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Abstract: Carbon utilization of bacterial communities is a key factor of the biomineralization process
in limestone-rich curst areas. An efficient carbon catabolism of the microbial community is asso-
ciated with the availability of carbon sources in such an ecological niche. As cave environments
promote oligotrophic (carbon source stress) situations, the present study investigated the variations
of different carbon substrate utilization patterns of soil and rock microbial communities between
outside and inside cave environments in limestone-rich crust topography by Biolog EcoPlate™ assay
and categorized their taxonomical structure and predicted functional metabolic pathways based
on 16S rRNA amplicon sequencing. Community level physiological profiling (CLPP) analysis by
Biolog EcoPlate™ assay revealed that microbes from outside of the cave were metabolically active
and had higher carbon source utilization rate than the microbial community inside the cave. 16S
rRNA amplicon sequence analysis demonstrated, among eight predominant bacterial phylum Planc-
tomycetes, Proteobacteria, Cyanobacteria, and Nitrospirae were predominantly associated with
outside-cave samples, whereas Acidobacteria, Actinobacteria, Chloroflexi, and Gemmatimonadetes
were associated with inside-cave samples. Functional prediction showed bacterial communities
both inside and outside of the cave were functionally involved in the metabolism of carbohydrates,
amino acids, lipids, xenobiotic compounds, energy metabolism, and environmental information
processing. However, the amino acid and carbohydrate metabolic pathways were predominantly
linked to the outside-cave samples, while xenobiotic compounds, lipids, other amino acids, and
energy metabolism were associated with inside-cave samples. Overall, a positive correlation was ob-
served between Biolog EcoPlate™ assay carbon utilization and the abundance of functional metabolic
pathways in this study.

Keywords: microbial community; Biolog EcoPlate™ assay; 16S RNA amplicon; hylogenetic
investigation of communities by reconstruction of unobserved states (PICRUSt); functional metabolic
pathway prediction; limestone

1. Introduction

Microbes-associated biomineralization is a widespread phenomenon in regions rich
in limestone, and ultimately leads to the precipitation of calcium carbonate [1]. In this
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process, the available nucleation sites are one of the prime governing factors along with
the concentration of calcium ions, dissolved inorganic matter, and the pH of that particular
atmosphere [2]. As such, the growth and metabolic activity of microbes can ubiquitously
speed up the biomineralization process by providing more nucleation sites for CaCO3
precipitation in such an environment [3,4]. The efficiency of exogenous carbon source
utilization from soil organic carbon (SOC) could be an embracive signature of microbial
community metabolic characteristics and their growth [5]. Thus, previous studies reported
that the growth of bacteria cells and their metabolism are strongly influenced by diverse
carbon source catabolism activity, because it may deliver the building block metabolites
and energy for them [6,7]. In this aspect, the pool of SOC might be different according to
the variations of natural earth crust structures, which are promotionally allied with the
amount of soil microbial biomass [8,9]. However, the assimilation or uptake of carbon
from the environment is considered the key factor for microbial-mediated calcification in
limestone [10].

In terrestrial limestone-rich habitats, the majority of heterotopic calcite-precipitated
bacteria play a role in the carbon cycle via the utilization of soil organic matter (SOM) from
organic matter [11]. Based on its molecular mass, SOM can be traditionally categorized as
either low-molecular-weight (LMW) or high-molecular-weight (HMW) [12]. Furthermore,
carbohydrates, organic/amino acids, proteins, siderophores, lipids, phenolics, hormones,
and vitamins, among others, can be categorized into different classes of LMW compounds,
and have relatively less persistence in terrestrial ecosystems due to their higher uptake and
metabolisms by soil microbiota [13]. These are formed during the partial decomposition
and conversion of plant inputs, such as root exudates and upper and lower-ground litter
by soil organisms [14]. Caves are considered extreme environments due to the absence of
sunlight. Here, no photosynthesis occurs, resulting in oligotrophic conditions [15]. Non-
photosynthetic primary production is always carried out by several chemoautotrophic
microbes and supporting other bacteria groups to be sustained [16]. The previous report
regarding such an environment emphasized that some heterotopic bacteria, which might
be in the presence of Ca ions and CO2, can construct calcium carbonate via decomposition
of urea by urease enzyme [17,18]. In such nutrient-limited ecosystems, a small amount
of allochthonous carbon can accumulate with the help of surface runoff and vadose-zone
leaching from photic surface environments, including macrofaunal activity, which act
as pioneer organic matter sources, leading to the microbial biomineralization of calcium
carbonate [19,20].

As substrates of Biolog EcoPlate™ also belong to LMW carbon compounds, it would
be a promising technique and powerful analytical tool to determine the carbon catabolism
ability outlook of heterotopic bacteria during their cell growth process in plate condi-
tions [21]. This approach characterizes the metabolic diversity of environmental samples
using community-level physiological profiling (CLPP) [22,23]. The Biolog EcoPlate™ assay
plate consists of 31 most-useable carbon sources in triplicate order with tetrazolium redox
violet dye; during each substrate utilization through the inoculated microbiota commu-
nity, the dye converts into a purple color and denotes as subsequent carbon soles are
utilized [24]. Next-generation sequencing (NGS) is a revolutionary breakthrough, and
uses present decays as a robust culture-independent technique to explore the biodiversity
of complex environmental niches based on 16S rRNA targeting specific regions of DNA
sequences [25]. This 16S rRNA gene amplicon sequence is used to obtain prediction-based
phylogenetic structures of the uncultivated microbial community, metabolic pathway,
functional genes, and species diversity studies [26]. The phylogenetic investigation of com-
munities by the reconstruction of unobserved states (PICRUSt) analysis is a computational
approach to predict the functional potentiality of microbial groups based on 16S rRNA
hypervariable amplicon sequencing data. A reference genomic database was generally
linked with PICRUSt analysis to predict the functional role of unculturable prokaryotes
in a precise ecosystem [27,28]. Together with Biolog EcoPlate™ substrate utilization, 16S
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rRNA amplicon-based functional prediction data would be a compact approach to explore
the overall view on the microbial community’s metabolic fingerprint.

Organic matter has been reported to influence the microbial community associated
with biomineralization by several bacterial species [1]. Still, there is a lacuna on how it
can affect upon a microbiome’s communal metabolic fingerprint in such an environment.
Currently, no studies have characterized the microbiota inside and outside of caves in a
limestone-rich region using a community-level physiological profiling (CLPP) approach
in combination with 16S rRNA amplicon-based functional prediction analysis. In the
present study, the carbon catabolism patterns of microbial communities inside and outside
a limestone cave, as well as their functional diversity from a holistic point of view, were
investigated. To this end, the Biolog EcoPlate™ assay was used to determine the carbon
assimilation ability of limestone microbiota. Additionally, NGS was applied to the taxo-
nomic structure of the microbial community, and PICRUSt2 analysis was performed using
the KEGG (Kyoto Encyclopedia of Genes and Genomes) reference database to predict the
metabolic pathways of the microbial communities studied.

2. Materials and Methods
2.1. Sample Collection Information

The sampling site was located in the Tianliao district of Southern Taiwan. Rock
and soil samples were obtained from two different zones of the limestone-rich region,
according our sampling criteria: outside a limestone cave (22◦50′40′′ N; 120◦23′10′′ E)
and inside a limestone cave (22◦50′40′′ N; 120◦23′10′′ E), shown in Figure 1. In addition,
specific meteorological parameters, such as solar radiation intensity, ambient temperature,
humidity, and soil temperature, from the region of sample collection were recorded. Details
of the sampling information are provided in Supplementary Table S1. The rock samples
were collected from the surface area of the mother rock and stored in a pre-sterilized zipper
bag to avoid contamination. The soil samples were collected from beneath the topsoil (O
horizon) zone corresponding to the rock samples collected from the surrounding area and
stored as above. Ultimately, all samples were transported directly to the laboratory using a
temperature-controlled box.

2.2. Carbon Substrate Utilization Pattern

Community-level carbon substrate utilization patterns were determined for all soil
and rock samples using a commercial phenotyping microarray tool (Biolog EcoPlate™ Inc.,
Hayward, CA, USA). For sample pre treatment, an improved version of the experimental
protocol was used, according to the manufacturer’s instructions. Briefly, 2 g of soil and
rock samples were taken separately into 30-mL sterilized conical tubes, followed by 10 min
of vortexing with 19 mL of 1X sterilized phosphate buffer solution (PBS). The sample
tubes were mixed homogeneously with PBS by shaking for up to 1 h to release bacterial
cells, followed by 10 min of holding under static conditions to allow the soil particles to
settle down. Then, 2 mL of supernatant was taken carefully and a serial dilution of up
to 10-3-fold was performed to reduce the microbial load to obtain an efficient result and
consider similar cell concentration in each sample. Finally, 100 µL of suspension from the
10-3-fold dilution tube was inoculated into each well of a Biolog microplate and incubated
under dark conditions at 25 ◦C for 168 h. A suspension of pure cultured E. coli with the
same dilution as the sample was used as a positive control, while double-distilled water
was used as a negative control, and inoculated into the corresponding microplate wells.

To determine the substrate utilization pattern of the microbial communities sampled,
the optical density (OD) of each incubated microplate was observed every 24 h at a
wavelength of 590 nm using a microplate reader (Multiskan™ FC Microplate Photometer;
Thermo Scientific, Loughborough, UK) [22]. Mathematical equations were used to calculate
the average well color development (AWCD) for each microplate, according to a previous
study [29]. The OD readings against each well were corrected using the OD reading of
water as a control. After correction, the negative readings were adjusted to zero. Lastly,
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based on substrate utilization patterns by microbes, the substrate utilization Shannon
diversity substrate richness (H) and evenness (D) were calculated, according to previous
studies [21,24,30].

Figure 1. Sampling area and site description.
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2.3. Microbial Genomic DNA Extraction

In order to obtain homogenized microbial genomic DNA, each sample was evenly
mixed, and large particles were segregated using a sieve to ensure complete homogeniza-
tion and DNA extraction. Then, 0.5 g of fine powder from the rock and soil samples were
inoculated into respective lysis tubes for the extraction of gDNA as per the protocol of
NucleoSpin® Soil, a commercial kit for gDNA extraction (MACHEREY-NAGEL GmbH &
Co., Düren, Germany), with some modifications: instead of single step elution, two elution
times were performed using 50 µL of SE buffer, followed by 1 min incubation and 30 s of
vortexing to obtain the maximum volume of DNA. Finally, the quantification and quality
of gDNA was assessed at 260/280 wavelength using a Nanodrop 1000 (Thermo Fisher
Scientific, Waltham, MA, USA). The extracted gDNA was stored at −20 ◦C until further
NGS analysis.

2.4. 16S rRNA Amplicon Library Preparation and Functional Prediction

The amplification of the 16S rRNA gene targeting V3-V4 regions gene sequence was
carried out by using the KAPA HiFi HotStart Ready Mix PCR kit, and primer information
is shown in Supplementary Table S4. Amplicon PCR amplification was performed using
Illumina’s MiSeq system (Illumina, San Diego, CA, USA) following a comprehensive pro-
tocol for paired-end sequencing, as described in a previous study [31]. After obtaining
the raw sequencing files from the NGS platform, the data were further analyzed using
the Qiime2 software package to characterize the microbial diversity at the phylum and
genus levels [32]. In short, the sequence data were trimmed to remove chimera and clus-
tered into Amplicon Sequence Variant (ASV) using a 97% threshold limit of similarity
with respect of Greengenes database. Lastly, the Qiime2 view was used to determine the
bacterial composition of each sample. Additionally, PICRUSt2 software based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) was used to predict the functional path-
ways associated with the microbial taxa within each community, as described previously
(http://picrust.github.io/picrust/, accessed on 1 May 2020) [33].

2.5. Data Visualization and Statistical Analysis

The Student T-test was used to show a statistically significant difference between
outside and inside-cave microbiota substrate utilization AWCD value, Shannon index
(H’), Simpson index (D), and Shannon evenness score in soil and rock samples. Addi-
tionally, Pearson’s correlation analysis was performed using SPSS (https://www.ibm.
com/products/spss-statistics, accessed on 5 May 2020) to determine the relationship be-
tween carbon source utilization and abundance of predicted functional pathway reads of
the microbial communities. To determine the association between bacterial taxonomies
and functional predictions, heatmaps with dendrograms were computed using the web-
based tool clustvist (https://biit.cs.ut.ee/clustvis/, accessed on 10 May 2020) and a mor-
pheus heatmap (https://software.broadinstitute.org/morpheus/, accessed on 13 May
2020). Principal component analysis (PCA) was conducted using canoco5.1 software
(http://www.canoco5.com/, accessed on 14 May 2020). The variations in the functional
metabolic pathways between each sample after PICRUSt2 analysis were visualized using
excel 2007 accessed on 14 May 2020.

3. Results
3.1. Variation in Average Well Color Development (AWCD) during Incubation Period

The average well color development (AWCD) curve was plotted during the incubation
period after the inoculation of the samples into the Biolog EcoPlate™, as shown in Figure 2.
The microbial communities of the samples collected from outside the cave (LR-01 and LS-01)
exhibited the highest AWCD kinetics, suggesting that the microbiota of these samples were
highly active in their use of different types of carbon sources during cell growth. Besides a
higher substrate utilization, Shannon diversity index (H) were found in this area’s samples
at the end of the incubation period (168 h), shown in Table 1. The microbial community

http://picrust.github.io/picrust/
https://www.ibm.com/products/spss-statistics
https://www.ibm.com/products/spss-statistics
https://biit.cs.ut.ee/clustvis/
https://software.broadinstitute.org/morpheus/
http://www.canoco5.com/


Microorganisms 2021, 9, 1789 6 of 16

in this area also indicated that they have a shorter lag phase period of cell growth. In
addition, substrate utilization Shannon evenness scores in these samples were 0.86 and
0.97 (Table 1). Conversely, rock and soil samples from inside the cave showed lower AWCD
rates than those collected outside of the cave (p < 0.05). This suggests that the microbial
community in this sampling zone was lacked the activity to utilize different types of
external carbon sources during cellular growth, resulting in a longer lag phase, as observed
in both samples. In particular, the rock microbiota sample required around 96 h to consume
a significant amount of Biolog EcoPlate™ substrates compared with the soil sample, which
was markedly faster (24–48 h). Furthermore, substrate utilization Shannon diversity index
and evenness scores of both the rock and soil samples in this area were low (H = 2.17,
2.65; Shannon evenness = 0.62, 0.76; p < 0.05). This analogous trend of carbon substrate
utilization between different sampling zones suggests that microclimate conditions have
an effect on the carbon source assimilation pattern of microbial communities. Additionally,
the positive control showed a certain AWCD value during the incubation period, while no
AWCD value was found for the negative control.

Figure 2. Changes in AWCD cure of all rock and soil samples according to different sample zones (LS1 and LR1, outside
cave; LS5 and LR5, inside cave). N = negative control, P = positive control.

Table 1. Substrate utilization diversity and evenness index among rock and soil samples according
to the different sampling zones.

Parameters LR-01 LS-01 LR-05 LS-05 p Value

AWCD 1.06 1.53 0.09 0.31 <0.05
Shannon
Index H’ 3.00 3.38 2.18 2.65 <0.05

Simpson
Index D 0.98 0.98 1.00 0.98 >0.05

Shannon
evenness 0.87 0.98 0.63 0.77 <0.05

LR-01, LS-01: outside the cave; LR-05, LS-05: inside the cave.
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3.2. Major Carbon Source Assimilation Pattern at End Point (168 h)

The 31 types of carbon substrates found in Biolog EcoPlate™ were grouped into six
major categories according to their biochemical properties: carbohydrates, amino acids,
carboxylic acids, polymers, amines, and phenols. The utilization capability of these six
categories, which was highest in the samples from outside the cave compared with the
samples taken from inside the cave, where the utilization rate was quite low, is shown in
Figure 3. The microbial communities in the rock and soil samples collected from outside
the cave were found to utilize carbohydrates, amino acids, carboxylic acid, and polymers
more commonly than amines and phenols. However, the higher degree of carbohydrate
and carboxylic acid utilization was more closely associated with the soil microbiota than
the rock microbiota. By contrast, although the microbial communities of the rock and
soil samples collected from inside the cave initially consumed less of the major groups
of carbon substrates, they showed a considerable utilization at the end of the incubation
period (168 h), indicating that these microbes are also able to catabolize carbohydrates,
amino acids, carboxylic acids, and polymers with a significantly slower utilization rate
during cellular growth. Furthermore, the microbial communities of the soil samples
showed a faster rate of amino acid, carbohydrate, and carboxylic acid assimilation than the
rock samples inside the cave, followed by amines and phenols. Notably, polymers were
used up more by the microbiota of the rock samples than the microbiota of the soil samples
inside the cave.

Figure 3. Major carbon source metabolic patterns at the incubation end point (168 h) of all rock and
soil samples according to the different sampling zones (LS1 and LR1, outside cave; LS5 and LR5,
inside cave).

3.3. Analysis of Bacterial Community Compositions and Distribution Patterns Using 16S rRNA
Amplicon-Based Techniques

The bacterial compositions of the microbiota of the soil and rock samples both outside
and inside the cave are shown in Figure 4 at the phylum level. A total of 27 classified taxa
at phylum level were detected using 16S rRNA amplicon data across all samples, with
similar beta diversity patterns (Supplementary Figure S1 and Supplementary Table S5).
Among these, Proteobacteria, Acidobacteria, Actinobacteria, and Planctomycetes were the
most predominant, followed by Nitrospirae, Chloroflexi, and Gemmatimonadetes in all
of the samples, except Cyanobacteria, which was only present in the samples collected
outside the cave. However, the relative abundance of Cyanobacteria was higher in the soil
samples (9.33%) than the rock samples (2.59%). The relative abundance of Proteobacteria,
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Planctomycetes, Actinobacteria, and Acidobacteria was 12.75% and 13.60%, 26.61%, and
32.07%, 18.23% and 6.94%, and 8.08% and 13.05% in the samples collected from rock and
soil outside the cave, respectively. By comparison, the relative abundance of Actinobacte-
ria, Acidobacteria, and Proteobacteria were 26.98% and 21.37%, 17.68% and 17.81%, and
21.97% and 21.67% in the rock and soil samples collected inside the cave, respectively.
Pearson’s correlation test was used to determine the effect of key environmental factors
(e.g., sunlight, humidity, and temperature) on the distribution pattern of the bacteria iden-
tified. Planctomycetes, Proteobacteria, and Cyanobacteria were found to be significantly
positively correlated with sunlight, while humidity was found to be negatively correlated
(Supplementary Table S2). Actinobacteria showed an inverse relationship with sunlight
and humidity compared with the abovementioned phyla. Dendrogram plot was con-
structed using a heatmap to visualize the distribution pattern of the bacteria at the genus
level (Supplementary Figure S2). As a result, two separates of clusters were observed, each
denoting one of the two different zones of our sampling criteria: cluster 1 was found to be
closely related to the bacterial genus diversity of the rock and soil samples collected from
the inside cave, and cluster 2 represented the genus level distribution of the microbiota
of the rock and soil samples collected from outside the cave. Thus, the different types of
sampling zones showed similar types of bacterial genus diversity distribution patterns.

Figure 4. Major bacterial phylum relative abundance of rock and soil samples collected outside the
cave (LR-01 and LS-01) and inside the cave (LR-05 and LS-05).

3.4. Correlation between Predicted Functional Pathways and Carbon Utilization Pattern

PICRUSt2 was used to predict the potential metabolic functions of the microbial com-
munities in the samples using 16S rRNA amplicon sequence data. The aim of this analysis
was to identify the KEGG pathways associated with the metabolism of LMW organic
compounds indirectly involved in calcium carbonate formation. The functional prediction
analysis revealed the presence of metabolic pathways, including carbohydrates, amino
acids, other amino acids, and lipids, or xenobiotic compounds, including energy utilization
and membrane transport, both within the samples collected from inside and outside the
cave. Among these metabolic pathways, carbohydrate metabolism was found to be the
predominant function, followed by amino acid metabolism, in all of the samples, as shown
in Figure 5A. However, other metabolic functions, including membrane transport, energy
metabolism, xenobiotics biodegradation, metabolism, and lipid metabolism were found in
low proportions. Further categorization of the carbohydrate metabolism at KEGG level



Microorganisms 2021, 9, 1789 9 of 16

3 indicated the presence of major metabolic functions related to starch, sucrose, galactose,
amino sugars, nucleotide sugars, ascorbate, aldarate, the citrate cycle (TCA), and the pen-
tose phosphate pathway in samples collected both inside and outside the cave as shown in
Supplementary Table S3. Similarly, amino acid and other amino acid metabolisms were
further categorized up to KEGG level 3, which included arginine, proline, phenylalanine,
glycine, serine threonine, and glutathione as major functions. Lipid catabolism may be
carried out by glycerophospholipid metabolism, while xenobiotic-related metabolism was
utilized through bisphenol and benzoate degradation pathways. In addition, the carbon
fixation pathway and methane metabolism were the main energy utilization pathways in
the diversity structure of the microbiota from inside and outside the cave. Moreover, the
ABC transporter was predominately found as a major function in the membrane transport
pathway, which had a relatively higher abundance in the samples collected outside the
cave compared to those collected inside the cave (Figure 5B). Furthermore, Pearson’s
correlation statistical approach was used to evaluate the relationship between extracellular
carbon source uptake and the utilization capabilities of the microbial community with
their predicted metabolic functions, shown in Figure 6. The correlation analysis revealed
that, among all predicted metabolic pathways, starch, sucrose, amino sugars, nucleotide
sugars, glycerophospholipid metabolism, and benzoate degradation had a strong positive
correlation with extracellular carbon utilization (p ≤ 0.05). Additionally, the carbon fixa-
tion pathway, methane metabolism, and ABC transporter were also positively correlated
with extracellular carbon metabolic potential. However, several metabolic functions, in-
cluding photosynthesis antenna proteins, phenylalanine, arginine, proline ascorbate, the
aldarate pentose phosphate pathway, and galactose phosphate, were found to be negatively
correlated with Biolog EcoPlate™ carbon substrate utilization.

Figure 5. (A) Visualization of predicted major metabolic pathway categories relative to the abundance of each sample,
including environmental information processing. (B) Presence of environmental information processing (ABC transporter)
genes in samples collected outside and inside the cave using PICRUSt2 analysis.
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Figure 6. Visualization of Pearson’s correlation statistical test between 31 Biolog EcoPlate™ carbon sources utilization and
related predicted functional KEGG pathway abundance of bacterial communities in all over the samples.

3.5. Visualization of Multivariate Analysis of Eco Plate and 16S rRNA Amplicon Data

PCA analysis was conducted for the bacterial communities found both outside and
inside the cave, performed with their major carbon source utilization pattern in Biolog
EcoPlate™ against the incubation period (168 h) and predicted KEGG metabolic func-
tions associated with carbon metabolism. Planctomycetes, Proteobacteria, Cyanobacteria,
and Nitrospirae were strongly associated with the samples collected outside the cave,
in which sunlight was a key determining factor (Figure 7). Additionally, the bacteria of
this sampling zone were found to be involved in the utilization of the majority of carbon
sources. These bacteria were predominantly associated with two important metabolic
functions, namely the amino acid and carbohydrate metabolism. However, Acidobacteria,
Actinobacteria, Chloroflexi, and Gemmatimonadetes were more closely associated with the
soil and rock samples collected inside the cave. In Figure 7, the arrows, which represent the
different types of carbon source utilization patterns, were not correlated with sunlight, but
rather other environmental parameters, including humidity and temperature. The lipid
metabolism, other amino acids, and energy metabolism pathways (e.g., carbon fixation
pathways in prokaryotes and methane metabolisms) were found to be closely related with
the evolution of the microbial communities and environmental information processing
inside the cave.
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Figure 7. Principle component analysis of major carbon sources (AA, amino acids; AM, amines; PL,
polymers; CA, carboxylic acid; CH, carbohydrates; PH, phenols) with predicted KEGG pathways
(XBM, Xenobiotic biodegradation and metabolisms; AAM, amino acid metabolism; CM, carbohydrate
metabolism; LM, lipid metabolism; EM, energy metabolism; OAAM, other amino acid metabolism;
MT, membrane transport), including major bacterial phylum (P1, Planctomycetes; P2, Proteobacteria;
P3, Acidobacteria; P4, Actinobacteria; P5, Nitrospirae; P6, Chloroflexi, P7, Gemmatimonadetes; P8,
Cyanobacteria) against the environmental parameters.

4. Discussion

The use of Biolog EcoPlate™ is highly convenient to measure community-level micro-
bial catabolic activity and diversity in terms of substrate utilization in a variety of complex
environmental samples. However, it has some limitations, such as its ineffectiveness on
aquatic samples, the sensitivity of redox dye against temperature, and its efficiency on
heterotrophic bacteria [34]. However, in our field of study, it is rarely used and represents
a completely novel approach [24]. In the present study, the microbiota from soil and
rock samples collected outside of a limestone cave showed the highest rate of AWCD,
compared with samples collected inside the cave, which showed a relatively low AWCD
curve. In addition, fluctuations in the AWCD curves were also observed in the microbial
communities of different sample types (rock and soil) within the same sampling zone. With
regards to the difference observed in the AWCD patterns between sampling environments
(i.e., outside and inside the cave), the microbial communities found outside of the cave
were highly metabolically active, consuming and up taking carbon from the environment
to fuel catabolic activity during cell growth. Previous studies have also reported that,
in terrestrial environments, sunlight is the most influential factor for the production of
simple organic carbon via photodegradation, resulting in a higher metabolic activity in
microorganisms [35,36]. Similarly, in a study on permafrost, another extreme environment,
the authors found that sunlight exposure can enhance the microbial respiration rate up to
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>40% compared with dark areas, mediated by dissolved organic carbon [37]. In this context,
the absence of solar radiation may be responsible for the low levels of photodegradation
within cave environments. This leads to the formation of oligotrophic conditions, which
ultimately inhibit organic carbon-mediated microbial functions and the catabolic rate of the
microbial communities [37,38]. Thus, according to our results, the microbial communities
inside caves poorly uptake carbon from external sources, resulting in lower AWCD curves.
Additionally, due to their inefficient catabolic activity, these microbial communities may not
be able to produce sufficient NADH during respiration, resulting in a reduced tetrazolium
dye reduction in the Biolog EcoPlate™ plate during the 7-day incubation period, and a
lower AWCD pattern [39].

In addition to the main six groups of carbon sources utilized by the microbial com-
munities, our results showed that, among 31 carbon substrates, the utilization of carbon
from carbohydrates, amino acids, and carboxylic acid groups was markedly higher in the
microbial communities outside the cave. Although the microbial communities inside the
cave also utilized these carbon substrates, the level of utilization was much lower than
that of bacteria outside the cave. These results are in accordance with a previous study on
soil microbial ecology, which found that carbohydrates, amino acids, and carboxylic acids
belong to the LMW organic substance (LMWOS) class, which are preferentially taken up by
bacteria found in soil for cellular activity, producing CO2 as a by-product [40]. These three
groups of LMWOS are utilized by bacteria because of their high demand for carbon for
anabolic products during cell mass development, which are also incorporated into the citric
acid cycle, glycolysis, and the pentose phosphate pathway [29]. However, the dark condi-
tions inside caves hamper sunlight-based primary productivity and the decomposition of
these three major classes of LMWOS, leading to low concentrations inside caves, despite
the input of allochthonous carbon from outside caves [41]. We suggest that the oligotrophic
condition could contribute to the LMWOS stress situation in the inside-cave environment.
Therefore, the microbial community of inside cave in this study was not adapted to the
utilization of carbohydrates, amino acids, or carboxylic acid groups as carbon sources, and
showed a low utilization pattern for these three groups of substrates.

According to Illumina-based 16S rRNA amplicon data analysis, Proteobacteria, Aci-
dobacteria, Actinobacteria, and Planctomycetes were the predominant groups of phyla,
followed by Nitrospirae, Chloroflexi, and Gemmatimonadetes, across all samples, irrespec-
tive of the sampling area. However, Cyanobacteria was the only phylum that was present
in both rock and soil samples outside of the cave. Among these major actinobacteria,
Acidobacteria, Chloroflexi, and Gemmatimonadetes were mainly associated with sampling
inside the cave. This is in accordance with the results of a shotgun metagenomic study
on the diversity of the microbial community inside a Manao-Pee cave in Thailand. This
study found that actinobacteria and proteobacteria were predominantly associated with the
limestone sample. However, in their study, Bacteroidetes, Firmicutes, Acidobacteria, Planc-
tomycetes, Chloroflexi, Gemmatimonadetes, and Cyanobacteria were less abundant [15].
Additionally, another previous study based on metagenomic analysis of the microbial
community of limestone reported a phylum level distribution and abundance similar to
that found in the present study [42]. In addition, Meier et al., (2017) also found that a
similar distribution pattern of microbial diversity at the phylum level associated with the
microbial communities of soil and rock samples in regions rich in limestone. They found
that Proteobacteria was predominant in the soil samples, while Proteobacteria, Actinobac-
teria, Bacteroidetes, and Firmicutes were predominant in the rock samples [43]. In the
present study, among the identified phyla, Actinobacteria, Acidobacteria, Chloroflexi, and
Gemmatimonadetes were found to be negatively correlated with sunlight, suggesting that
these microbes use light-independent metabolic pathways. Microorganisms associated
with dark and nutrient-poor cave areas are able to survive easily in this type of environ-
ment due to their chemoautotrophic mechanisms [44]. In fact, the majority of bacterial
communities found in extreme environments are associated with nitrogen-, sulfur-, and
methane-based chemoautotrophic pathways [45].
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According to functional prediction analysis, the abundance of LMW organic com-
pounds related metabolic pathways reads such as carbohydrates, amino acids, other amino
acids, and lipids were predominating across all samples irrespective of the sampling area.
This result suggests that microbial communities are able to utilize organic carbon sources
for their metabolism. Previous studies have also demonstrated that the carbohydrate and
amino acid metabolisms are the most dominant metabolic pathways associated with the mi-
crobial communities found in caves [15,27]. The higher contribution of these LMW organic
compounds to the metabolic pathways of soil and rock samples collected outside the cave
demonstrates that these were more functional than those from inside the cave, which is
reflected by the utilization of the carbon sources from the Biolog EcoPlate™ by the different
bacterial communities. Conversely, even though the bacterial communities inside the cave
also had LMW organic compounds-related metabolic pathways, they did not show high
levels of utilization activity for the different carbon sources in the Biolog EcoPlate™ assays.
This suggests that oligotrophic situations inside caves ecosystems might be LMW organic
compound-related metabolic pathways that are non-functional in real cases. Previous
studies have found that the ABC transporter, which plays a key role in the uptake of LMW
organic compounds from the environment, was relatively less abundant among the micro-
bial communities found inside caves, which may explain their lower AWCD curves [46,47].
In addition, the methane-linked energy metabolic pathway, including a small amount of
carbon fixation pathways, was found to be predominant in the bacterial communities of
the cave samples. This could imply that bacteria found in caves can use methane as an al-
ternative source of carbon, engaging in primary production via the chemolithoautotrophic
pathway [15]. Previous studies have also shown that ABC transporter-associated genes are
expressed at comparatively lower levels in autotrophic bacteria [48,49]. In this context, this
study also considered the chemolithoautotrophic pathway, which is an autotropic pathway,
dominant in the bacterial communities of inside-cave samples.

5. Conclusions

This study demonstrated that environmental factors greatly influence the taxonomic
and physiological distribution of microbial communities in extreme ecosystems, such as
limestone caves. These communities of bacteria use alternative sources of micronutrients
from their environment for cellular growth, and ultimately participate in primary pro-
duction to support higher-order organisms. The results of the Biolog EcoPlate™ assays
showed that the microbial communities outside caves consumed simpler forms of different
carbon sources, such as carbohydrates, amino acids, and carboxylic acids, than those inside
caves. In contrast, specific bacterial groups, such as Actinobacteria, Proteobacteria, and
Acidobacteria, could adapt to oligotrophic conditions by using alternative energy metabolic
pathways, collectively known as chemoautotrophs, and were found to be the dominant
phyla inside the caves. In the present study, the methane-based chemoautotrophic pathway
was found to play a leading role in primary production by these bacterial communities,
while the LMW organic compound-dependent primary production was probably non-
functional in the dark oligotrophic conditions of inside-cave areas.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9081789/s1, Figure S1: Abundance of bacteria phylum in all rock and
samples Figure S2: Heatmap analysis with dendrogram plot at the genus level for all samples,
Table S1: Details of sampling environmental conditions, Table S2: Pearson’s correlation test against
predominant bacteria phylum with environmental factors, Table S3: KEGG pathway normalized
reads for rock and soil samples collected outside and inside the cave, Table S4: Primer information
list, Table S5: Microbial community beta diversity index.

https://www.mdpi.com/article/10.3390/microorganisms9081789/s1
https://www.mdpi.com/article/10.3390/microorganisms9081789/s1


Microorganisms 2021, 9, 1789 14 of 16

Author Contributions: Conceptualization, S.K., B.-M.H., C.-W.T. and J.-S.C.; methodology, C.-W.F.,
B.H. and T.-H.C.; software, V.N., S.K. and J.-S.C.; validation, C.-W.F., C.-W.T., J.-S.C. and B.-M.H.;
formal analysis, S.K. and T.-H.C.; investigation, S.K., B.H. and C.-W.F.; resources, J.-S.C. and B.-M.H.;
data curation, V.N., S.K. and C.-W.T.; writing—original draft preparation, S.K., C.-W.T. and J.-S.C.;
writing—review and editing, B.-M.H.; visualization, B.H., V.N. and C.-W.F.; supervision, S.K., C.-W.T.
and J.-S.C.; project administration, B.-M.H.; funding acquisition, C.-W.T. and B.-M.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of Taiwan (MOST
109-2116-M-194-013-) and Ditmanson Medical Foundation Chia-Yi Christian Hospital-Nation Chung
Cheng University Joint Research Program (CYCH-CCU-2021-05; R110-26).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: This research was thanks for the Center for Innovative Research on Aging
Society (CIRAS) from The Featured Areas Research Center Program within the framework of the
Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Seifan, M.; Berenjian, A. Microbially induced calcium carbonate precipitation: A widespread phenomenon in the biological world.

Appl. Microbiol. Biotechnol. 2019, 103, 4693–4708. [CrossRef]
2. Reddy, M.S. Biomineralization of calcium carbonates and their engineered applications: A review. Front. Microbiol. 2013, 4, 314.
3. Kim, Y.; Roh, Y. Microbially Induced Carbonate Precipitation Using Microorganisms Enriched from Calcareous Materials in

Marine Environments and Their Metabolites. Minerals 2019, 9, 722. [CrossRef]
4. Anbu, P.; Kang, C.-H.; Shin, Y.-J.; So, J.-S. Formations of calcium carbonate minerals by bacteria and its multiple applications.

SpringerPlus 2016, 5, 1–26. [CrossRef]
5. Haiming, T.; Xiaoping, X.; Chao, L.; Xiaochen, P.; Kaikai, C.; Weiyan, L.; Ke, W. Microbial carbon source utilization in rice

rhizosphere and nonrhizosphere soils with short-term manure N input rate in paddy field. Sci. Rep. 2020, 10, 6487–6489.
[CrossRef]

6. Waschina, S.; D’Souza, G.G.; Kost, C.; Kaleta, C. Metabolic network architecture and carbon source determine metabolite
production costs. FEBS J. 2016, 283, 2149–2163. [CrossRef]

7. Chen, M.; Qiu, T.; Sun, Y.; Song, Y.; Wang, X.; Gao, M. Diversity of tetracycline- and erythromycin-resistant bacteria in aerosols
and manures from four types of animal farms in China. Environ. Sci. Pollut. Res. 2019, 26, 24213–24222. [CrossRef]

8. Sutfin, N.A.; Wohl, E.E.; Dwire, K.A. Banking carbon: A review of organic carbon storage and physical factors influencing
retention in floodplains and riparian ecosystems. Earth Surf. Process. Landf. 2015, 41, 38–60. [CrossRef]

9. Babur, E.; Dindaroglu, T. Seasonal Changes of Soil Organic Carbon and Microbial Biomass Carbon in Different Forest Ecosystems.
In Environmental Factors Affecting Human Health; IntechOpen: London, UK, 2020.

10. DeJong, J.T.; Soga, K.; Banwart, S.A.; Whalley, W.R.; Ginn, T.R.; Nelson, D.C.; Mortensen, B.M.; Martinez, B.C.; Barkouki, T. Soil
engineering in vivo: Harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions. J. R. Soc.
Interface 2011, 8, 1–15. [CrossRef] [PubMed]

11. Chi, J.; Zhang, W.; Wang, L.; Putnis, C.V. Direct Observations of the Occlusion of Soil Organic Matter within Calcite. Environ. Sci.
Technol. 2019, 53, 8097–8104. [CrossRef]
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