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Simple Summary: In aquaculture, the number of fish population can provide valuable input for the
development of an intelligent production management system. Therefore, by using machine vision
and a new hybrid deep neural network model, this paper proposes an automated fish population
counting method to estimate the number of farmed Atlantic salmon. The experiment showed that the
estimation accuracy can reach 95.06%, which can provide an essential reference for feeding and other
breeding operations.

Abstract: In intensive aquaculture, the number of fish in a shoal can provide valuable input for
the development of intelligent production management systems. However, the traditional artificial
sampling method is not only time consuming and laborious, but also may put pressure on the fish.
To solve the above problems, this paper proposes an automatic fish counting method based on
a hybrid neural network model to realize the real-time, accurate, objective, and lossless counting
of fish population in far offshore salmon mariculture. a multi-column convolution neural network
(MCNN) is used as the front end to capture the feature information of different receptive fields.
Convolution kernels of different sizes are used to adapt to the changes in angle, shape, and size
caused by the motion of fish. Simultaneously, a wider and deeper dilated convolution neural
network (DCNN) is used as the back end to reduce the loss of spatial structure information during
network transmission. Finally, a hybrid neural network model is constructed. The experimental
results show that the counting accuracy of the proposed hybrid neural network model is up to
95.06%, and the Pearson correlation coefficient between the estimation and the ground truth is 0.99.
Compared with CNN- and MCNN-based methods, the accuracy and other evaluation indices are
also improved. Therefore, the proposed method can provide an essential reference for feeding and
other breeding operations.

Keywords: aquaculture; automatic fish counting; hybrid neural network; machine vision

1. Introduction

In intensive aquaculture, the reliable estimation of fish biomass is essential for the aquaculture
industry [1]. As a common biomass information of fish, the regular acquisition of the number of fish
can help optimize the feeding process, control the breeding density, determine the optimal harvest time,
and provide valuable input for the development of an intelligent production management system [2].
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However, traditional fish counting mainly depends on manual sampling and direct counting. It is
not only time consuming and laborious, but also a destructive contact method, which affects fish welfare
and health status. The recently developed machine vision-based nondestructive testing method avoids
damaging the water environment, thereby not affecting the normal behavior of fish, and is increasingly
of interest for aquaculture, marine resources, and other research fields [3-5]. In addition, in far offshore
mariculture, the water quality is good and the visibility of water is high. Moreover, the cost of the
machine vision method is low, and the practicability is stablished, thereby providing a feasible scheme
for fish state detection in aquaculture [6]. However, the underwater environment is restricted by the
light conditions and noise; thus, it is difficult to distinguish the fish from the background. In addition,
fish are free to move in the water, resulting in different shapes and serious occlusion problems. It is
very challenging to realize fish counting underwater [1].

Predecessors have studied many fish counting methods based on machine vision. The general
method is to use a machine learning method to realize fish counting after extracting fish image features.
For example, information of the blobs was used to count fish fry [7] but the size of fry needs to be kept
basically the same. Similarly, the area information of the outline was used to count fish [8], but the
water level must be kept shallow to avoid overlapping. By extracting seven shape features, the least
square support vector machine (LSSVM) achieves 98.73% accuracy for fish fry counting [9]. After using
the Canny edge detection algorithm [10] to detect the outline of the fish shoal, blob detection realizes
the fish counting [11,12]. a new algorithm based on endpoints of the skeleton was proposed to count the
fish fry [13], which could overcome the fish overlap. The underwater environment is more complicated
and the overlap is more serious, this method may not be accurate [1]. Recently, a fish counting
method, including segmentation, contour detection, blob detection, and Kalman filter technology,
has achieved an average accuracy of 97.47% [14]. In summarizing, when using the traditional machine
learning method in image processing, sophisticated features must be extracted manually. To some
extent, the performance often depends on the experience of experts. Despite the advantages of the
traditional machine learning technology in addressing big complex data, its inherent effectiveness and
scalability are not sufficient [15]. The underwater environment is complex, with stronger interference
and noise. When the distinction between the fish and the background is not apparent and the fish
are occluded from each other, it is difficult for traditional machine learning to realize fish counting.
In reference [7], with the increasing number of fish, occlusion increases, and the estimation accuracy
decreases. Compared with traditional machine learning methods, deep learning does not require
sophisticated feature extraction engineering, which has strong adaptability and is easy to transform.
The basic ideas and technologies of deep learning used in different fields are often transferrable [16,17].
In the era of big visual data in underwater observation, deep learning represents a practical solution.

Deep learning has shown advanced advantages in the field of animal computing, such as animal
behavior analysis [18], animal recognition, and species classification [19,20], etc. In aquaculture,
convolutional neural networks (CNNs) have gradually become the mainstream research model.
For example, they have been used for fish behavior analysis [21], fish species identification [22],
intelligent feeding [23], etc. Salman et al. [24] proposed a unified approach to detect freely moving
fish in unconstrained underwater environments using a region-based convolutional neural network
(R-CNN), which achieved 80.02% accuracy on the LifeCLEF 2015 fish dataset. Rauf et al. [22] proposed
a deep CNN with 32 layers to identify fish species, thereby achieving the best performance on self-built
dataset. The multi-layer convolution operation can automatically extract image feature information,
including texture, shape, and position. According to the scene requirements, the final desired model is
obtained through continuous training of the difference (loss function) between the predicted value and
the ground truth. However, the receptive field of the shallow CNN is small, and only certain local
feature information can be learned [25]. The deep CNN utilizes larger receptive fields and can learn
more global information. It plays a greater role in scenarios where context information needs to be
considered [26]. In addition to increasing the depth of the network and the size of the convolution
kernel, the multi-column convolutional neural network (MCNN) [27] and the dilated CNN can also be
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used to increase the size of the receptive field. The MCNN uses CNNs with different kernel sizes to
capture the feature information of different receptive fields, and the feature information of each CNN
is ultimately merged into the output layer. The dilated CNN increases the receptive field by adding
holes to the standard CNN [28].

To solve the above problems, this paper proposes a hybrid neural network model based on
a multi-column CNN and a dilated CNN. Our network can realize the real-time, accurate, objective,
lossless fish counting in far offshore Atlantic salmon mariculture. The structure of this paper is
organized as follows: the first chapter is the introduction. The second chapter mainly introduces the
construction of the datasets, basic theoretical methods, and proposed models. In the third chapter,
we give the results of fish counting and discuss the performance of the proposed model. The fourth
chapter is the conclusion.

2. Materials and Methods

2.1. Experimental Materials

Experimental video data were collected from the “Deep Blue No. 1” far offshore mariculture net
cage located in the Yellow Sea of China, and were provided by Wanzefeng Fishery Co., Ltd., Rizhao,
China. The fish farmed in the cages were adult Atlantic salmon, and videos of Atlantic salmon were
collected underwater. The collection camera takes pictures of fish from the bottom up and forms
a certain angle with the water surface to avoid the influence of vertical light on the acquisition. Figure 1
shows the collection diagram. The captured video has a resolution of 1920 x 1080 and a frame rate of
60 fps. Sequence images are extracted from the video data, frame by frame. In this experiment, no fish
was harmed by stress, and the collection was conducted under conditions that did not affect its normal
growth. The experiment did not involve animal ethical issues.

camera
™~

Figure 1. Data acquisition diagram.

2.2. Dataset

2.2.1. Data Preprocessing and Enhancement

The quality of the underwater image is reduced because of the influence of light and turbidity.
For easy labeling, images need to be pre-processed and enhanced.

Due to the absorption and scattering of light as it propagates through water, underwater images
often suffer from color shifts and reduced contrast. Therefore, to obtain better results, we use color
correction and contrast enhancement [29] to improve the underwater images” quality so that the images
can be easily labeled. Inspired by the grey world hypothesis [30], a color correction strategy based on
linear transformation is adopted. In 8-bit images, the pixels of the images are stretched to an average of
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128 using a piecewise linear transformation. We define S as the input image and calculate the average,
maximum, and minimum of the three RGB components. The basic form is as follows:
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where ¢ € (R, G, B}, $jyean/ Spuax, and S7 ; are the mean, maximum, and minimum in the ¢ channel,
respectively, and S¢. is the corrected image. The average is used as the direction of the stretch. Due to
the long wavelength of red light, it is easily absorbed in water, resulting in weak red component.
Therefore, the formula needs to be fine-tuned to prevent overcorrection:

¢ = A(SCppn — 128), P¢ > 0.7
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where A is a positive parameter controlling the shift range [29], P° is a pixel value probability less than
or equal to 40, and S;, = min(max(SCCR, 0), 255) is used to avoid exceeding the pixel range.

After color correction, the underwater image is still blurry [29]; thus, it is necessary to enhance the
contrast to highlight the objects and details. The basic idea is to find an appropriate modified image
between the original image So and the reference image S,. Because they both contain different useful
information, the goal is to find a balance between them. The form is as follows:

F(E) = olE = Solljy12 + (1= a)lIE =Syl 1, 3)

where ||u||%vL2 = Jllull3 + IDulf3 is the W'2 norm in the Sobolev space, E is the picture after color
correction, a € [0,1] is a positive parameter, and D denotes the difference operators. The result of
image enhancement is shown in Figure 2, where Figure 2a is the original image and Figure 2b is the
corresponding image after enhancement. The modified image improves the performance.

(b)

Figure 2. Image contrast before and after enhancement: (a) original image and (b) enhanced image.

2.2.2. Dataset Production

After image enhancement, 1501 original images were selected as the dataset. The original images
are 1920 x 1080. In reducing the network input, the images are uniformly converted to 1280 x 720 pixels.
Moreover, Gaussian noise and salt-and-pepper noise (as shown in Figure 3) with a variance of 0.001
are added to the original images to expand the dataset and increase the robustness of the network
model [31].
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Figure 3. Original image and noisy images: (a) original image, (b) salt-and-pepper noise image, and (c)
Gaussian noise image.

The final dataset includes 6004 frames of original images, enhanced images, Gaussian noise
images, and salt-and-pepper noise images. It is challenging to determine each fish’s position and
the number of a fish shoal by labelling the same part of the fish. Therefore, the center of the fish is
labelled (Figure 4a) in this study. For partially occluded fish, the center position of the largest exposed
part is labelled as far as possible (Figure 4b—e). Approximately half of the fish body appears in the
image (Figure 4f), while a small part of the fish body appearing in the image is not labelled (Figure 4g).
Each label records the position of the corresponding fish, and the number of labels corresponding to
the image indicates the number of fish in the shoal; thus, each label is a sample of the dataset.

(d)

(e) () (8)

Figure 4. Examples of image annotation. (a) no overlap; (b) two fish overlap into a line; (c) two fish
cross like “X”; (d) two fish cross like “V”; (e) three fish cross; (f) about half of the fish body appears;
(g) a small part of the fish body appears.

One doctoral student and three postgraduate students labelled 153,513 fish in total for
approximately two weeks. The dataset contains a total of 614,052 labeled fish for which we have
enhanced the dataset. MATLAB 2016a was used to generate the dataset of fish counting. Figure 5
shows the histogram of the number of fish in the shoal in the dataset. The maximum number of fish in
the shoal is 214, the minimum number of fish in the shoal is 30, and the average number of fish in the
shoal is 102.3.
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Figure 5. Histogram of the number of fish in the shoal of our dataset.

2.3. Fish Counting based on a Hybrid Neural Network Model

2.3.1. Fish Shoal Density Map

Inspired by crowd counting, we follow the method of crowd density estimation to achieve fish
counting. Detection [32] and regression [33] are the two main methods used for crowd counting.
Methods based on detection use a sliding window to detect objects one by one. This method has difficulty
detecting partially occluded objects, and its performance is poor in crowded scenes. Regression methods
calculate the number of specific objectives by learning the relationships among image features,
which solves the problem of counting in large-scale crowded scenes. However, regression ignores the
significance features, leading to inaccurate prediction in local areas. The density map [34] overcomes
the shortcomings of the above two methods. It retains the local feature information and can obtain
more fish distribution information while ensuring an accurate estimation.

The fish density map provides information about the two-dimensional spatial distribution of the
fish shoal such as the position and number of fish in the region of interest in a frame for a specific time.
Combined with continuous video sequences, it is also possible to calculate the speed information of the
fish shoal movement. The density map shows the distribution of fish shoal in the image. When there
are many fish in a small area, an abnormal situation has occurred. Its mathematical representation is
as follows:

In a labelled image, if there is a label at pixel x;, it is represented by a delta function 6(x — x;).
Hence, an image with N labels can be described by the function:

Hx) = Y 6(x - ). @)

Then, H(x) is convoluted with the Gaussian kernel G, obtaining the continuous function
F(x) = H(x) * G5(x). However, this density function assumes that x; is an independent sample on
the image plane. The fish images are all obtained from an underwater 3D scene, which suffers from
perspective distortion. Different samples x; correspond to different-sized regions. To accurately
estimate the number of fish, the distance between each label and the surrounding labels needs to be
considered. The adaptive Gaussian convolution kernel G, (x) is used for the convolution:

F(x) = H(x) * Gy, (x), with o; = pd;, (5)

where d; is the average distance between the label x; and its nearest k labels, and § = 0.3 is an adjustable
parameter based on reference [27]. The estimated density map generated by the model needs to be
compared with the ground truth. The resulting error loss is propagated back to the network so that the
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training can be carried out in the direction of decreasing loss. The accuracy of the label directly affects
the quality of the model training. Figure 6 shows the density map generated using adaptive Gaussian
convolution kernel.

(b)

Figure 6. Diagram of density map: (a) original image and (b) corresponding density map.

2.3.2. Design of the Hybrid Neural Network

In this paper, a hybrid neural network model is proposed based on a multi-column CNN and
a DCNN. The inputs of the network are images with labels (labels only for training), the corresponding
outputs are the density map and the number of fish which is calculated by integrating (mathematically)
the density map. The basic idea is to use a multi-column CNN in the front end to capture the feature
information of different-sized receptive fields and use different-sized convolution kernels to adapt to
the angle, shape, and size changes caused by the fish movement. Simultaneously, to reduce the loss of

spatial structure information during network transmission, a wider and deeper DCNN is used in the
back end.

Multi-Column Convolution Neural Network

The CNN has the characteristics of local perception and weight sharing. Local perception means
that each neuron only perceives the local pixels of the image; this local information is merged at higher
levels to obtain all the feature information of the image. Weight sharing reduces the complexity of the
network model and the number of parameters. The CNN uses the original image as the input; it can
effectively learn the corresponding features from a large number of samples and avoids a complex
feature extraction process. However, convolution kernels with the same-sized receptive field are
not sufficient to capture the characteristics information of fish with different sizes. The size of the
convolution kernel is different in each column of the multi-column CNN; thus, the size of the receptive
field is different to adapt to the change in fish size. Therefore, the front end network of this paper is
based on the multi-column CNN to learn the feature information under different receptive fields.

Dilated Convolution Neural Network

Pooling layers (average pooling and maximum pooling) are widely used in neural networks.
They are mainly used to reduce the dimensionality, compress data, reduce the number of parameters,
control overfitting, and improve the fault tolerance of the model while maintaining the main features.
However, with the deepening of the network and the stacking of the pooling layer, the image resolution
continues to decrease, resulting in a loss of spatial structure information. The loss of spatial structure
information may limit the accuracy of the network model and affect the migration of the model to
other tasks. Once this type of detail information is lost, it is almost impossible to recover it through
upsampling and training. In certain complex scenes, it is necessary to consider the spatial structure
information [35].

Dilated convolution retains more spatial structure information by increasing the receptive field.
It achieves better performance in addressing imagery that needs global information or speech text
that needs long sequence information such as for semantic segmentation [28,36], image super division
reconstruction [37], object detection and classification [38]. The receptive field is enlarged without
increasing the number of parameters and calculations. In dilated convolution, a small convolution
kernel size k X k is increased to (kr—r+ 1)2, where the dilation rate is r, which enables the flexible
aggregation of multi-scale information and maintains the same resolution.
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Figure 7a corresponds to a dilated convolution with kernel size 3 x 3 and dilation rate r = 1,
which is the same as the standard convolution. Figure 7b corresponds to the dilated convolution with
kernel size 3 X 3 and dilation rate r = 2; however, the actual convolution kernel size is still 3 X 3. For the
5 X 5 receptive field, only 9 points are convoluted with the 3 x 3 kernel, and the remaining points
are skipped. The size of the receptive field is 5 x 5; however, only 9 points have non-zero weights,
and the remaining points are zero. Although the convolution kernel is only 3 x 3, the receptive field has
been expanded to 5 X 5. The dilated convolution expands the perception range without losing more
information. Thus, the output of each convolution contains a more extensive range of information.

(a) (b)

Figure 7. 3 X3 convolutional kernels with dilation rates of 1 and 2 [39]: (a) dilated convolution with
dilation rate r = 1 and (b) dilated convolution with dilation rate r =2.

Design of the Hybrid Neural Network

In this study, the front end of the proposed model is based on the MCNN [27], therein using
a multi-column CNN to capture the feature information of different-sized receptive fields. Each column
of the CNN uses a convolution kernel of different size to adapt to the changes in the fish body size and
individual differences caused by fish swarm movement. The front end branches use three pooling
operations. The back end uses dilated convolution instead of a pooling-convolution structure to reduce
the loss of spatial structure information. Moreover, we deepen the network to mine more in-depth
information. When the object is the same size as the receptive field, it is better to use more convolution
layers and smaller convolution kernels [40]. Therefore, the convolution kernels of the back end are set
to 3 x 3 and the dilation rate is 2. Considering a single underwater scene, to reduce the parameters of
the network model, the network is not set as wide as visual geometry group-16 (VGG-16). In the last
layer, the convolution layer is used instead of the fully connected layer such that the input image can
be any size. Figure 8 shows the structure of the proposed model. The inputs are images with the labels
(labels only for training), the final outputs are the corresponding density map and the number of fish.
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Figure 8. The structure of the proposed model. The convolutional layer” parameters are denoted as
“(kernel size)-(number of filters)-(dilation rate)”; max-pooling layers are conducted over a 2 X 2 pixel

window with stride 2.

2.4. Model Performance Evaluation Metric

In this study, the mean absolute error (MAE), root mean square error (RMSE), mean absolute
percentage error (MAPE), and accuracy were used to measure the performance of the proposed
model. MAE is one of the most basic evaluation metric and reflects the accuracy of the estimation.
RMSE is more sensitive to extremum, and the large errors in the training process can impact the RMSE,
which can be used to test the stability of the model. MAE and RMSE are greatly affected by the number
of fish in an image. When both ground truth and the predicted value are small, even if the error ratio is
large, the MAE and RMSE may be small; thus, it is difficult to correctly determine the performance of
the model. The MAPE considers not only the error between the predicted value and the ground truth,
but also the ratio between the error and the ground truth. The MAPE evaluates the model performance
more comprehensively. The accuracy indicates the model performance directly in simplified terms.
The formulas are as follows:

MAE = % Zﬂzi -5, 6)

RMSE = \/ 1%1 ZT(ZZ. _ Z?T)z, @)

GT
N|{Zi —Z; 100
MAPE = Zl — XN 8)
GT
1 «—N|zi—z
Accuracy = [1 N Zl IZTTI ]x 100%, 9)
i

where N is the number of test images, zl.GT is the number of fish in image 7, and z; is the estimated

number of fish in picture i.

3. Results and Discussions

In this experiment, a deep learning server was used for training. The hardware configuration
includes two Intel(R) Xeon E5-2620 v3 CPUs @ 2.50 GHz, 48GB of memory (DDR4 2133MHz),
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240GB solid-state drive, and NVIDIA GeForce RTX 2080Ti GPU with 11 GB memory. The operating
system is Windows 7. The deep learning framework is the Keras framework, and the programming
language is Python 3.6.

We randomly scrambled the original images and its corresponding enhanced images and
noise images. In this operation, the original images and the enhanced images and noise images
remained corresponding. Then, 1000 original images and their corresponding 1000 enhanced images,
1000 Gaussian noise images, and 1000 salt and pepper noise images were selected randomly as the
training set. The remaining images and their corresponding enhanced and noise images were used as
the test set. After these steps, the training set and test set were randomly scrambled inside each to avoid
continuous images. The above operations guaranteed that two images with the same fish distribution
cannot appear in the training set and the test set. Finally, the training set contained 4000 images, the test
set contained 2004 images, and 10% of the training set was used as the validation set. The Adam
optimization algorithm was used for optimization. Table 1 shows the parameter settings. The linear
rectified unit (ReLU) is the activation function in the convolution operation. Because the feature maps
generated from the convolution of different columns need to be fused, the fusion operation requires
the dimensions be the same except for the connection axis. Therefore, to ensure that the three obtained
feature maps have the same size, the “same” padding method was used in the multi-column CNN,
and the stride is set to 1.

Table 1. Training parameter settings.

Parameter Name Set Up Parameter Name Set Up
optimization algorithm Adam learning rate le-5
Gauss initialization 0.01 standard deviation loss function MSE in Keras
epoch 100 batch size 1 (online learning)
activation function ReLU padding same

3.1. Results of Fish Counting

Figure 9 shows the curves of MAE, RMSE, and MAPE during the validation process. The network
weight keeps updating according to the change of MAE, RMSE, MAPE. The MAPE is small, and it is
difficult to identify the changing trend; thus, the MAPE is multiplied by 100. When epoch reaches 20,
the downward trend of the three curves starts to slow down, and curves basically dose not decline
when epoch = 80.

Finally, high-quality fish shoal density maps were generated using the trained model, as shown in
Figure 10. Because the front end branches use three-times pooling operations, the length and width of
the final generated density map become 1/8 those of the original, and the overall size is 1/64 that of
the original. Figure 10 shows one group of relatively poor results (Figure 10a—c) and three groups of
relatively good result (Figure 10d-1), one of which contains only a few objects (Figure 10j-1). Except for
the counting results, the four groups of predicted density maps are in good agreement with the ground
truth, which can overall reflect the distribution of fish shoal.
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Figure 9. Mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage
error (MAPE) change during epoch. (a) MAE; (b) RMSE and (c) MAPE.
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Figure 10. Fish counting results and density maps. (a,d,g,j) are original images; (b,e,h/k) are the
ground truth density maps corresponding to (a,d,g,j) respectively; (c,f,i,1) are the estimated density
maps corresponding to (a,d,g,j) respectively.
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Figure 11 shows the errors between the ground truth and the estimation of the model on all 2004
test images and the histogram of the error distribution. The errors are all within the range of —30 to 30,
and most of the errors are stable in the range of -10 to 10. While also satisfying accuracy, the model can
realize fish counting stably. The Pearson correlation coefficient between the estimation and the ground
truth is 0.99. There are several large fluctuations in the test results. The reason for this may be label
problems in the test data. To figure out this problem, we checked several samples with large errors.
Take the sample with a red circled in Figure 11a as an example, the sample is the 1552nd sample in the
test set, the error is 24, and it is found that there are fish are not labelled.

Pred - GT, mean = -0.121, MAE=4.279 300
- 250
- _ 200
(]
- e}
<] . £ 150
= =
100
-10
50
-20
0 . —
-30 -30 -20 -10 0 10 20 30
0 250 SO0 750 1000 1250 1500 1750 2000
Sample Error
(a) (b)

Figure 11. (a) Results of model test and (b) histogram of error between ground truth and the estimation.

In order to compare the performance of the proposed model under different numerical ranges,
we simply divided the dataset into five ranges (fewer, few, medium, many, large) according to the
number of labels in the images, and calculated the number of samples and the accuracy within each
range. Table 2 shows the counting results of the proposed model under different numerical ranges.
It can be seen from Table 2 that the proposed model performs better with a large number of objects.

Table 2. Counting results of different numerical ranges.

Range Name Range Number Accuracy
Fewer <60 468 93.43%
Few [60, 100) 656 94.21%
Medium [100, 140) 376 95.77%
Many [140, 180) 360 97.02%
Large >180 144 97.55%

3.2. Discussion on Model Performance

3.2.1. Dilated Convolution Neural Network

In this study, dilated convolution [41] was used to retain more spatial structure information.
Compared with the pooling+convolution+upsampling operation, dilated convolution has apparent
advantages when keeping the size of the feature map unchanged. To further explain its principle,
this article visualizes the process of extracting feature maps via convolution and dilated convolution.
Taking Figure 12 as an example, the original input fish shoal image is processed by two different
methods to generate a feature map of the same size. In the convolution method, the 2 x 2 max-pooling
was used for downsampling, and then, a 3 x 3 convolution kernel was used to perform the convolution
operation. Because the length and width of the generated feature map become 1/2 of those of the
original images, upsampling must be used to restore the feature map to the original size. The dilated
convolution method directly uses dilated convolution with a 3 X 3 kernel size and dilation rate of 2 to
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generate the same-sized feature map. There are 64 channels in both convolutions. Figure 12 shows that
the feature image generated by the dilated convolution contains more detailed information (enlarged
part). It shows that dilated convolution can be used as an alternative to a pooling-convolution structure,
which simplifies the network structure and reduces the loss of more details.

300x300

150x150 150x150

300x300

Max-pooling Conv

B N

Upsampling

Dilated convolution

With dilation rate of 2

Figure 12. Comparison between dilated convolution and max-pooling, convolution, and upsampling.

3.2.2. Comparison with Other Methods

To further compare the performance of the proposed model, experiments are carried out using
CNNs and MCNN [21], respectively. CNNs are a branch of MCNN with the largest receptive field,
and MCNN is the front end of the proposed model. Table 3 shows the results of three models,
from which can be seen that the proposed model has achieved the best performance in four metrics,
and the accuracy is up to 95.06%.

Table 3. Comparison results of different methods.

Metrics
Method MAE RMSE MAPE Accuracy
CNN 8.85 11.37 10.39 89.61%
MCNN 7.85 10.10 8.82 91.18%
Proposed 4.29 5.57 4.94 95.06%

Figure 13 shows a comparison of the density maps generated by different models; Figure 13a,f k
are the original images; Figure 13b,g,1 are the corresponding ground truth density maps; Figure 13c,h,m
are the corresponding density maps generated by the CNN; Figure 13d,i,n are the corresponding
density maps generated by the MCNN; Figure 13e,j,0 are the corresponding density maps generated
by the proposed model. Figure 13 shows that the density map generated by the proposed model
has more detailed information and is most consistent with the ground truth. However, there are still
problems with the density map. The image is relatively fuzzy, the distinction between individuals is
not apparent; it is also difficult to observe more details. These are problems to be solved in the future.
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NS
e~

(a) Original Image 1 (e)

(f) Original Image 2 (g) Ground_truth: 205 (h)

(k) Original Image 3 () Ground_truth: 103 (m) CNN: 94 (n) MCNN: 100 (o) Proposed: 102

Figure 13. Test results of different models. (a,fk) are original images; (b,g,1) are the ground truth
density maps corresponding to (a,f k) respectively; (c,h,m) are the estimated density maps generated by
CNN corresponding to (a,f k) respectively; (d,i,n) are the estimated density maps generated by MCNN
corresponding to (a,f k) respectively; (e,j,0) are estimated density maps generated by the proposed
model corresponding to (a,f k) respectively.

The density map can reflect the aggregation and dispersion of fish shoal. As shown in Figure 14,
the numbers of fish in Figure 14a,b are 165 and 162, respectively. However, the distribution on the left
side is more concentrated than that on the right side. In addition, when different-sized areas have
the same number of fish, the smaller areas are denser; when there are different numbers of fish in the
same-sized area, a larger number of fish indicates higher density. However, the fish in the water move
in the three dimensions, and the accumulation and dispersion should also be in three-dimensional
space. This two-dimensional spatial distribution cannot reflect the depth information of the fish shoal,
which results in certain limitations on the reflection of the accumulation and dispersion of fish shoal.
Only when the fish spread at a certain level (that is, the third dimension is limited), can a more accurate
description of the fish gathering and scattering be obtained. Under certain special conditions, such as
when fish colonies rise to the surface to feed and when the culture waters are shallow, the density map
can effectively reflect the distribution of the fish shoal. In practical applications, the map can indirectly
reflect starvation, abnormalities, and other states of the fish shoal according to the distribution of the fish
shoal in the monitored area [42], thereby providing an important reference for production managers.

(b)

Figure 14. Comparison of the different distributions representing similar quantities: (a): 165 and
(b): 162.

4. Conclusions

Underwater image processing technology is very challenging because of the complexity of the
underwater environment and the enormous influence of lighting conditions. In this paper, a hybrid
neural network model based on deep learning was proposed to generate a high-quality density map
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and to realize fish counting in underwater. The front end of the hybrid model uses CNNs with different
convolution kernels to capture the feature information with different receptive fields. The back end
of the model uses a deeper and wider dilated CNN to aggregate multi-scale context information.
Through dilated convolution, the model can increase the receptive field without loss of resolution,
thus improving the performance of the model. The accuracy of fish counting is 95.06%, and the Pearson
correlation coefficient between the ground truth and the estimation is 0.99. The performance is better
than that of CNNs and MCNNSs. The results demonstrate the effectiveness of dilated convolution in
reducing the loss of spatial structure information in the process of network transmission, which can
be used to guide practical production. In addition, how to quantify the behavior state of fish shoal
according to the density map will be addressed in future research.
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