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Simple Summary: Extracellular signal-regulated kinases1/2 (ERK1/2) plays a significant role in
regulating the reproductive processes of mammals. The goal of our research is to investigate the
expression and distribution of ERK1/2 in the main reproductive organs of the yak during different
stages. Using immunohistochemistry, western blot, and relative quantitative real-time polymerase
chain reaction techniques, we found that the expression of ERK1 and ERK2 proteins and their mRNA
in the yak’s ovary, oviduct, and uterus varies with the stage of the reproductive cycle. The variation
character of ERK1 and ERK 2 expression in the yak’s main reproductive organs during different stages
implies that they play an important role in regulating the reproductive functions under different
physiological statuses.

Abstract: The main reproductive organs undergo different histological appearances and physiological
processes under different reproductive statuses. The variation of these organs depends on a delicate
regulation of cell proliferation, differentiation, and apoptosis. Extracellular signal-regulated kinases1/2
(ERK1/2) are members of the mitogen-activated protein kinase (MAPK) super family. They have
important roles in regulating various biological processes of different cells, tissues, and organ types.
Activated ERK1/2 generally promotes cell survival, but under certain conditions, ERK1/2 also have the
function of inducing apoptosis. It is widely believed that ERK1/2 play a significant role in regulating
the reproductive processes of mammals. The goal of our research is to investigate the expression and
distribution of ERK1/2 in the yak’s main reproductive organs during different stages. In the present
study, samples of the ovary, oviduct, and uterus of 15 adult female yak were collected and used
in the experiment. The ERK1/2 proteins, localization, and quantitative expression of their mRNA
were investigated using immunohistochemistry (IHC), western blot (WB) and relative quantitative
real-time polymerase chain reaction (RT-PCR). The results indicated that ERK1/2 proteins and their
mRNA were highly expressed in the ovary of the luteal phase and gestation period, in the oviduct of
the luteal phase, and in the uterus of the luteal phase and gestation period. Immunohistochemical
analysis revealed a strong distribution of ERK1/2 proteins in follicular granulosa cells, granular luteal
cells, villous epithelial cells of the oviduct, endometrial glandular epithelium, and luminal epithelium.
These results demonstrated that the expression of ERK1 and ERK2 proteins and their mRNA in
the yak’s ovary, oviduct, and uterus varies with the stage of the reproductive cycle. The variation
character of ERK1 and ERK 2 expression in the yak’s main reproductive organs during different
stages implies that they play an important role in regulating the reproductive function under different
physiological statuses.
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1. Introduction

Extracellular signal-regulated kinases (ERKs) are an important subfamily of mitogen-activated
protein kinases (MAPKs), which regulate various cellular activities and physiological processes.
Originally, the ERK gene was isolated from the expression library of human gastric cancer in 1993 [1,2],
and it was recognized as a genomic DNA, encoding a sequence of the receptor protein-tyrosine
kinase. The ERK gene is evolutionarily conserved, and is found in all eukaryotes, from yeast
to humans [3]. Activated ERK mediates extracellular signals (transferring from cell membrane
receptors to cytoplasm and nuclear effectors) and regulates some specific gene expression by
phosphorylating transcription factors; thus, participates in the regulation of cell growth, development,
differentiation, and proliferation. By now, it is well known that the classical ERK cascade consists
of Rafs (MAP3K), mitogen-activated protein kinase 1/2 (MEK1/2), extracellular signal-regulated
kinases1/2 (ERK1/2), and several MAPK-activating protein kinases (MAPKAPKs) [4]. ERK1/2, also
known as mitogen-activated protein kinases 3 and 1 (MAPK3/1), is one of the major MAPK cascades.
Thus, MEK1/2, MAP3Ks, and other upstream signals can persistently, or transiently, activate ERK1/2.
Activated ERK1/2 generally promote cell survival, but under certain conditions, ERK1/2 also have the
function of inducing apoptosis [5].Many different stimuli, including growth factors [6], radiation [7,8],
osmotic stress [9,10], Fas ligand [11], nitric oxide [12], and hydrogen peroxide [13] activate the ERK1/2
pathway. Remarkably, some researchers have indicated that activated ERK1/2 can inhibit apoptosis
induced by hypoxia condition [14–17]. Thus, it is widely believed that ERK1/2 play an important
role in mammalian organ development, incorporating with cellular proliferation, differentiation,
migration, fate determination, growth, and apoptosis [18]. There are a number of materials reporting
the expression of ERK1 and ERK2 in almost all kinds of tissues and cells, such as the brain, lung,
gastrointestinal tract, testis, and some kind of cancer cells [19]. In an overall view, the function and
mechanism of ERK1/2 vary under different circumstances and physiological statuses [20]. Similarly,
some experiments have shown that the expression of ERK1 and ERK2 are widely presented in different
parts of the reproductive organs in mammals and poultry [21–32]. However, the whole profile and
specific role of ERK1/2 expression in reproductive organs, along with the different reproductive cycle
stages, have not yet been detected and analyzed clearly in mammals.

The yak (Bos grunniens) is a kind of seasonal breeding-mammal that is mostly allocated around the
Qinghai-Tibet Plateau [33]. Because of their predominant adaptability to high altitude, cold conditions,
nutrition deficiency, and hypoxia environments, yaks have always been believed to be the most
important means of production and livelihood of local herdsmen [34]. However, affected by formidable
natural conditions, the yak presents a very low reproductive efficiency. The majority of them
can give birth only once every two years or twice every three years [35,36]. Therefore, it is an
important aspect—for improving the reproductive efficiency—to investigate the regulation of breeding
activities [37–39]. Similar to other mammals, the female reproductive organs of adult yaks experience
cyclic variation during different stages of their reproductive cycles. Ovary follicle development,
corpus luteum generation, luteolysis, uterine distention, and placentation take place at specific
periods [22,40,41]. Along with the reproductive cycle, numerous cells, such as ovarian granular cells,
luteal cells, endometrial epithelium cells, and endometrial stromal cells experience proliferation or
apoptosis [42]. As previously noted, ERK1/2 are involved in cell growth, differentiation, and apoptosis.
All of these processes occur in the ovary and uterus during normal reproductive cycles. Therefore,
it should be an attractive prospect to explore the roles and regulatory mechanisms of ERK1/2 in yak
reproduction. We hypothesized that the abundance of ERKs would fluctuate in the reproductive tract
during the different reproductive situations.



Animals 2020, 10, 334 3 of 14

2. Materials and Methods

2.1. Samples of Yak’s Reproducitve Organs

All procedures involving animals were approved by the Animal Care and Use Committee of
Gansu Agricultural University. Samples of ovaries, oviducts, and uterus were incised from yaks
(5 yaks per group) within 10 min after being slaughtered, in Xining abattoir of Qinghai Province,
China. The yaks used for sample collection were estimated to be between 5 and 8 years old, were
inspected to have no clinical disease, and no obvious pathological changes. For mRNA and protein
analysis of ERK1/2 expression using WB and RT-PCR, tissue samples were immersed into liquid
nitrogen for storage immediately after washing with 0.1% diethylpyrocarbonate (DEPC) reated water.
Another tissue sample of the same yak was cut into small pieces and fixed with 4% paraformaldehyde
phosphate buffer (pH 7.3) in 4 ◦C, at least 2 weeks before subsequent use.

According to the status of the yak’s reproductive organ, we divided these tissue samples into
3 groups. The follicular phase group: there was only one ≥10.0 mm follicle and no macroscopically
corpus luteum in both ovaries; the two uterine horns were symmetric and not dilated. The luteal
phase group: there was only one ≥10.0 mm functional corpus luteum and no >8.0 mm follicle. Smaller
luteum existed in both ovaries, and the two uterine horns were symmetric, not dilated. The gestation
period group: functional corpus luteum was present in one of the two ovaries; one side of the uterine
horns was obviously dilated and contained fetal.

2.2. erk1 and erk2 Gene Expression Analysis

Total RNA of yak tissue samples of every group were extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA). Experion RNA StdSens Analysis Kit (BioRad, Munich, Germany) was used
for total RNA quality and quantity assessment on Experion Automated Electrophoresis Station
(BioRad, Munich, Germany). The value of RNA quality indicator (RQI) adopted was between 5 and
10. To avoid genomic DNA contamination, enzymatic digestion was performed with RNase-free
DNase I (Omega, Norcross, GA, USA). Subsequently, with MOligo-dT18 primers, total RNA was
reverse transcribed into cDNA using RevertAid first Strand cDNA Synthesis Kit (Promega, Mannheim,
Germany). For relative quantitative analysis of gene expression, the erk1 and erk2 primers were
designed according to bovine sequences (NM001110018.1, NM175793.2), and β-actinprimers were
designed based on the yak sequences (NM001034034.2). erk1 (F: 5′-ATCCCTTGGCTGTCG-3′, R:
5′–AGGCGTTTCCATTCGT-3′). erk2 (F: 5′-ATCCCTTGGCTGTCG-3′, R: 5′-AGGCGTTTCCATTCGT-3′).
β-actin(F: 5′-AGGCTGTGCTGTCCCTGTATG-3′, R: 5′–GCTCGGCTGTGGTGGTAAA-3′). The predicted
product length of these primers was 107, 111, and 187 bp, respectively. Real-time fluorescent quantitative
PCR system (Light Cycler 480, Roche, Germany) was used to perform Real Time PCR analysis,
as previously described [41]. Briefly, 200 ng of total cDNA was amplified in a 20 µL reaction mixture
containing 10 µL SYBR Premix Dimer Eraser (Promega, Mannheim, Germany) and 100 nM of forward
and reverse primer. The optimized 0conditions of RT-PCR were listed as below: pre-denaturation
at 95 ◦C for 4 min, denaturing 40 cycles at 95 ◦C for 30 s, annealing at 58 ◦C for 30 s, and extension
fluorescence acquisition at 72 ◦C for 25 s. The specificity analysis was performed through melting curve
from 65 ◦C to 95 ◦C in 0.5 ◦C steps, each lasting 5 s, and the product was conduct electrophoresis in 2.5%
agarose gel to confirm correct size.

2.3. The Quantitative Analysis of ERK1/2 Proteins Expression

For quantitative analysis of ERK1 and ERK2 proteins expression, frozen tissues were taken
out of liquid nitrogen. After, they were washed with cold phosphate buffer saline (PBS) for three
times. The total proteins of samples were extracted using Beyotime extraction buffer, and the protein
concentration was detected via Bradford assay kit (Bio-Rad, Hercules, CA, USA). Then, the protein
suspension was conducted, electrophoresis (PAGE), filled on 10% SDS-PAGE gel. Subsequently,
separated proteins were electrophoretically transferred onto enhanced chemiluminescence (ECL)
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polyvinylidene fluoride (PVDF) membranes (Amersham, Piscataway, NJ, USA), using a mini transfer
instrument for electrophoresis (Bio-Rad, Hercules, CA, USA) at 300 mA for 90 min. After, it was
blocked with Tris-buffered saline (contained 5% non-fat dry milk and 0.1% Tween-20) the protein was
incubated with a primary antibody against ERK1/2 (p44/42 MAPKRabbit mAb, 4695 s, CST, Danvers,
MA, USA) and β-actin (ß-Actin Rabbit mAb, 4970 s, CST, Danvers, MA, USA) in Tris-buffered saline
at 37 ◦C for 2 h. After, it was washed in Tris-buffered saline, the protein reacted with a secondary
antibody (goat anti-rabbit immunoglobulin G conjugated with horseradish peroxidase, sc-2030, Santa
Cruz Biotechnology, Santa Cruz, CA, USA) under 37 ◦C for another 2 h. After it was washed with
Tris-buffered saline, the membrane reacted with ECL Substrate kit (ab65623, Abcam, Cambridge, UK).
For negative controls (were conducted using normal IgG reagent) replaced the primary antibodies.
The protein band’s intensity on the membranes was measured using the densitometric analysis
system (Bio-Rad, Hercules, CA, USA). Relative intensity of ERK1/2 proteins were normalized with
β-actin bands.

2.4. Localizational Analysis of ERK1/2 Proteins Expression

The localization of ERK1/2 proteins was analyzed on paraffin-embedded 4 µm tissue sections
using the immunohistochemical technique. At first, paraffin-embedded tissue sections were dewaxed
and rehydrated using gradient acetone and alcohol solution, and eliminated endogenous peroxidase
activity by incubating with 3% H2O2 for 5 min. Then, the tissue sections were immersed in citrate
buffer (pH 6.0) and boiled for 10 min to enhance the antigen activity. Subsequently, for reducing
non-specific binding of the primary antibody, sections were incubated with normal goat blocking
serum for 15 min after being thoroughly washed with PBS. After that, tissue sections were incubated
with primary antibody (1:450 diluted p44/42 MAPK Rabbit mAb, 4695 s, Cell Signaling Technology,
Inc., Danvers, MA, USA) at 37 ◦C for 120 min, followed by incubation with secondary antibody
(biotinylated goat anti-rabbit IgG, Invitrogen Zymed Laboratories, Carlsbad, CA, USA) for 15 min at
37 ◦C. Then, sections were washed another three times in PBS and reacted with avidin-biotin peroxidase.
The immunoperoxidase color reaction was completed by adding 3,3′-diaminobenzidine agent (DAB,
Invitrogen Zymed Laboratories, Carlsbad, CA, USA) as substrate. After a moderate brown reaction
product presented, tissue sections were timely washed with PBS to stop color reaction. In the end, after
being counterstained with haematoxylin, tissue sections were mounted with resin, for observation
under microscope and storage. We also performed the negative controls experiment by replacing the
primary antibody with normal non-immune IgG agent.

2.5. Data Analysis

The relative quantity of erk1 and erk2 mRNA and protein expression are presented as fold increase,
where expression of target mRNA or proteins was divided by the expression of ß-Actin. The difference
of expression quantity between reproductive stages was analyzed by one-way ANOVA procedure using
SPSS 19.0 (SPSS Inc., Chicago, USA). It was considered to be statistically significant at a probability of
p < 0.05; meanwhile, extremely significant was defined as p < 0.01.

3. Results

3.1. mRNA Expression of erk1 and erk2 in Female Yak Reproductive Organs

A variation of erk1 and erk2 gene expression was detected in female yak reproduction organs
during different stages of the reproductive cycle. In the ovary, the erk1 gene expression was significantly
higher in the luteal phase (p < 0.05) and gestation period (p < 0.01) than the follicular phase. Similar to
erk1, the mRNA level of erk2 was also higher in the luteal phase compared with the follicular phase
and gestation period (p < 0.05), but no significant difference existed between gestation period and
follicular phase (p > 0.05). In the oviduct, the level of the erk1 gene expression was highest in the luteal
phase, which was significantly different with that in the follicular phase and gestation period (p < 0.05).
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However, the erk2 gene expression was extremely higher in the follicular phase than in the luteal phase
(p < 0.05) and gestation period (p < 0.01). In the uterus, the erk1 gene expression was extremely higher
in the luteal phase and gestation period than in the follicular phase (p < 0.05), although no significant
difference was found between the luteal phase and gestation period. Similarly, the level of erk2 gene
expression was also higher in the luteal phase and gestation period than that in the follicular phase
(p < 0.05) (Figure 1).

Figure 1. Expression of extracellular signal-regulated kinase (ERK)1 and ERK2 mRNA in female
reproductive organs at different stages. In a certain reproductive organ, the difference of the same
protein between a and b or b and c is significant (0.05 > p > 0.01), and the difference of the same protein
between a and c is extremely significant (p < 0.01).

3.2. ERK1 and ERK2 Protein Expression in the Female Yak’s Reproductive Organs

Both ERK1 and ERK2 proteins were detected using the western blotting technique.
The characteristics of ERK1 and ERK2 protein expression in the female yak’s reproductive organs
at different reproductive statuses were similar as their mRNA expression. In ovaries, the level of
ERK1 protein expression was nearly twofold of β-actin during the gestation period, while it only
approximated one-half of β-actin in the follicular phase. The difference between these two stages was
extremely significant (p < 0.01). The expression of ERK2 was higher in the luteal phase than that in the
follicular phase and gestation period (p < 0.05). A little higher ERK2 expression was also found in
the gestation period compared with the follicular phase, although there was no significant difference
between these two groups (p > 0.05). In the oviduct, the level of ERK1 protein expression was highest
in the luteal phase, which was significantly different with that in the follicular phase and gestation
period (p < 0.01). However, ERK2 protein expression was extremely higher, in both the follicular phase
and luteal phase, than that in the gestation period (p < 0.01). In the uterus, both ERK1 and ERK2
protein expressions were extremely higher in the luteal phase and gestation period, compared with the
follicular phase (p < 0.01), although the difference between the luteal phase and gestation period was
not significant (Figure 2).
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Figure 2. The western blot bands and expression analysis of ERK1, ERK2, and β-Actin proteins; 1, 2, 3:
ovary; 4, 5, 6: oviduct; 7, 8, 9: uterus; 1, 4, 7: follicular phase; 2, 5, 8: luteal phase; 3, 6, 9: gestation
period. Note: In certain reproductive organs, the difference of the same protein between a and b or b
and c is significant (0.05 > p > 0.01), and the difference of the same protein between a and c is extremely
significant (p < 0.01).

3.3. Immunolocalization of ERK1/2 Proteins in the Female Yak’s Reproductive Organs

Immunohistochemical analysis revealed a light to dense positive reaction accumulation of signals
for ERK1/2 proteins in the female yak’s reproductive organs under different reproductive statuses.
In the ovary, ERK1/2 proteins were mainly expressed in surface epithelium, follicular granulosa cells,
ovarian stroma, vascular endothelium, and corpus luteum. In particular, in the corpus luteum of the
gestation period, most granular luteal cells were stained into strong brown, while membranous luteal
cells were not stained. However, the overall signal intensity of ERK1/2 proteins in the ovary of the
luteal phase was less pronounced compared with that of the follicular phase and gestation period
(Figure 3A–C). In the oviduct, the positive accumulations of signals for ERK1/2 proteins localized
moderately in villous epithelial cells, and some dispersed villous stromal cells. The intensity of ERK1/2
proteins expression was slightly higher in the oviduct of the luteal phase and the follicular phase
compared with that of the gestation period (Figure 3E–G). In the uterus, the main compartments of
ERK1/2 protein expressions were endometrial luminal epithelium, glandular epithelium, endometrial
stroma, and vascular endothelium. In addition, ERK1/2 protein signals also moderately appeared in
the myometrium of the luteal phase and gestation period. The signal intensity of ERK1/2 proteins in
the uterus of luteal phase and gestation period was obviously higher than that of the follicular phase
(Figure 3I–K).
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Figure 3. Immunolocalization of ERK1/2 proteins (brown stained regions) in the female yak’s
ovary (A,B,C), oviduct (E–G), and uterus (I,J,K) during the follicular phase (A,E,I), luteal phase (B,F,J),
and gestation period (C,G,K). (A) ERK1/2 appeared in follicular granulosa cells (thin arrow), ovarian
stroma cells (arrowhead), vascular endothelium (thick arrow), and surface epithelium (white thick
arrow) of the ovary during the follicular phase. (B) ERK1/2 proteins moderately expressed in vascular
endothelium (thick arrow), vascular endothelium (thick arrow), and follicular granulosa cells (thin
arrow) of the ovary during the luteal phase. (C) Most of granular luteal cells (thin arrow) were stained
into strong brown, while membranous luteal cells (white thick arrow) in corpus luteum of gestation
period. (D) Negative control, ovary tissue sections were incubated with an equivalent non-immune
IgG agent instead of a rabbit polyclonal antibody to ERK1/2. (E,F,G). The positive reaction of ERK1/2
proteins moderately localized in villous epithelial cells (thin arrow) and some dispersed villous stromal
cells (arrowhead) of the oviduct. The intensity of ERK1/2 proteins expression was slight higher in the
luteal phase (F) and follicular phase (E) compared with that of the gestation period (F). (H) Negative
control of oviduct sections. (I,J,K) The main compartments of the ERK1/2 protein expression were
endometrial epithelium (thin arrow), glandular epithelium (thick arrow), endometrial stroma cells
(arrowhead), and vascular endothelium (white thick arrow) of the uterus. The signal intensity of
ERK1/2 proteins in the uterus of the luteal phase (J) and gestation period (K) was obviously higher than
that of the follicular phase (I). (L) Negative control of the uterus section. FL: follicle, BC: blood capillary,
OS: ovarian stroma, CL: corpus luteum, VE: villous epithelium, VS: villous stroma, UG: uterine gland,
ES: endometrial stroma, MM: myometrium.
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4. Discussion

The present study described the expression of ERK1 and ERK2 proteins and mRNA in female
reproductive organs of the adult yak during different the stage of the reproductive cycle based on
RT-PCR, western blot, and immunohistochemistry analysis. The results showed that both the intensity
and distribution of ERK1 and ERK2 expression in the ovary, oviduct, and uterus varied with the stage
of the reproductive cycle. In general, the expression of ERK1 and ERK2 proteins and mRNA was most
pronounced in the ovary of the luteal phase and gestation period, the oviduct of the luteal phase and
the uterus of the gestation period. The histological appearance and physiological process of the main
reproductive organs also varies with the different reproductive stages [43].

In the ovary, the results of the present study indicated that both the ERK1 and ERK2
proteins and mRNA were highly expressed during the luteal phase and gestation period, and the
immunohistochemical analysis revealed an intense distribution of the ERK1/2 protein in follicular
granulosa cells and corpus luteum cells. It is well know that the ovary is a highly organized composite
of oocytes, granulosa cells, stromal cells, and sometimes corpus luteum cells whose interaction induce
development of follicles, ovulation, formation of corpus luteum, and luteolysis during different
stages of the reproductive cycle; many factors involved in the regulation mechanism of the ovary’s
physiological process. The classical point of view believes that the development of the ovary is mainly
regulated by the hypothalamic-pituitary-ovarian axis. Therefore, various reproductive hormones play
a very important role as external signals. Recently, studies have focused on the role and pathway of
intra-ovarian signaling cascades in regulating ovary development [44]. As we discuss in the present
study, ERK1/2 is one of the important intra-ovarian regulators of ovary development in mammals.
The ERK1/2 pathway is intensively studied in follicle development of mice and other mammal
species [45–48]. It has been reported that ERK1/2, and some other protein kinases, impact the cumulus
expansion and oocyte maturation of porcine cumulus oocyte complexes (COCs) by inducing the
expression of both the epidermal growth factor (EGF)-like factor and its protease [49]. Using cultured
primary rat granulosa, Wayne et al. proved that follicle-stimulating hormone (FSH) and luteinizing
hormone (LH) control granulosa cell function and differentiation by activating Ras protein, and some
downstream kinases, especially MEK1 and ERK1/2 [50]. On the contrary, the experiment conducted on
gene knockout mice and pharmacologically inhibited materials also demonstrated a pivotal role of
the ERK1/2 pathway in ovulatory processes [51–53]. Most recently, by injection of pharmacological
inhibitor (PD0325901) of ERK1/2 into the pre-ovulatory dominant follicle, Yasmin et al. found that four
of five cows failed to ovulate, and 285 differentially expressed genes were identified from granulosa
cells of drug treated follicles. Based on the analysis of the differentially expressed genes, they further
affirmed a significant role of ERK1/2 in mediating LH induced gene expression in ovulating follicles,
and the physiological process of ovulation dependent on proper ERK1/2 signaling in bovine [25]. Ryan
et al. also found that the level of ERK signal proteins was different between dominant and subordinate
follicles early in the stage of dominant follicle selection in cows [26]. However, there is no report
about the expression of ERK1/2 in the ovary of the yak. The mass emergence of the ERK1/2 protein
in follicular granulosa cells, demonstrated by the present study, probably means that the follicular
development and further ovulation is a physiological process dependent on the regulation of ERK1/2.

Our study also demonstrates an intense expression of ERK1/2 in corpus luteum of the luteal phase
and gestation period. It is well known that corpus luteum is a transient endocrine tissue that is derived
from a pre-ovulatory follicle (Graffian follicle). It plays a significant role in controlling the reproductive
cycle of mammals. The degeneration of corpus luteum, in case of un-pregnancy, is a key event for
the initiation of a new reproductive cycle, re-ovulation, and obtaining the next chance of conception.
On the contrary, the prolongation of the luteal function is also essential for the development of the
embryo and maintenance of pregnancy relationship [54]. Generally, prostaglandin F2α (PGF2α), as an
extra-ovarian physiological luteolysin derived from uterus, is the key factor inducing the degeneration
of the corpus luteum. It is well recognized that apoptosis is the main mechanism of PGF2α induced
regression of corpus luteum in bovine and other mammals [54]. As an important regulatory factor
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of apoptosis and proliferation of many types of cells, ERK1/2 is also involved in the mechanism of
regression and functional maintenance of corpus luteum. For example, Maekawa et al. have found that
human chorionic gonadotrophin (hCG) increased the StAR gene (coding histone modification enzymes)
expression in granulosa cells through the ERK1/2 mediated signal pathway in the physiological process
of follicular luteinization [55]. This is one of a few reports about the role of ERK1/2 in luteal formation.
Strikingly, numerous research indicates that ERK1/2 is related to the regression of corpus luteum. Based
on the experiment performed on Sprague-Dawley rats, Choi et al. found that PGF2α inducted luteal
cell autophagy was accompanied with the activation of ERK1/2 during corpus luteum regression,
and it is not regulated by the mammalian target of rapamycin (mTOR) signal [27]. Qi L et al. also
proved that prostaglandin F (PGF) treatment increased ERK1/2 and signal transducers and activators
of transcription 3 (STAT3) phosphorylation, and this is a probable molecular mechanism of luteal
regression in pseudopregnant rats [56]. A similar conclusion was obtained by Chen, who demonstrated
that ERK1/2 signaling cascade can be activated by other molecular mechanisms in bovine luteal cells [57].

In addition, many different stimuli can induce the change of intracellular signal transduction.
To analyze the change of intracellular mitogen-activated protein kinase (MAPK) signaling cascade
induced by stress-related signaling events. Rueda et al. detected the phosphorylation level of main
MAPK members in cultured luteal cells. They found that both jun-n-terminal kinase (JNK) and
p38MAPK were highly phosphorylated after UV treatment, but the phosphorylation of ERK1 and
ERK2 was low. In addition, all of these changes were related to a high apoptosis rate of in vitro
cultured luteal cells. Based on these experimental results, they believed that stress signals induced
regression of corpus luteum, perhaps mediated by the activation of MAPK cascade [58]. As we have
mentioned above, the yak is a kind of livestock living in a very harsh environment. In particular,
the gestation period of the female yak is mainly spent in winter and spring, when low temperature,
hypoxia, and nutrition deficiency threaten them at all times. The high expression of ERK1/2 in corpus
luteum perhaps is a mechanism to maintain the luteal function and pregnancy; thus, yaks developed a
prominent adaptability to the rigorous natural environment.

In the oviduct, our present study has also found a more intense expression of both ERK1 protein
and mRNA in the luteal phase compared with the follicular phase and gestation period of the female
yak reproductive cycle. Further immunolocalization analysis indicated that ERK1/2 proteins mainly
localized in villous epithelial cells. As we all know, the mammalian oviduct is a convoluted tube
bridging the ovary and the uterus in the reproductive process of mammals. It also provides a suitable
place for fertilization and development of preimplantation embryos. The function of the ovary and
uterus in reproductive activities is always an important issue attracting great attention, and has widely
been investigated for a long times. However, it seems that we neglect the importance of the oviduct in
reproduction, and relative information about the oviduct is insufficiently. Recently, some researchers
begin to focus on the important role of the oviduct, both in natural fertilization and in pre-implantation
embryo development. The correct biophysical function, such as a moderate and rhythmic smooth
muscle contraction, ensures the transportation of the gametes and zygote in the oviduct. Meanwhile,
a suitable biochemical component of the oviduct content provides an adapt circumstance for the
development of the preimplantation embryo. On the contrary, the incorrect function of the oviduct may
be the result in infertility, or deficiency of the embryonal development [59,60]. The oviduct content,
also named as oviduct fluid, consists of proteins secreted by the secretory cells of the oviduct epithelium
and other plasma-derived constituents [61,62]. Therefore, a normal function of this epithelium and its
secretions is a basic requirement for successful fertilization and establishment of pregnancy. Recently,
numerous genes and proteins were identified involving in the regulation of oviduct functions, using
transcriptomic and proteomic techniques [63]. For instance, Cerny et al. performed a transcriptome
analysis of bovine oviduct epithelial cells, and they found that a large number of genes differentially
expressed during different estrus stages [64]. In line with these observations, significant differences of
the profile of the gene and protein expression in the oviduct, between different estrus cycle stages,
have also been reported in ewes [65], bovine [66], pigs [67,68], and humans [69,70]. For example,
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in spontaneous estrous ewes, a total of 280 proteins were identified in the oviduct, and 64 proteins
upregulated during estrus, while 17 proteins were upregulated in the luteal phase [65]. However, there
is no report about the expression of ERK1 and ERK2 in the oviduct of the mammalian species.

The result obtained from the oviduct of different stages of the yak’s reproductive cycle in the
present study suggests that, as an intracellular signal transduction pathway, ERK1/2 plays a significant
role in regulating the secretory activity of the oviduct epithelium, and provides an optimal oviduct
microenvironment for oocyte fertilization and embryo development before implantation.

In the uterus, we also observed a more strong expression of ERK1 and ERK2 during the luteal
phase and gestation period. The positive reaction of the ERK1/2 proteins were located strongly in the
endometrial epithelium cells, stroma cells, and moderately in the uterine smooth muscle cells. In the
follicular phase, under the stimulation of high concentrations of FSH and LH, follicular recruitment and
abundant E2 secretion take place in the ovary, but the endometrium thickness and P4 level are minimal.
In the same times, numerous of endometrial epithelium cells undergo degeneration and necrosis [71,72].
After ovulation (luteal phase), a new corpus luteum begins to develop and produces a large amount of
progesterone. Then, the differentiation and proliferation of the endometrial epithelium cells take place
under the stimulation of progesterone, to make preparation for embryo implantation [71,72].

The essential role of P4 and E2 in regulating endometrial differentiation, growth, and receptivity to
implantation during primate menstrual cycle has been widely recognized [73–76]. Numbers of reports
also demonstrated that MAPK signaling pathways are activated in the uterus during the process of
embryos implantation in the rat [75,77] and human [78]. Sayem’s experiment indicated that in female
rats, thyroxin treatment increased the expression of ERK1/2 proteins in uterine stroma, which could
help the uterine to adopt the implantation of embryos [79]. However, most of the materials are obtained
from the estrus cycle or early gestation period (before embryo implantation). A few researchers also
pay attention to the role of ERK in the uterus during the whole gestation period. For example, Welshet
al. proved that estrogenic actions were mediated by the estrogen receptor α via activating ERK signals
in human myometrium during pregnancy [80].

According to the analysis above, we consider that the expression of ERK1 and ERK2 in yak’s
endometrial glandular and luminal epithelial cells and uterine smooth muscle cells during the luteal phase
and gestation period may play an important role in glandular secretion, and maintain an appropriate
muscle tension of the uterus. This is essential for embryo implantation and subsequent development.

5. Conclusions

The present study firstly demonstrates the wide expression of ERK1 and ERK2 proteins and
mRNA in female reproductive organs of the adult yak. The intensity of ERK1 and ERK2 proteins and
their mRNA expression in the yak’s ovary, oviduct, and uterus varies with the stage of the reproductive
cycle. The variation character of ERK1 and ERK 2 expression in the yak’s main reproductive organs
during different stages implies that they play an important role in the regulation of reproductive
functions under different physiological situations.
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