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Abstract: The vital role of the gut microbiota in fish growth, development, immunity, and health has
been largely confirmed. However, the interaction between environmental microbiota and the gut
microbiota of aquaculture species remains unclear. Therefore, we analyzed the gut microbiota of
largemouth bass (Micropterus salmoides) collected from subtropical ponds in southern China, as well as
the pond water and aquatic sediment microbiota, using high-throughput sequencing of the 16S rRNA
gene. Our results demonstrated significant differences in the compositions of pond water, sediment,
and the gut microbiota of largemouth bass. Moreover, these compositions changed throughout
the culture period. Only approximately 1% of the bacterial species in the pond sediment and gut
microbiota were exchanged. However, the bacterial proportion of the gut microbiota from pond
water microbiota was approximately 7% in samples collected in June and August, which increased
markedly to 73% in October. Similarly, the proportion of bacteria in the pond water microbiota
from the gut microbiota was approximately 12% in June and August, which increased to 45% in
October. The study findings provide basic information for understanding the interactions between
environmental microbiota and the gut microbiota of cultured fish, which may contribute to improved
pond culture practices for largemouth bass.

Keywords: gut microbiota; aquaculture; environment microbiota; largemouth bass

1. Introduction

With capture fishery production being relatively static since the late 1980s, aquacul-
ture has played a crucial role in maintaining sufficient fish supply to meet increasing
consumer demand [1]. Global fish production was estimated to have reached approxi-
mately 179 million tons in 2018, of which aquaculture accounted for 46% and 52% of the
total production and human consumption, respectively [2]. China has remained a major
fish producer, accounting for 35% of the global fish production in 2018 [2]. Pond culture is
the main form of aquaculture in China, accounting for 37.22% of the total aquaculture area
and 48.84% of the total output of aquatic products in China [3].

The development of intensive aquaculture technology has considerably improved
the output of aquatic products per unit area of pond. However, the rapid growth of
high-density, high-yield pond aquaculture has increased the pollution of aquatic envi-
ronments [4]. Approximately 75% of feed nitrogen and phosphorus are not utilized,
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thereby persisting in the aquatic environments as waste [5,6]. These nutrients subsequently
change the composition of the water microbiota, which may affect the gut microbiota of
aquaculture species.

The gut microbiota play an important role in various physiological processes, thereby
affecting the growth, development, immunity, and health of the host [7-9]. Therefore,
the composition of the fish gut microbiota and their influencing factors have been widely
investigated [10-16]. The composition and influencing factors of environmental microbiota
in aquaculture have also been studied [17,18]. However, the interactions between environ-
mental microbiota and the intestinal microbiota of cultured fish have not received equal
attention, especially in aquaculture.

Therefore, to clarify these interactions, we analyzed the gut microbiota of largemouth
bass (Micropterus salmoides) from subtropical ponds in southern China as well as the pond
water and aquatic sediment microbiota, using high-throughput sequencing of the 16S rRNA
gene. This study helps to elucidate the relationship between environmental microbiota
and the gut microbiota of cultured fish, and the findings would eventually contribute to
the development of effective pond management strategies and to the establishment of a
healthy culture of largemouth bass.

2. Materials and Methods
2.1. Sample Collection

Water, sediment, and largemouth bass samples were collected from three outdoor
aquaculture ponds (113°9'40” E, 22°49'18” N) located in Xingtan, China on 3 June (early cul-
ture period), 28 August (middle culture period), and 22 October (post-culture period). The
three pond areas were approximately 3300, 4000, and 5200 m? and the annual production
was approximately 20,000, 20,000, and 27,000 kg, respectively. The depth of the pond water
was approximately 2.5 m. The ponds were managed daily, and natural lighting conditions
were adopted. During the experimental period, the fish were fed commercial puffed com-
pound feed for largemouth bass (Guangdong Haida Group Co., Ltd., Guangzhou, China)
at 9:00 a.m. and 4:00 p.m. at a daily rate of 3% of body weight. The water present in the
ponds was not changed during the experiment. For each sampling, a 5 L plexiglass water
sampler was used to collect water 0.5 m under the water surface. The water samples were
then transported to the laboratory under transportation conditions at 4 °C for analysis.
Sediment samples (approximately 5 g) were collected from three different locations in the
three ponds, placed into 50 mL sterile centrifuge tubes, transported to the laboratory under
transportation conditions at 4 °C, and stored at —80 °C for DNA extraction. Six large-
mouth bass were collected from each pond for body length and weight measurements, and
three fish were randomly selected and transported to the laboratory under transportation
conditions at 4 °C. The fish were anesthetized using an overdose of neutralized MS5222
(ethyl 3-aminobenzoate methanesulfonic acid) and were subsequently dissected under
sterile conditions. Hindgut samples (approximately 0.5 g) were collected in 2 mL sterile
Eppendorf tubes and stored at —80 °C.

2.2. Determination of Aquatic Physicochemical Factors

Water transparency (SD) was measured in the field using a Secchi disk at each sam-
pling site according to a standard method [19]. Water temperature (WT), pH, dissolved
oxygen (DO), oxidation-reduction potential (ORP), conductivity (Cond), and total dis-
solved solids (TDS) were measured in the field using the ProQuatro smart portable mul-
tiparameter water quality analyzer (YSI, Yellow Springs, OH, USA). Concentrations of
chlorophyll a (Chla), ammonium nitrogen (NH4*-N), nitrate nitrogen (NO3 ~-N), nitrite
nitrogen (NO, ~-N), total nitrogen (TN), and total phosphorus (TP) were determined ac-
cording to a previously described method [20]. The permanganate index (CODyy,) was
determined according to the standard method (ISO 8467:1993). The concentration of union-
ized ammonia (NHj3) was calculated based on pH, WT, and the concentration of NH;*-N
according to a previously described method [21].
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2.3. Microbial DNA Extraction and High-Throughput Sequencing

Before the performance of DNA extraction, 500 mL of each water sample was filtered
using a GF/C membrane with a 0.22 um pore size (Whatman, Maidstone, UK) to collect
and isolate the microorganisms present in the water, after which the filter membrane was
cut and used to conduct microbial DNA extraction using the DNeasy PowerSoil kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. The same method was
used to conduct microbial DNA extraction from fish intestines and from approximately
0.5 g of the sediment sample.

The V4-V5 hypervariable region of the prokaryotic 165 rDNA was amplified using
primers 515F and 909R with a 12 nt sample-specific barcode sequence included at the 5'-end
of the 515F primer, as per methods previously described [22]. The amplicons were purified,
quantified, and sequenced using the HiSeq 3000 platform (Illumina, San Diego, CA, USA)
at Guangdong Meilikang Bio-Science, Ltd. (Dongguan, China), as per methods previously
described [22,23]. Raw reads were merged using the Flash 1.2.8 software [24] and subse-
quently processed as per protocols previously described [25]. Briefly, all merged sequences
were assigned to each sample based on their barcode sequences, and data on trimmed
barcode and primer sequences were removed using the QIIME 1.9.0 software [26]. Chimeric
sequences were identified, and data were removed using the Uchime algorithm [27]; there-
after, the high-quality sequences were clustered into operational taxonomic units (OTUs)
at 97% identity using the UPARSE clustering algorithm [28]. Taxonomic assignment of
each OTU was determined using the RDP classifier [29]. The alpha-diversity indices were
calculated using the QIIME 1.9.0 software.

2.4. Data Analysis

Data are presented as mean =+ standard error for each group. Non-parametric mul-
tivariate analysis of variance (PERMANOVA) [30] was used to determine significant
differences in microbiota composition among groups using the vegan package in R [31].
Principal coordinate analysis (PCoA) of microbiota composition was conducted using
the QIIME 1.9.0 software. The Kruskal-Wallis H-test was conducted using the STAMP
software [32] to perform screening for significantly different taxa among the groups. Source
tracking analysis was conducted using the SourceTracker package in R. A p-value < 0.05
was considered statistically significant.

3. Results
3.1. Changes in Physicochemical Factors of Aquaculture Pond Water, and Body Length and Weight
of Largemouth Bass

The water temperature decreased significantly in October compared to the water
temperatures in June and August, and the findings were consistent with the climatic
conditions of the sampling area (Table S1 and Figure 1A). The pH, TDS, and DO levels
fluctuated significantly during the experimental period (p < 0.05; Figure 1B-D).

Although the TN content displayed a gradual upward trend, a significant difference
was only determined between October and June (p < 0.05; Figure 1I). The NO3™-N con-
tent showed a decreasing trend during the experimental period (Figure 1J), while the
concentrations of NO, ~-N and NH4*-N increased gradually (Figure 1K,L). This might
be attributable to the continuous accumulation of organic matter (Figure 1N) in the pond
water during the 5-month aquaculture period, leading to increased oxygen consumption
during decomposition of the organic matter, which resulted in a lack of oxygen availability
at the bottom of the pond water and enhancement of the denitrification process. There were
no significant changes in other physicochemical factors (Figure 1 and Table S1), especially
in the concentrations of TP and phosphate (Figure 1G,H).

The average body lengths and body weights of the largemouth bass were 10.70 £ 0.98,
20.76 £ 0.36, and 24.82 + 0.72 cm, and 34.88 £ 10.10, 153.42 £+ 11.72, and 265.21 2496 g
in June, August, and October, respectively (Figure S1). These changes reflected growth of
the cultured fish.
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Figure 1. Water-associated physicochemical factors of aquaculture ponds. (A) WT, water temperature; (B) pH; (C) TDS,
total dissolvable solids; (D) DO, dissolved oxygen; (E) ORP, oxidation reduction potential; (F) Cond, conductivity; (G) TP,
total phosphorus; (H) phosphate; (I) TN, total nitrogen; (J) nitrate nitrogen; (K) nitrite nitrogen; (L) ammonia nitrogen;
(M) unionized ammonia; (N) CODyy,, chemical oxygen demand; and (O) Chla, chlorophyll a. * p < 0.05; ** p < 0.01;
***p <0.001.

3.2. Differences between the Microbiota of Pond Water, Sediment, and the Largemouth Bass Gut

A total of 4,136,932 high-quality sequences were obtained for 81 samples (27 gut,
27 sediment, and 27 water samples). Finally, 23,430 high-quality sequences were randomly
selected from each sample for subsequent analysis. Based on 97% sequence identity, these
high-quality sequences were classified into 42,329 OTUs. The alpha-diversity index values
(Kruskal-Wallis H-test, p < 0.05) and compositions (PERMANOVA, F = 23.19, p < 0.001;
Figure 2A-G) differed significantly among the gut, pond water, and sediment microbiota.
The number of OTUs and Shannon index values of the sediment microbiota were signifi-
cantly higher than those of the water microbiota, followed by those of the gut microbiota
(p < 0.05; Figure 1A,B). These results indicated that the coverage of the gut microbiota
was the highest, while that of the sediment microbiota was the lowest (Figure 1F), and the
finding was consistent with a previous report [33]. Within the same habitat (the gut, water,
or sediment), the alpha-diversity index values of only a small number of samples differed
significantly within the sampling times (Figure 2A-F). However, the microbiota compo-
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sition of water (PERMANOVA, F = 1.72, p < 0.001), sediment (PERMANOVA, F =2.15,
p < 0.001), and the gut of largemouth bass (PERMANOVA, F = 1.92, p < 0.001) differed
significantly among the different sampling times (Figure S2).
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Figure 2. Differences between the microbiota of pond water, sediment, and the largemouth bass gut. (A) number of OTUs in
the microbiota; (B) Shannon index of the microbiota; (C) Simpson index of the microbiota; (D) Chaol index of the microbiota;
(E) PD whole tree index of the microbiota; (F) Good’s coverage of the samples; (G) Principal coordinate analysis profile of
the microbiota; and (H) relative abundances of the dominant phyla in the microbiota. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

With the exception of a few OTUs, most OTUs were classified into 68 phyla (three archaeal
and 65 bacterial phyla), among which Crenarchaeota, Acidobacteria, Actinobacteria, Bac-
teroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Fusobacteria, Gemmatimonadetes,
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NC10, Nitrospirae, OP8, Planctomycetes, Proteobacteria, Spirochaetes, Tenericutes, Verrucomi-
crobia, and WS3 dominated the microbiota (Figure 2H). These phyla comprised 98.00 £ 0.21%
of the analyzed high-quality sequences. Significant differences in their relative abundances
were observed among the different habitats (Figure 2H).

At the genus level, 1633 genera were detected, including 154 dominant genera. The
most dominant genera differed significantly among the gut, sediment, and water microbiota
(Figure 3A). Abundances of Geobacillus, Lactobacillus, Clostridium, Cetobacterium, Burkholdena,
Delftia, Citrobacter, Escherichia, Klebsiella, Plesiomonas, Mycoplasma, and two unidentified
genera from Chlamydomonadaceae and Streptophyta were significantly enhanced in the
largemouth bass gut microbiota; abundances of Gemmatimonas, Phenylobacterium, Rhodobac-
ter, Novosphingobium, Giesbergeria, Hydrogenoptiaga, Limnohabitans, Rhodoterax, Variovorax,
and certain unidentified genera were significantly enhanced in the water microbiota; and
abundances of GOUTA19, Gallionella, Thiobacillus, Dok59, Sulfuritalea, Thauera, Geobacter,
and a few unidentified genera were significantly enhanced in the sediment microbiota
(Figure 3A). In the gut microbiota, abundances of Bacillus, Geobacillus, Staphylococcus, Lac-
tococcus, Clostridium, Burkholderia, Escherichia, Kocuria, and certain unidentified genera
were significantly enhanced in the samples collected in June; abundances of Synechococ-
cus, Gallionella, Sulfuritalea, Geobacter, Plesiomonas, Psychrobacter, Flavobacterium, and a few
unidentified genera were significantly enhanced in the samples collected in August; and
abundances of Cetobacterium, Vibrio, Mycoplasma, and an unidentified genus from Aeromon-
adaceae were significantly enhanced in the samples collected in October (Figure 3B). In the
sediment microbiota, abundances of Synechococcus, Gemmatimonas, Rhodobacter, Novosph-
ingobium, Geobacter, and certain unidentified genera were significantly enhanced in the
samples collected in June; all significantly enhanced genera were unidentified genera in the
samples collected in August; abundances of Cetobactenum, Delftia, Diaphorobacter, Giesberg-
eria, Hydrogenophaga, Limnihabitans, Methylibium, Rhodoferax, Rubrivivax, Polynucleobacter,
Vogesella, Dok59, Sulfurtalea, Thauera, Rheinheimera, Corynebacterium, Mycobacterium, and
certain unidentified genera were significantly enhanced in the samples collected in October
(Figure 2C). In the water microbiota, abundances of Synechococcus, Gemmatimonas, Ralstonia,
Mycoplasma, Candidatus Aquiluna, and Candidatus Rhodoluna, and certain unidentified genera
were significantly enhanced in the samples collected in June; abundances of Cetobacterium,
GOUTA19, Plesiomonas, and many unidentified genera were significantly enhanced in
the samples collected in August; and abundances of Planktothrix, Hydrogenophaga, Limno-
habitans, Methylibium, Rhodoferax, Rubrivivax, Vogesella, Dok59, Rheinheimera, Pseudomonas,
Flavobacterium, and a few unidentified genera were significantly enhanced in the samples
collected in October (Figure 3D).

3.3. Connection between the Gut Microbiota of Largemouth Bass and Pond Water and
Sediment Microbiota

Source tracking analysis was conducted to analyze the relationship between the gut
microbiota of largemouth bass and the pond water and sediment microbiota. The re-
sults based on all samples indicated that 7.03 = 3.47% and 12.69 £ 3.63% of the bacterial
composition in the gut microbiota could be attributable to the pond sediment and water
microbiota, respectively. Additionally, 7.20 & 2.85% of the bacterial composition in the
sediment microbiota and 48.48 &+ 2.27% of the bacterial composition in the water microbiota
could be attributable to the gut microbiota, while approximately 30% of the bacterial com-
position in the pond water and sediment microbiota was subjected to exchange (Figure 4A).
However, the results of each sampling revealed that only approximately 1% of the bac-
terial composition in the pond sediment and gut microbiota was subjected to exchange
(Figure 4B-D,F). The proportion of bacteria in the gut microbiota from the pond water mi-
crobiota was approximately 7% in samples collected in June and August, while it increased
markedly to 73.11 £ 4.08% in October (Figure 4B-E). The proportion of bacteria in the
pond water microbiota that could be attributable to the gut microbiota was 11.82 £ 0.96%
in June, 11.56 £ 1.68% in August, and the proportion increased to 44.79 £ 3.24% in October
(Figure 4B-D). Except for the samples collected in August, the proportions of bacteria
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subjected to exchange between the pond water and sediment microbiota were similar
throughout the experimental period, although the proportion subjected to exchange in
October was significantly higher than that in June and August (p < 0.05; Figure 4B-D,G)
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Figure 4. PCoA profiles along with source tracking results highlight the connection between the largemouth bass gut

microbiota with pond water and sediment microbiota. (A) All samples, (B) samples collected in June, (C), samples collected

in August, (D) samples collected in October, (E) the proportion of bacteria subjected to exchange between the gut microbiota
and pond water microbiota, (F) the proportion of bacteria subjected to exchange between the gut microbiota and pond
sediment microbiota, and (G) the proportion of bacteria subjected to exchange between pond water and sediment microbiota.
GJun, GAug, and GOct indicate largemouth bass gut samples collected in June, August, and October, respectively. SJun,
SAug, and SOct indicate pond sediment samples collected in June, August, and October, respectively. WJun, WAug, and

WOct indicate pond water samples collected in June, August, and October, respectively. Different lowercase letters at the

top of the box indicate significant differences between the two groups.

4. Discussion

The crucial role of the fish gut microbiome is widely recognized [9,34,35], which has
led to the execution of studies investigating the composition of fish gut microbiota and
its influencing factors [10,11,14,15,33,36-38]. However, except for a few reports describing
the relationship between microbiota of the aquatic environment and the gut microbiota of
aquatic animals [33,39], the interactions between environmental microbiota and the gut
microbiota of aquaculture species remain understudied. Here, we clarified the relationship
between the pond water and sediment microbiota and the gut microbiota of largemouth
bass. Our results indicated that, in general, approximately 7.03 & 3.47% of the bacterial
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composition in the gut microbiota of largemouth bass could be attributable to the sediment
microbiota, while 12.69 £ 3.63% of the bacterial composition could be attributable to the
pond water microbiota. However, according to sampling time analysis, only approximately
1% of the bacterial composition in the gut microbiota could be attributable to the sediment
microbiota, and this proportion did not change during the cultivation period (Figure 4).
Although the proportion of bacteria in the gut microbiota attributable to the pond water
microbiota remained approximately 7% in June and August, it increased markedly to
73.11 £ 4.08% in October. Even though environmental factors and growth could cause the
changes in the gut microbiota of fish [11,15], the reason for this change and its effect on the
health and growth of largemouth bass warrants further study.

Habitat is the most important factor affecting the microbial community [33,39,40].
Previous studies have reported that the water microbiota of subtropical ponds in summer
is dominated by Proteobacteria, Cyanobacteria, and Bacteroidetes [18], while the pond
sediment microbiota is dominated by Proteobacteria, Chlorobi, TA06, and Fusobacteria,
and the gut microbiota of fish is significantly enriched in Fusobacteria and Firmicutes [41].
Our results confirmed that the compositions of the water, sediment, and gut microbiota
were significantly different (Figures 2G and 3A), which corroborated previously reported
results [41]. Apart from TAO6 not being present as the dominant phylum and Fusobacteria
not being significantly enriched in the sediment microbiota, the results of the current study
were consistent with those of previous reports [18,41]. Moreover, the microbiota compo-
sition of these habitats changed during the culture period (Figure 3B-D and Figure S2).
However, in general the gut microbiota composition changed significantly less than the mi-
crobiota composition of the pond water and sediment. These results suggest that although
fish are poikilotherms and their gut microbiota are subjected to adaptations to changes in
their external (such as water temperature) and internal (such as growth) environments,
the gut microbiota composition of largemouth bass remains relatively stable, although
the trend was not as remarkable as that for homoiothermic mammals. Proteobacteria,
Fusobacteria, Firmicutes, and Cyanobacteria were the most prevalent phyla in the gut
microbiota of largemouth bass, consistent with previous findings reported for other fish
species [13,33,42,43].

Previous studies have indicated that lactic acid bacteria (Lactobacillus, Streptococcus,
and Lactococcus) and Bacillus spp. are potential probiotic strains [33,44]. Lactobacillus
abundance was enhanced in the gut microbiota of largemouth bass compared with that
in the pond water and sediment. Lactococcus and Bacillus abundances were enhanced in
the gut microbiota samples collected in June compared to those collected in August and
October. On the other hand, pond water and sediment microbiota are generally considered
an important source of pathogens in pond-cultured fish [33]. Indeed, the gut microbiota
act as a reservoir for many opportunistic pathogens [33,45]. Among them, Pseudomonas
and Flavobacterium are the two most important opportunistic fish pathogens, and they
are highly abundant in the gut contents of grass carp [33]. Our results revealed that
the abundances of these strains were significantly enhanced in the microbiota of water
samples collected in October compared with those collected at other sampling times, while
Flavobacterium abundance was significantly enhanced in the microbiota of gut samples
collected in August compared with those collected at other sampling times (Figure 3).
Although previous investigations have proposed that the origin and composition of the gut
microbiota are attributable to their environment [33,46], our results suggested that under
normal conditions, only a small proportion of bacteria from the pond water and sediment
microbiota contributed to the composition and diversity of the fish gut microbiota (Figure 4).
These results imply that microorganisms from the environment may constitute the fish gut
microbiota establishment after hatching; however, the development of stable gut microbiota
during fish growth limits further entry of microorganisms from the environment into the
fish gut. The causes of this phenomenon warrant further study, along with ascertainment of
the probability of an increase in the entry of pathogens present in pond water and sediment
into the fish gut under abnormal conditions (such as lack of oxygen or high NH,;*-N levels).
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5. Conclusions

In conclusion, our results demonstrated that the microbiota compositions of the
pond water, sediment, and the gut of largemouth bass differed significantly. Moreover, the
microbiota compositions of these habitats changed during development of the pond culture.
Proteobacteria, Fusobacteria, Firmicutes, and Cyanobacteria were the most prevalent
phyla in the gut microbiota of largemouth bass. Only approximately 1% of the bacterial
composition in the pond sediment and gut microbiota was subjected to exchange. However,
the bacterial proportion of the gut microbiota attributable to pond water microbiota was
approximately 7% in the samples collected in June and August, while it increased markedly
to 73.11 £ 4.08% in October. Furthermore, the bacterial proportion of the pond water
microbiota attributable to the gut microbiota was approximately 11.82 4+ 0.96% in June,
11.56 + 1.68% in August, and 44.79 & 3.24% in October.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9081770/s1, Figure S1: Body lengths and body weights of largemouth basses
during the experiment; Figure S2: PCoA profiles showed the microbiota changes of largemouth bass
gut (A), aquatic sediment (B), and pond water (C) with different sampling months; and Table S1:
Water-associated physicochemical factors of aquaculture ponds. WT, water temperature; TDS, total
dissolvable solids; DO, dissolved oxygen; ORP, oxidation reduction potential; Cond, conductivity;
TP, total phosphorus; TN, total nitrogen; CODyyy, chemical oxygen demand; Chla, chlorophyll a.
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