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Abstract: Natural habitats, including extreme ones, are potential sources of new antimicrobial com-
pound producers, such as bacteriocins and enzymes, capable of degrading the matrix polysaccharides
of bacterial biofilms. This study aimed to investigate biodiversity and evaluate the antibacterial
potential of psychrophilic and psychrotrophic microbial communities of the flooded Walter amber
quarry (Kaliningrad region, Russia). As a result of 16S rDNA high-throughput profiling, 127 genera
of bacteria belonging to 12 phyla of bacteria were found in sediment samples: Acidobacteria sp.,
Actinobacteria sp., Armatimonadetes sp., Bacteroidetes sp., Chloroflexi sp., Cyanobacteria sp., Firmicutes sp.,
Gemmatimonadetes sp., Planctomycetes sp., Proteobacteria sp., Tenericutes sp., and Verrucomicrobia sp. The
dominant bacteria groups were the families Ruminococcaceae and Lachnospiraceae, belonging to
the order Clostridiales phylum Firmicutes. Analysis of enrichment cultures obtained from sediments
showed the presence of antibacterial and cellulolytic activity. It seems likely that the bacteria of
the studied communities are producers of antimicrobial compounds and have the potential for
biotechnological use.

Keywords: bacteriocins; extremophiles (psychrophiles); amber quarry; cellulolytics; rarefaction curves

1. Introduction

Antibiotic therapy is the most significant scientific achievement of the twentieth
century in terms of its impact on human morbidity and mortality, but today, there are some
problems that limit the use of antibiotics. The emergence of antibiotic-resistant pathogens
is the main problem, while the high costs and risks associated with the development of
new products lead to a shortage of new families of antibiotics that could compensate for
resistance to existing ones [1,2]. Administration of broad-spectrum antibiotics can lead to
collateral damage to the commensal microbiota, which plays an essential role in the health
of the host and the growth in the number of atopic and autoimmune diseases [3–5].

Alternatives to antibiotics studied to date include plant compounds, bacteriophages,
phage lysines, RNA therapies, probiotics, antimicrobial peptides, and enzymes. Bacte-
riocins, which are small ribosomally synthesized peptides produced by bacteria, have
high activity against many clinical targets and have mechanisms of action different from
antibiotics [6–11]. To date, several bacteriocins with a broad or a narrow spectrum activity
are known, which can be applied to combat infections of unknown etiology and control
target pathogens without adversely affecting commensal populations [12–14]. There is also
information about the successful use of protein cocktails that include bacterial cellulases
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exhibiting enzymatic activity against the matrix polysaccharides of antibiotic-resistant
biofilms [15].

Extremophilic microbial communities are an interesting source of potential produc-
ers of new antimicrobial compounds. Molecular and physiological adaptations of ex-
tremophiles, including the high activity and structural flexibility of peptides and enzymes,
allow the latter to be used in molecular biology, waste processing, paper and food indus-
tries, pharmacology, bioremediation, and medicine, while understanding the adaptive
mechanisms and structures of communities can help to develop strategies for obtaining
compounds that can later be used for medical, scientific, and commercial purposes [16–18].

This study aimed to investigate biodiversity and evaluate the antibacterial potential
of psychrophilic and psychrotrophic microbial communities of the flooded amber quarry
(Walter, Kaliningrad region, Russia).

2. Materials and Methods
2.1. Sample Collection

The samples were collected from the disused and flooded Walter amber quarry
(Figure 1), located near the village of Yantarny (Kaliningrad region, Russia) (54◦53′04.4′′ N,
19◦56′53.2′′ E). A feature of the quarry is the presence of a thermocline at a depth of 10 m.
The temperature difference is about 10 ◦C at a reservoir depth of 30 m. The temperature at
a depth of 10–30 m is stable throughout the year and is about 4–7 ◦C.

Figure 1. Satellite map of Walter quarry, Kaliningrad region, Russia.

The cold-water layer formed by spring waters is a potential habitat for psychrophilic
and psychrotrophic bacteria. The flooded forest, building structures, and blue clays in the
bottom sediments of the quarry, along with the low water temperature, create conditions
for the functioning of complex, including cellulolytic and microbial communities.

Sampling was carried out in the spring of 2020. Sediments are a mixture of sand
and blue clay. Sediments were sampled at a depth of 10–25 m a 5 cm into the sediment
layer. Samples were collected in 50 mL sterile plastic tubes and transported in a portable
refrigerator at the 4 ◦C.

2.2. DNA Isolation and Purification

Total DNA from sediment samples was isolated by phenol-chloroform extraction.
5 g sediments aliquots were preliminarily washed with 120 mM potassium phosphate
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buffer solution (K2HPO4/KH2PO4) by vortexing for 5 min. The resulting suspensions
were supplemented with 10 mL of lysis buffer (100 mM Tris-HCl pH 8.0, 100 mM EDTA,
15 mM NaCl, 2 µg/mL lysozyme), after which the samples were incubated for 30 min at
37 ◦C. After the specified time, the suspensions were subjected to three freeze-thaw cycles
at −20 ◦C and 50 ◦C, respectively. Next, in the final solution, up to 2% sodium dodecyl
sulfate (SDS) and proteinase K (5 µg/mL) were added. The suspensions were incubated for
16 h at room temperature using a rotary shaker for constant stirring. The lysed suspension
was centrifuged for 10 min at 10,000× g. The resulting supernatant was gently stirred
until the formation of an emulsion with 0.5 volume (V) of chilled chloroform and 0.5 V of
chilled phenol for deproteinization. The emulsion was centrifuged for 10 min at 10,000× g.
The resulting aqueous phase was transferred to a new tube, after which the procedure
was repeated 3 times with the addition of 1 V chilled chloroform. The DNA contained in
the aqueous phase was precipitated using 1/10 V 3M NaAc pH 5.2 and 2 V chilled 96%
ethanol. The precipitated DNA was washed with ethanol, dried at room temperature (RT),
and dissolved in 50 µL of mQ water. The total DNA concentration was measured using a
Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).

2.3. 16S rRNA Gene Amplicon Sequencing

Libraries of the V4 region of the 16S rRNA gene for high throughput sequencing (NGS)
were obtained using the double-indexed primer system described by Fadrosh et al. [19]
to obtain information about the structure of the community. The primer annealing re-
gions corresponded to primers F515 5′-GTGBCAGCMGCCGCGGTAA-3′ and R806 5′-
GGACTACHVGGGTWTCTAAT-3′. The samples were amplified using the qPCRmix-HS
SYBR reaction mixture (Eurogen, Moscow, Russia) in duplicate. Amplification was per-
formed using a CFX96 real-time PCR system (BioRad, Hercules, CA, USA). Libraries were
purified using the Cleanup Mini kit (Eurogen, Moscow, Russia). The quality of the purified
libraries was checked by agarose gel electrophoresis. The library concentrations were
measured using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).
The purified libraries were pooled in an equimolar ratio. The final pool concentration was
13 pmol/µL. Pairwise end sequencing was performed in the MiSeq system using the MiSeq
v2 reagent kit (500 cycles) (Illumina Inc., San Diego, CA, USA).

2.4. Data Processing

Read processing was performed using scripts from Fadrosh et al. [19] and included
removing primer sequences, filtering of reads using the Phred algorithm, and assembly
of paired-end reads using the SeqPrep program (https://github.com/jstjohn/SeqPrep
(accessed on 20 February 2021). Demultiplexing and taxonomic analysis was carried out
using the QIIME 2 software package [20]. The quality of the sequences was checked
using the q2-dada2 Qiime2 plugin. The resulting operational taxonomic units (OTU) were
analyzed using the q2-diversity Qiime2 plugin to calculate alpha diversity. Next, the
taxonomic composition of the samples was studied using a naive Bayes classifier via the
SILVA database and the q2-feature-classifier plugin [21]. Belonging to a specific family and
genus was determined based on the OTU tables. Hydrolytic enzymes were predicted from
the 16S rDNA sequence information using the UniProt database [22].

The Shannon and Chao1 indexes were calculated to assess alpha diversity or species
diversity within a community. The Shannon index shows the diversity of the community
in terms of the frequency of occurrence of taxa (the higher the index, the more diverse the
community is considered). The Chao1 index measures diversity considering the occurrence
of species (the less a given species occurs in a sample, the more weight it has). To determine
the effect of reading depth (the number of readings in each sample) on alpha diversity,
rarefaction curves were constructed showing the number of species detected at a given
number of reads [23,24].

https://github.com/jstjohn/SeqPrep
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2.5. Testing of Antibacterial and Cellulolytic Activity

Enrichment cultures were obtained from sediment samples to assess the possible
antibacterial activity. In total, 5 g of sediments were placed in 100 mL of liquid modified
Brunner mineral medium (Table 1) and cultured at 17 ◦C in a shaker thermostat for
two weeks.

Table 1. The composition of the modified Brunner mineral medium.

Component Content, g/L

MgSO4 × 7H2O 0.2
CaCl2 × 2H2O 0.02

KH2PO4 1.0
K2HPO4 1.0

(NH4)2SO4 0.5
FeCl3 0.02

Peptone/casamino acids 10.0
Yeast extract 5.0

Antimicrobial activity was evaluated using the disk diffusion method. 50 mL of
enrichment cultures were centrifuged for 20 min at 5000 rpm. The resulting supernatant
was filtered through a 0.22 µm vacuum filter (Millipore, Burlington, MA, USA) into sterile
50 mL tubes.

Model strains of E. coli and B. subtilis were used as test cultures to evaluate the
antimicrobial activity. Inoculums of test bacteria were obtained by transferring 10 colonies
of a daily culture from a petri dish into a liquid LB culture medium. The cultures were
incubated in a shaker incubator at 25 ◦C up to OD600 equal to 0.10–0.15. Then, 500 µL
of inoculums were applied to a petri dish with LB agar (agar—1.5%) and spread with
a Drigalski spatula until completely dry. Sterile paper disks were soaked in the filtered
supernatant of the studied enrichment cultures and placed on the test culture plates. Sterile
media discs were used as a negative control. Petri dishes with inocula were incubated for
24 h at a temperature of 20 ◦C. Antimicrobial activity was evaluated by the presence of a
lysis zone around the paper disk.

To determine the ability of the studied microbial communities to degrade cellulose,
enrichment cultures were obtained from sediment samples on various liquid nutrient media
(Table 2) using carbomethylcellulose and amorphous cellulose as the only carbon sources.

Table 2. The composition of specialized nutrient medium for cellulolytic bacterial cultures.

Components
Mediums

1 2 3 4 5

NaCl, g/L 20 15 10 - -
KCl, g/L 2.0 2.0 2.0 0.5 0.5

NH4Cl, g/L 0.25 0.25 0.25 - -
K2HPO4, g/L 2.5 2.5 2.5 1.8 1.8
MgSO4, g/L - - - 0.9 0.9
NaNO3, g/L - - - 1 1

Carbomethylcellulose, g/L - - - 5 2
Amorphous cellulose, g/L 5 5 5 - -

The enrichment cultures were grown for one and a half months at 17 ◦C, followed by
passaging on agar nutrient media. For passage 1 mL 1 week-grown cell suspension was
inoculated into 20 mL fresh medium, followed by passaging on agar nutrient media. The
hydrolytic activity of bacteria was determined by their ability to discolor the medium [25,26].

The bacterial strains from enrichment cultures were isolated from the forming colonies
and plated on solid nutrient media to determine the cellulolytic activity. Petri dishes with
newly formed colonies were filled with 0.1% Congo red solution, left for 15 min, and then
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treated with 1 M sodium chloride solution. Colonies showing dye discoloration were taken
as positive cellulose-degrading bacteria [27].

3. Results
3.1. Microbial Diversity

16S rDNA profiling of microbial communities of sediment samples obtained from
depths of 10 (sample V1), 15 (sample V3), 17 (sample V4), and 20 (sample V5) meters was
performed. The total number of reads for each sample exceeds 5000.

When analyzing the sequencing data, a total of 127 genera belonging to 12 phyla of bac-
teria were found: Acidobacteria sp., Actinobacteria sp., Armatimonadetes sp., Bacteroidetes sp.,
Chloroflexi sp., Cyanobacteria sp., Firmicutes sp., Gemmatimonadetes sp., Planctomycetes sp.,
Proteobacteria sp., Tenericutes sp., and Verrucomicrobia sp. (Figure 2).

Figure 2. Phyla of bacteria found in sediment samples.

In sediment samples V1 (Appendix A), 40 families of bacteria were found, of which
41% belong to the families Ruminococcaceae, Lachnospiraceae, and Christensenellaceae
belonging to the order Clostridiales of the Firmicutes phylum. The next most abundant
phyla are the Proteobacteria (23% of all detected bacteria), half of which belong to the
Burkholderiaceae family of the Gammaproteobacteria class.

In addition, 4–5% of the entire community was attributed to the families Geoder-
matophilaceae of the Actinobacteria phylum and Bacteroidaceae of the Bacteroidetes phylum.

In sediment samples V3, families Ruminococcaceae and Lachnospiraceae were also
the most numerous and accounted for 31–37% of the total bacteria. However, in this sample,
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9% of bacteria belonged to the family Bacillaceae, order Bacillales and 5% Rhizobiaceae,
Proteobacteria phylum (Appendix B).

In samples V4 (Appendix C), 12% of the total number of bacteria belonged to the
family Bifidobacteriaceae and 10% to the Planctomycetes phylum. Also, 4% of the community
belonged to the family Opitutaceae.

In samples V5 (Appendix D), 8% of the bacteria detected belonged to the family
Moraxellaceae and 3% to Mycobacteriaceae.

The maximum values of Shannon indexes for samples V1, V3, V4, and V5 are, respec-
tively, 6.79, 6.83, 6.37, 6.31, and Chao1 indexes—128, 133, 104, and 100. The close values
are explained by the belonging of the samples to the same microbial community. The
rarefaction curves show that the obtained number of reads is sufficient to determine the
species diversity in the samples.

Extremophilic (psychrophilic) bacteria are bacteria that can survive at low tempera-
tures (below −10 ◦C). Psychrophiles also function at temperatures above 20 ◦C [4]. The
bacteria described in our study were cultivated at 17 ◦C to cover the widest range of
psychrophilic and psychrotrophic microorganisms.

3.2. Antibacterial and Cellulolytic Activity

To evaluate the antibacterial activity, 4 enrichment cultures were obtained from sedi-
ment samples collected from the flooded Walter amber quarry, corresponding to sampling
depths of 10 m (S10), 15 m (S15), 17 m (S17), and 20 m (S20). The evaluation of antimicrobial
activity showed that all four enrichment cultures are active against test bacteria E. coli and
B. subtilis (Table 3, Figure 3) and can include the phyla of psychrophilic and psychrotrophic
bacteria producing antimicrobial compounds.

Table 3. The evaluation of the antimicrobial activity of enrichment cultures against E. coli and
B. subtilis.

Sample
Lysis Zone Diameter, mm

E. coli B. subtilis

S10 16 18
S15 13 17
S17 14 17
S20 15 13

Ampicillin 13 21
Negative control - -

Figure 3. The evaluation of the antimicrobial activity of enrichment cultures against (a) E. coli and
(b) B. subtilis: S10–S20—enrichment cultures, nc—negative control; amp—positive control (ampicillin).
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Analysis of the results of 16S rDNA profiling according to the UniProt database
showed that cellulolytic enzymes are potentially synthesized in 67 genera of bacteria
that are part of the studied microbial communities, including the genera Paenibacillus,
Bacteroides, Streptococcus, Bacillus, Lactobacillus, Mycobacterium, Roseburia, Flavobacterium,
Cellulomonas, Cellvibrio, and Lachnoclostridium.

As a result of growing enrichment cultures of cellulolytic bacteria, microbial growth
was shown on nutrient media 3, 4 and 5 (Table 2). The analysis of hydrolytic activity
performed using the method Congo red has demonstrated the lack of activity of bacterial
strains isolated from enrichment cultures that were grown on medium 4. At the same
time, enrichment cultures grown on nutrient media 3 and 5 showed a high ability to
cellulose degradation. In total, 3 cellulose-degrading bacterial strains were isolated from
these enrichment cultures, and their hydrolytic activity was demonstrated (Figure 4). The
taxonomic affiliation of the isolated strains remains to be determined.

Figure 4. The evaluation of the cellulolytic activity of bacterial strains isolated from enrichment
cultures: 1, 2, 3-cellulose-degrading bacterial strains, nc-negative control.

4. Discussion

Cold habitats occupy about three-quarters of the Earth’s surface [28]. Such habitats are
represented by deep sea, permafrost, glaciers, cold-water lakes, soils, deserts, and caves [29]
and are successfully colonized by various communities of psychrophilic and psychrotrophic
prokaryotic and eukaryotic organisms capable of maintaining high metabolic activity in
low-temperature conditions [17].

Today, psychrophilic microbial communities occupying ecological niches with ex-
tremely low temperatures are of the greatest interest due to their biotechnological potential.
Representatives of these consortia and their metabolic products are successfully used in
various industries, including food production, waste processing, mining, environmental
bioremediation, agriculture, medicine, and molecular diagnostics [30].

The study of psychrophilic bacteria as new tools in pharmaceuticals is especially
promising. At the moment, several promising psychrophilic strains have been discovered
that are producers of new highly active antimicrobial compounds [31], such as antarticin-
NF3, synthesized by the Antarctic bacterium Pseudoalteromonas [32], and the bacteriocins of
Pseudomonas antarctica PAMC 27494 [33].
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In addition, among psychrophilic and psychrotrophic bacteria, there are often pro-
ducers of enzymes that mediate the degradation of insoluble natural biopolymers, such
as cellulose and chitin. Currently, the possibility of using these enzymes as antimicro-
bial agents in a complex therapy directed against pathogenic bacteria that form biofilms
resistant to antibiotics is actively studied [34,35].

Perchrophils and psychrotrophs are phylogenetically diverse groups and include vari-
ous families of bacteria and archaea [31]. This study showed that the microbial communities
of the Walter quarry are represented by the families Ruminococcacea, Lachnospiraceae,
Burkholderiaceae, Bacteroidaceae, Geodermatophilaceae, Bacillaceae, Rhizobiaceae, Planc-
tomycetes, Opitutaceae, Moraxellaceae, and Mycobacteriaceae.

Representatives of the Ruminococcaceae are morphologically diverse and include
bacilli, cocci, and pleomorphic forms. Several species of them are free-living bacteria
capable of decomposing cellulose [36,37]. The Lachnospiraceae are anaerobic chemoorgan-
otrophs with various hydrolytic enzymes capable of hydrolyzing xylan, galactose, starch,
and cellulose [38,39]. Representatives of the Geodermatophilaceae have been isolated from
habitats with different climatic conditions, including deserts, rocks, soil, surfaces of rocks
and monuments. All of these groups of microorganisms are producers of bacteriocins [40].

The Bacillaceae consists mainly of aerobic or microaerophilic chemoorganotrophic
gram-positive bacteria that form endospores. They are widely represented in natural
communities and are confirmed producers of bacteriocins [41] as well as representatives of
the Rhizobiaceae [42].

The uncultured bacteria of the Planctomycetes phylum in the sediment are also interest-
ing as potential producers of new bacteriocins [43].

The Opitutaceae are Gram-negative bacteria present in soils, hot springs, lakes, peat
bogs, and inside the digestive tract of invertebrates and are capable of hydrolyzing cellu-
lose [44].

The evaluation of antibacterial (Figure 4) and cellulolytic activity carried out in this
study confirm the presence of potential producers of new antimicrobial compounds in the
sediment communities of the Walter quarry.

5. Conclusions

The study of the biodiversity of psychrophilic and psychrotrophic microbial commu-
nities of the flooded Walter quarry (Kaliningrad region, Russia) revealed that the dominant
groups of bacteria are the Ruminococcaceae and Lachnospiraceae families, belonging to the
order Clostridiales, Firmicutes phylum. Bacteria of these families, as well as the Proteobacte-
ria, Acidobacteria, Actinobacteria phylum and other minor groups, represented to a lesser
extent, are potential producers of antimicrobial compounds and have a high potential for
use in biotechnology.
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Appendix A

Figure A1. The percentage of bacterial families found in the V1 sample.

Appendix B

Figure A2. The percentage of bacterial families found in the V3 sample.
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Appendix C

Figure A3. The percentage of bacterial families found in the V4 sample.

Appendix D

Figure A4. The percentage of bacterial families found in the V5 sample.
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