amplification efficiency of each primer pair was determined using serially
diluted genomic DNA as the template. The gene expression level was calculated using the
2−∆∆CT method [35], with 16S rRNA as the reference gene.

2.6. Growth Curves Analyses

Overnight cultures of the SC19/pSET2-PcopA-yoeBVp and SC19/pSET2 strains were di-
luted in fresh medium and grown to an OD600 of approximately 0.3. Next, each culture was
divided into five aliquots (1 mL per aliquot), to which CuSO4 was added at final concentra-
tions of 0, 0.05, 0.1, 0.2, and 0.5 mM, respectively. Each aliquot was sub-packed in triplicate
in 96-well plates (200 µL/well) and cultured at 37 ◦C for 6 h. The OD595 values were
measured hourly using the CMax Plus plate reader (Molecular Devices, Shanghai, China).

2.7. Spot Dilution Assays

Overnight cultures of the SC19/pSET2-PcopA-yoeBVp and SC19/pSET2 strains were
diluted in fresh medium and grown to an OD600 of approximately 0.6. Next, each culture
was serially diluted 10-fold up to 10−5 dilution, and 5 µl of each dilution was spotted onto
the plates supplemented with varying concentrations of CuSO4 (0, 0.1, 0.2, and 0.5 mM).
The plates were photographically documented following 18 h of incubation at 37 ◦C.

2.8. Construction of the SCIY Positive-Negative Selectable Cassette

The spectinomycin-resistance gene was amplified from pSET2 using primers spc-F/spc-R.
The PcopA-yoeBVp construct was amplified from pSET2-PcopA-yoeBVp using primers PcopA-
yoeBVp-F/PcopA-yoeBVp-R. The two DNA fragments were fused into a fragment using
overlap PCR with primers spc-F/PcopA-yoeBVp-R. The fused DNA fragment was confirmed
by DNA sequencing, and designated SCIY.

2.9. Construction of Markerless Gene Deletion Mutants Using the SCIY Cassette

The ∆pmtA mutant was constructed using the SCIY cassette via a two-step proce-
dure. For the first step, the left and right arms of pmtA were amplified from S. suis SC19
genome using primer pairs pmtA-LA-F/pmtA-Fir-LA-R and pmtA-Fir-RA-F/pmtA-RA-R,
respectively. The SCIY cassette was amplified using primers pmtA-SCIY-F/pmtA-SCIY-R.
The three DNA fragments were fused into a fragment using overlap PCR with primers
pmtA-LA-F/pmtA-RA-R. The fused DNA fragment was transformed into S. suis SC19 by
natural transformation. The spectinomycin-resistant colonies were selected, confirmed by
PCR, and designated the intermediate strain. For the second step, the left and right arms of
pmtA were amplified from the S. suis SC19 genome using primer pairs pmtA-LA-F/pmtA-
Sec-LA-R and pmtA-Sec-RA-F/pmtA-RA-R, respectively. The two DNA fragments were
fused into a fragment using overlap PCR with primers pmtA-LA-F/pmtA-RA-R. The fused
DNA fragment was transformed into the intermediate strain by natural transformation.
Following 2 h of incubation, the sample was diluted 1:100 in fresh medium containing
0.5 mM CuSO4 and cultured at 37 ◦C for another 12 h. In total, the culture was repeatedly
diluted three to five times for enrichment of the mutant. After each incubation, the culture
was diluted and plated on agar plates. One hundred colonies were tested for spectinomycin-
sensitivity. Spectinomycin-sensitive colonies were selected, and the absence of pmtA was
confirmed by PCR using primer pairs pmtA-in-F/pmtA-in-R and pmtA-out-F/pmtA-out-R.
The efficiency of the SCIY cassette for counterselection was evaluated as the proportion of
spectinomycin-sensitive colonies. The ∆perR and ∆lysR mutants were constructed using
the same procedure to verify the method.
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3. Results
3.1. Identification of the S. suis Strain Expressing the Copper-Inducible YoeBVp Toxin

To evaluate the effect of YoeBVp induction on S. suis growth, we constructed a S. suis
strain expressing the copper-inducible YoeBVp toxin using the PcopA promoter and pSET2
vector [34,36]. The strain, termed SC19/pSET2-PcopA-yoeBVp, was identified by PCR
(Figure 1A) and DNA sequencing (data not shown). RT-qPCR analysis was also performed
to detect whether copper can induce yoeBVp expression. As shown in Figure 1B, the ex-
pression of yoeBVp was significantly induced by copper, and the inductive effects increased
with increasing copper concentrations.
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Figure 1. Identification of the S. suis strain expressing the copper-inducible YoeBVp toxin. (A) PCR
identification of the SC19/pSET2-PcopA-yoeBVp strain. Lane 1 indicates the DL2000 DNA marker.
Lanes 2–4 indicate PCR amplification of the PcopA promoter, the yoeBVp gene, and the PcopA-yoeBVp

construct, respectively. (B) RT-qPCR identification of the SC19/pSET2-PcopA-yoeBVp strain. The data
shown are the means and standard deviations (SD) from three independent experiments. One-way
analysis of variance with Bonferroni’s post-test was used for statistical analyses. *** indicates p < 0.001.

3.2. YoeBVp Expression Results in Growth Defect in S. suis

The SC19/pSET2-PcopA-yoeBVp and SC19/pSET2 strains were grown in fresh media
containing various concentrations of CuSO4, and their growth curves were measured. As
shown in Figure 2A, the two strains exhibited similar growth in the absence of CuSO4. How-
ever, when supplemented with CuSO4, the SC19/pSET2-PcopA-yoeBVp strain displayed a
remarkable growth defect compared with the SC19/pSET2 strain (Figure 2B–D).
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Figure 2. YoeBVp expression resulted in a growth defect in S. suis in liquid media. The SC19/pSET2-PcopA-yoeBVp and
SC19/pSET2 strains were grown in the absence (A) and presence of various concentrations of CuSO4 (B–E); (B) 0.05 mM
CuSO4; (C) 0.1 mM CuSO4; (D) 0.2 mM CuSO4; (E) 0.5 mM CuSO4. At least three independent experiments were performed;
the data shown are the means ± SDs from three wells in a representative experiment.

The effect of YoeBVp expression on S. suis growth was also detected on agar plates. In
the absence of CuSO4, the two strains formed colonies of equal sizes (Figure 3). However,
in the presence of CuSO4, the SC19/pSET2-PcopA-yoeBVp strain formed colonies of smaller
sizes than the SC19/pSET2 strain (Figure 3).
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Taken together, YoeBVp expression in S. suis led to growth inhibition both in liquid
media and on agar plates. Thus, YoeBVp has the potential to be a counterselectable marker
for S. suis.

3.3. Establishment of the Cloning-Independent and Counterselectable Markerless Gene Deletion
System in S. suis

The spectinomycin-resistance gene and PcopA-yoeBVp construct were combined to
generate the SCIY cassette, which was further used for markerless gene deletion in S. suis.
The strategy for markerless gene deletion in S. suis using the SCIY cassette is shown in
Figure 4. In the first step, an intermediate strain was generated, in which the SCIY cassette
replaced the target gene. As the SCIY cassette contains the spectinomycin-resistance gene,
the intermediate strain could be selected with spectinomycin. In the second step, the
markerless gene deletion mutant was generated. The intermediate strain contains the
PcopA-yoeBVp construct; thus, its growth was inhibited in the presence of copper. However,
the mutant could grow well in the presence of copper. After three to five dilutions in media
supplemented with copper, the mutant was enriched to be easily isolated.
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3.4. Markerless Deletion of the pmtA, perR, and lysR Genes in S. suis

To assess whether the strategy is effective, we firstly constructed a markerless deletion
mutant of the pmtA gene. As seen in Figure 5A, PCR amplification of the ∆pmtA mutant us-
ing primers pmtA-in-F/pmtA-in-R generated no products, whereas amplification of the WT
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strain generated products with expected sizes (755 bp). Furthermore, PCR amplification of
∆pmtA and the WT strain using primers pmtA-out-F/pmtA-out-R generated products with
expected sizes for ∆pmtA (2472 bp) and the WT strain (4199 bp), respectively (Figure 5A).
DNA sequencing confirmed that the pmtA gene was successfully deleted in the ∆pmtA
mutant. To further verify the strategy, markerless deletion mutants of the perR (Figure 5B)
and lysR genes (Figure 5C) were also constructed. Overall, the two-step strategy applying
the SCIY cassette is effective in markerless gene deletion in S. suis.
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3.5. The SCIY Cassette Is Highly Efficient for Counterselection in S. suis

The proportion of the mutant after each subculture was evaluated to determine SCIY
counterselection efficiency in S. suis. As shown in Table 2, approximately 95% of the
colonies were the ∆pmtA mutant after subculturing three times. For the perR and lysR
genes, approximately half or greater than 80% of the colonies were the mutant strain after
five times of subculture (Table 2). The results indicate that the SCIY cassette is highly
efficient as a counterselectable marker for S. suis.

Table 2. The proportion of spectinomycin-sensitive colonies (mutants).

Gene Repetition Spectinomycin-Sensitive Colonies (Mutants) (%) 1

First
Dilution

Second
Dilution

Third
Dilution

Fourth
Dilution

Fifth
Dilution

pmtA
Rep_1 5 75 98
Rep_2 3 91 98
Rep_3 1 65 95

perR
Rep_1 0 0 63 57 49
Rep_2 0 32 98 100 98
Rep_3 0 5 83 93 97

lysR
Rep_1 2 1 27 24 86
Rep_2 0 1 0 15 52
Rep_3 2 0 1 32 87

1 The percentage of spectinomycin-sensitive colonies (mutants) was determined by analysis of 100 colonies. The
experiments were performed three times for deletion of each gene, and the results for each repetition are shown.

3.6. PerR Is a Transcriptional Repressor of the Ferrous Iron and Cobalt Efflux Pump in S. suis

In a previous study, we demonstrated that the pmtA gene encodes a ferrous iron and
cobalt efflux pump in S. suis; its expression was significantly induced by ferrous iron,
cobalt, and nickel [32]. Upstream of the pmtA gene is a gene encoding the PerR regulator.
RT-qPCR analysis was performed to determine whether the pmtA gene is under the control
of PerR. As shown in Figure 6, pmtA expression in the WT strain was upregulated following
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treatment with ferrous iron, cobalt, and nickel. However, pmtA expression in the ∆perR
mutant was upregulated without metal supplementation (Figure 6). The results reveal that
deletion of perR led to derepression of the pmtA gene; thus, pmtA expression in ∆perR was
upregulated without treatment with ferrous iron, cobalt, or nickel.
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4. Discussion

S. suis is an important zoonotic pathogen that causes severe infections in swine and
humans. Research on the physiology and pathogenesis of S. suis usually relies on gene
deletion mutants. In the present study, we describe a novel two-step method for markerless
gene deletion in S. suis. This method is established based on natural transformation in
S. suis [22] and the utilization of V. parahaemolyticus YoeB toxin as a counterselectable marker.

TA systems are widely prevalent in bacteria and archaea [23]. Some toxin genes have
been developed as counterselectable markers for genetic manipulation based on toxins’
antibacterial activity [26–30]. In a previous study, induction of V. parahaemolyticus YoeB
toxin in E. coli was found to cause cell death [31]. This finding led to the speculation that
YoeBVp could be an ideal counterselectable marker. YoeBVp expression should be precisely
controlled to be an available counterselectable marker. In S. suis, the copA gene, which
encodes a copper efflux system, could be specifically induced by copper [36]. The promoter
PcopA might be reliable to control YoeBVp expression in S. suis. Herein, a S. suis strain
expressing the copper-inducible YoeBVp toxin was constructed to test the counterselection
potential of YoeBVp. As expected, the addition of copper to the culture induced yoeBVp
expression and inhibited S. suis growth. It should be noted that a homologous TA system
of YefM-YoeB is present in S. suis [37]. We also evaluated the counterselection potential of
YoeBSs. Induction of YoeBSs resulted in drastic growth inhibition in E. coli [37], whereas no
growth defect was observed when YoeBSs was induced in S. suis (Figure S1). We speculate
that the endogenous YefMSs antitoxin counteracted the toxicity of YoeBSs. While YoeBVp
shares 63% identity with YoeBSs at the amino acid level, YefMVp shares only 29% identity
with YefMSs. Therefore, it is not surprising that the toxicity of YoeBVp was not counteracted
by YefMSs.

A SCIY cassette composed of the spectinomycin-resistance gene and PcopA-yoeBVp
construct was generated to explore its application for markerless gene deletion in S. suis.
The first step, by which the SCIY cassette replaced the target gene, was adopted from
a previously described method [22]. The intermediate strain was easily selected from
plates containing spectinomycin. Since YoeBVp toxin exerts a bacteriostatic effect rather
than a bactericidal effect on S. suis, the mutant generated from the second step should
not be selected directly from plates containing copper. Instead, several dilutions in media
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containing copper were performed for the enrichment of the mutant. Our results showed
that after subculturing three to five times, the mutant was easy to isolate. However, the
mutant’s proportion after each subculture should be correlated with the efficiency of natural
transformation and homologous recombination.

In a previous study, a cassette containing a kanamycin resistance gene and a gene
encoding the ParE toxin has been used to introduce a single mutation in Salmonella Ty-
phimurium [30]. Similarly, the SCIY cassette could be applied in site-directed mutagenesis
or deletion of a few bases in the genome of S. suis, which is an outstanding advantage of
the two-step method. The conventional method using pSET4s generates the mutant and
WT genotype simultaneously, which were preliminarily identified by PCR. It would be
difficult to distinguish the mutant and WT strains by PCR when only a few bases were
deleted. If using the two-step method, the SCIY cassette in the intermediate strain could be
easily replaced by the target gene with desired site-directed mutagenesis or a few bases
deletion in the second step. The two-step method would facilitate research of the role of a
single amino acid or protein domain in S. suis.

Although the two-step method is highly efficient in markerless gene deletion in
S. suis, it does not mean that it could not be further improved. Next, the effect of other
toxins on S. suis growth will be evaluated. If a toxin is found to exert bactericidal activity
against S. suis, the yoeBVp gene in the SCIY cassette will be replaced by this gene. Then,
the intermediate strain is expected to be killed in the presence of copper, so that the
mutant can be easily isolated in the second step without enrichment. In addition, some
undesired mutations might be introduced into the genome during construction of the
mutant. Therefore, it would be better to generate a complementation strain for the mutant
when performing a functional study of a gene.

BlastP analysis also revealed that YefMVp and YoeBVp share 30% and 63% amino acid
sequence identity with the homologous antitoxin and toxin from Streptococcus pneumoniae, re-
spectively [38]. It is likely that the YoeBVp toxin could exert a toxic effect against S. pneumoniae,
which might not be counteracted by the endogenous YefMSp antitoxin. Therefore, further
studies could be performed to detect the counterselection potential of the YoeBVp toxin in
other species such as S. pneumoniae. Yet, a suitable promoter should be selected to control
yoeBVp expression in the corresponding species.

In a previous study, we demonstrated that the pmtA gene is involved in ferrous
iron and cobalt efflux in S. suis [32]. One of the remaining questions is which regulator
modulates pmtA expression. In Streptococcus pyogenes, the PmtA homolog is regulated by
PerR [39,40]. In S. suis, the perR gene is located upstream of the pmtA gene. Using the ∆perR
mutant generated by the novel two-step method, we demonstrated that in the absence of
metal supplementation, pmtA expression in the ∆perR mutant was significantly upregulated
compared to that in the WT strain. This result is consistent with the observations in
S. pyogenes [39,40]. Thus, PerR is a transcriptional repressor of pmtA in S. suis.

In conclusion, a novel two-step markerless gene deletion method was established
for S. suis. This method is cloning-independent and can also be used for site-directed
mutagenesis or deletion of a few bases in the genome of S. suis. Moreover, we demonstrate
that PerR is a transcriptional repressor of ferrous iron and cobalt efflux pump (PmtA) in
S. suis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
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