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Simple Summary: Cautery disbudding is commonly carried out on goat kids less than a week of
age to prevent horn growth; however, due to differences in management across farms, older goat
kids (up to 3 weeks of age) can be disbudded. We evaluated the effect of pain mitigation strategies
(isoflurane and meloxicam) on the behaviour and physiology of 3-week-old cautery-disbudded goat
kids. We found weak statistical evidence that cortisol concentrations were lower in goat kids that
were administered isoflurane (with or without meloxicam) compared to those disbudded without
pain relief. However, no other physiological or behavioural measures were affected by the pain
mitigation treatments. Further research is needed to determine whether isoflurane (with or without
meloxicam) provides sufficient pain relief for disbudding 3-week-old goat kids.

Abstract: We evaluated the effect of pain mitigation strategies (isoflurane and meloxicam) on the
behaviour and physiology of 3-week-old disbudded goat kids. Fifty Saanen does (mean ± SD, 21 ± 3
days old) were randomly allocated to one of five treatments: (1) cautery-disbudded (CAUT), (2) CAUT
+ isoflurane (ISO), (3) CAUT + isoflurane + meloxicam (ISO + MEL), (4) CAUT + meloxicam (MEL),
and (5) handled without disbudding or pain relief (SHAM). Blood samples were taken immediately
prior to treatment and at 15-, 60- and 120-min post-treatment to assess cortisol, glucose and lactate
concentrations. Behaviour (head shaking and scratching, body shaking, feeding and self-grooming)
was observed for 1 h pre- and post-treatment using video-cameras. ISO + MEL and ISO kids had
lower cortisol concentrations than CAUT kids 15 min post-treatment (p ≤ 0.05). There was no effect
of treatment or time for glucose and lactate concentrations (p ≥ 0.62). At 35 min post-treatment,
CAUT, MEL and ISO kids performed more head shakes than SHAM kids (p ≤ 0.05). Isoflurane,
with or without meloxicam, may reduce acute stress associated with disbudding of 3-week-old goat
kids. More research is needed to assess whether isoflurane (with or without meloxicam) can provide
sufficient pain relief for disbudding 3-week-old kids.
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1. Introduction

Cautery disbudding is performed on goat kids and calves to destroy the horn buds, thus
preventing horn growth. Horns can cause injuries to other goats [1] or human handlers, damage farm
facilities [2] and increase space requirements at feed racks [3]. Cautery disbudding causes thermal
burns and inflammation [4], which are considered painful as goat kids attempt to escape and show
increased frequencies of vocalisations and leg shaking during disbudding [5–7]. Following disbudding,
goat kids also show higher rates of head shaking and scratching, elevations in serum or plasma cortisol
concentrations and increased tissue sensitivity compared with handled controls [4,8,9]. Therefore,
there is a need to establish and validate effective pain mitigation for disbudded goat kids.

Pain in animals cannot be directly measured, but a variety of indicators of pain can be evaluated
to provide a more accurate assessment than any single indicator [10]. Physiological changes, such as
increases in cortisol concentrations in response to cautery disbudding, have been shown in calves [11–13]
and kids [5,9,14]. Cortisol is a stress hormone that becomes elevated in response to stressors including
pain and is widely accepted as a useful indicator of pain reviewed by Mellor et al., [15]. Other blood
constituents that can indicate pain include lactate and glucose concentrations. Lactate can increase in
response to cortisol secretion in pigs due to stress causing the mobilization of glycogen stores [16,17].
Glucose is synthesised by gluconeogenesis that is stimulated by glucocorticoids including cortisol [18].
Changes in behaviour (e.g., vocalizations, struggles) can also provide sensitive indicators of pain as
they usually occur during or immediately after a painful procedure [15]. Studies by our group have
previously validated the use of behavioural indicators of pain associated with disbudding of goat
kids [9,19,20].

Local anaesthetics such as lidocaine are commonly used to reduce or eliminate the behavioural or
physiological indicators of pain associated with disbudding of calves [21], but there are inconsistent
reports of efficacy in reducing these same indicators of pain in goat kids [5,7,22,23]. General anaesthesia
using isoflurane has been shown to safely induce unconsciousness in goats [24,25] and reduce
behavioural and physiological indicators of pain associated with cautery disbudding of 4-day-old
goat kids [9]. The state of unconsciousness results from intoxication of the central nervous system,
and patients neither perceive nor recall stimuli, negative or otherwise [26]. Moreover, isoflurane has
the added benefit of reducing struggling during disbudding [27], potentially improving the efficiency
of the procedure. Additionally, meloxicam can reduce behavioural indicators of pain in 17-day-old
kids for up to 7 h after disbudding [14]. Non-steroidal anti-inflammatory drugs (NSAID), such as
meloxicam, block cyclooxygenase activity, which inhibits production of prostaglandins that mediate
pain and inflammation [28,29].

It is generally considered best practice to disbud goat kids within the first week of life, before
the horn bud fuses with the underlying frontal bone [2,30]; this likely reduces the incidence of scurs,
which are partial horn regrowths. Horn buds generally attach to the underlying frontal bone and form
horns around 1–2 months of age in goat kids [31], compared with 3–6 months of age for calves [32,33].
This difference explains why kids require earlier disbudding than calves. Cautery disbudding can
cause damage to the skull (1/70 kids; [4]) and brain of goat kids (1/243 kids; [34]), which can result
in meningoencephalitis and mortality [35–37]. Increased risk of damage may be associated with the
early age at which goat kids are typically disbudded (5–7 days of age; [2]), and/or the relative thinness
of the skull. Anecdotally, some operators prefer to disbud goat kids up to 3 weeks of age as kids
are considered more robust at this age and better able to handle the trauma of disbudding. There
is conflicting evidence of the effect of age on acute pain in calves. Age may not influence pain or
peripheral sensitization in calves disbudded at 1 or 4 weeks of age [38–40], but 1.5-month-old calves
castrated using a Burdizzo showed an increase in cortisol concentrations compared with 5.5-month-old
calves [41]. However, to the authors’ knowledge, there are no studies that have investigated the use of
general anaesthesia and NSAID alone or in combination for 3-week-old goat kids; however, an earlier
study found that meloxicam reduced pain in 17-day-old kids (for up to 7 h after disbudding [14]).
Therefore, the objective of our study was to evaluate the effect of isoflurane and meloxicam, alone or in
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combination, on the behaviour, physiology and live weight gain of 3-week-old dairy goat kids that were
cautery-disbudded. We predicted that isoflurane (with or without meloxicam) would reduce indicators
of acute pain in disbudded goat kids and that meloxicam would further reduce these indicators of
pain, but to a lesser extent.

2. Materials and Methods

2.1. Animals and Husbandry

The trial was conducted at the Ruakura Research Farm in Hamilton, New Zealand in July and
August 2015 (Austral winter). The study was approved by the Ruakura Animal Ethics Committee
(Protocol No. 13589). Fifty Saanen or Saanen cross does, aged between 16 and 26 days (mean ± SD,
21 ± 3 days) with an average weight of 5.8 ± 1.0 kg, were used. Kids were sourced from a private
commercial farm in the Waikato region at approximately 3 days of age and were housed at the study
facility for the entirety of the study. Kids were enrolled in the study approximately 3 days before data
collection began. Kids were selected for inclusion in the study if they had horn buds (i.e., not polled),
were in good health and were between 2–4 weeks of age at the study’s onset. At enrolment, kids were
weighed, given a collar with identification number and marked with paint to identify each kid during
subsequent video analysis (i.e., a line across the shoulders, or along the spine, a double line across the
rump, a cross on the rump or left unmarked).

The animals were housed in pre-treatment pens (1.64 × 2.40 × 1.50 m high) in groups of five
and remained with the same pen-mates for the entire trial. The concrete pen flooring was covered
in untreated pine wood shavings (PGG Wrightsons, Hamilton, New Zealand) approximately 10 cm
deep. Pens were numbered/colour-coded to facilitate handling and identification of kids during blood
sampling and video analysis. Kids were fed 500 mL of milk replacer (Anlamb, Fonterra Ltd., Auckland,
New Zealand) via a 10-space milk feeder (Milk Bar, Waipu, New Zealand) twice daily at approximately
0800 and 1600 h (i.e., 1000 mL/kid/day). As the kids grew, this amount was increased as per milk
replacer recommendations. Individual milk intake was not measured. Water was provided ad libitum.

2.2. Experimental Design

A randomized complete block design was used, blocked by pen within treatment day. The kids
were randomly allocated to one of five treatments balanced for age (n = 10 kids/treatment). A power
analysis was carried out to determine the sample size and was based on a 5% significance level and had
80% power. The primary outcomes used were struggling frequency and plasma cortisol concentrations,
which were assumed to be normally distributed. For cortisol concentrations, the minimum response to
be detected between treatments was estimated to be 55.0 nmol/L, based on results from Alvarez et al. [7]
and with a standard deviation of 39.8 nmol/L. The minimum response to be detected between
treatments for struggling frequency (during disbudding) was estimated to be 3.2, based on results
from Alvarez et al. [7] and with a standard deviation of 2.3.

The order of treatment was randomly generated using Genstat software (Version 16,
VSN International Ltd., Hemel Hempstead, UK). There was only one kid per treatment in each
pen, and all kids from the same pen were treated on the same day. Treatments were conducted over
four treatment days within a 2-week period, with a minimum of two kids per treatment (i.e., 10 kids)
tested per experimental day. The kids were fed approximately 1 h prior to treatment, and then collected
from their pre-treatment pen and restrained (device described in Hempstead et al. [9]). Hair covering
the horn bud area was removed using electric clippers (Laube, 505 cordless kit, Shoof International
Ltd., Cambridge, New Zealand).

Treatments were carried out by the same veterinary surgeon between 0830 and 1030 h.
Two handlers transported the kids between the treatment and pen areas and helped to restrain
the kids (if required). Treatments were modified from those described previously [9]: (i) kids
were disbudded using a cautery iron (CAUT; Quality Electric Debudder, 230 V, 190 W; Lister GmbH,
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Lüdenscheid, Germany) that was heated for approximately 20 min before use (manufacture specification
of 600 ◦C) and held on each horn bud for 1–3 applications of no more than 8 s in total. The use of
downwards pressure (and a circular motion of the cautery iron) cut the skin and, with a flick, removed
the horn bud. (ii) Isoflurane (ISO) was administered at a rate of 4% via a face mask (in oxygen);
delivery continued until the animal lost consciousness (determined by dilation of pupils and loss of
the palpebral reflex), at which point the isoflurane mixing rate was reduced to 2%. Kids were then
disbudded using the same procedure as for CAUT. Following disbudding, isoflurane was removed
from the gas supply, allowing the inhalation of pure oxygen for 5–15 s. The oxygen was then turned off,
the face mask removed, and the animal remained in the restraint under supervision until it regained
consciousness (≤5 min). (iii) Isoflurane was administered as above, and meloxicam was injected
prior to disbudding (ISO + MEL) following the procedure described for MEL below. (iv) Meloxicam
(Loxicom 20 mg/mL solution for injection for cattle, pigs and horses, Norbrook Laboratories Ltd,
Newry, UK) was injected s.c. (MEL; 0.5 mg/kg BW) over the ribs immediately prior to disbudding—the
kids were then disbudded using the same procedure as for CAUT. Meloxicam was administered at the
time of disbudding to minimize animal handling. (v) Sham handling (SHAM) involved applying a
cold disbudding iron to the horn buds (i.e. not disbudded) for ≤8 s, with no pain relief administered.

After horn buds were removed, antibacterial spray (Tetravet, Bayer New Zealand Ltd., Auckland,
New Zealand) was applied to the open wounds to reduce the risk of infection. Sham-handled kids
also received antibacterial spray to prevent observer bias during video analysis (i.e., all animals had
blue stains over horn bud positions). The kids were then placed in post-treatment pens (1.64 × 2.40 ×
1.50 m high), positioned adjacent to the pre-treatment pens, with the same pen-mates. Post-treatment
pens, which were identical to the pre-treatment pens, were used to ease handling of the animals during
treatment and blood sampling.

2.3. Blood Sampling

Plasma cortisol, glucose and lactate concentrations were measured from 4-mL blood samples
collected by venipuncture from either jugular vein immediately prior to treatment (baseline), and at
15, 60 and 120 min following treatment. Blood samples were collected from all animals by trained,
experienced technicians using 22 g 2.5 cm needles. One handler restrained the kid on a knee (whilst
sitting), as another handler drew the blood sample. Each blood draw took approximately 30 s per
kid and was carried out in an area immediately adjacent to the pen of each animal. Samples were
collected in fluoride oxalate tubes (Becton Dickinson Vacutainer Systems, Franklin Lakes, NJ, USA).
Samples were then centrifuged at 3000 rpm for 10 min (approximately 1500 g) at 4 ◦C and the plasma
was separated and stored at −20 ◦C until analysed (approximately 2 days).

Samples were analysed by a commercial laboratory using standard quality control methodologies.
Plasma cortisol concentrations were determined by electrochemiluminescence immunoassay using
a commercial kit (Roche Diagnostics GmbH, Mannheim, Germany). Sensitivity of the assay was
1.5 nmol/L. Plasma glucose concentrations were determined by the hexokinase method using a
commercial kit (Roche Diagnostics GmbH, Mannheim, Germany). Sensitivity of the assay was
0.1 nmol/L. Plasma lactate concentrations were determined by enzymatic methods using a commercial
kit (Roche Diagnostics GmbH, Mannheim, Germany) and sensitivity of the assay was 0.2 nmol/L.

2.4. Rectal Temperature

Rectal temperature was measured immediately following blood sampling at each time point using
a Rapid Digital Thermometer (Vet Temp®, Advanced Monitors Corp., San Diego, CA, USA).

2.5. Body Weight

Body weight measurements were taken before the milk was replenished each morning at 24 h
pre- (baseline) and 24 and 48 h post-treatment using a Veterinary Platform Scale (Model WS204;
Wedderburn, Hamilton, New Zealand).
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2.6. Behaviour

Video cameras (HDR-CX220E, Sony Corp., Shanghai, China) were used to record kid behaviour
for 24 h pre- and post-treatment. However, only activities 1 h before and after treatment were
measured, as major differences between treatments were only detected during this timeframe in
an earlier study by our group [9]. The 1-h observation period began for each kid after they were
placed in the post-treatment pen. The pre-treatment measures occurred at the same time of day as the
post-treatment measures, but were recorded on the previous day (i.e., the day prior to disbudding).
Based on the results of our earlier study, which inspected the acute behavioural response following
treatment [9], the behavioural observations for each kid were grouped into 12 5-min periods within
the 1-h post-treatment period (considered with respect to the average of the 12 5-min periods from
the pre-treatment hour). The cameras were placed 1.85m above the pens and were fitted with fisheye
lenses (Raynox, Insta-Wide lenses, QC-303, Yoshida Industry Co. Ltd., Tokyo, Japan) to enable a full
view of each pen.

The monitored behaviours were chosen from an ethogram previously validated by our
group [9,19,20], which included head shaking and scratching, body shaking, feeding and self-grooming
(Table 1). The frequency of all behaviours was assessed, in addition to the total durations of head
scratching, self-grooming and feeding events.

Table 1. Ethogram of behaviours quantified in the present study. Modified from Hempstead et al. [9].

Behaviour Description

Head shaking
Rapid continuous tilting of the head from side to side concluding with a return to neutral

position. Head shakes separated by >1 s were considered separate events.

Head scratching
The rear foot touches any part of the head or neck (including collar). Scratches separated

by >1 s were considered separate events.

Body shaking
Hackles on the back are raised and body shakes from side to side concluding at a return to

neutral position. Body shakes separated by >1 s were considered separate events.

Self-grooming
The kid’s muzzle contacts any part of the body or legs (excluding hoof) with a rhythmic

back and forth motion. A separate grooming event was considered to occur after a pause
of >1 s.

Feeding
The mouth covers at least half of the nipple of the feeding bucket for >3 s, usually followed
by suckling motions. Repetitions following separation of the mouth from the nipple of >3 s

were considered separate events.

Two trained observers analysed the video-recordings using Adobe Premier Pro software (CS6,
Version 6.0.0, Adobe Systems, San Jose, CA, USA). The duration of each event was generated by the
software (for both total-h and 5-min-period data). The observers were blind to the treatment each kid
received, as the horn buds of all treatments were sprayed with the same coloured antiseptic spray
(including SHAM kids). Frequency and duration measures were recorded against kid identification,
detected using the markings on the kids’ backs. Tests of intra-observer reliability were carried out
using three kids (randomly chosen) within the same 1-h period for each behaviour (kappa, K = 0.80 for
head shaking; K = 0.87 for head scratching; K = 0.84 for self-grooming; K = 1.00 for feeding and K = 1.00
for body shaking). In addition, inter-observer reliability was determined by randomly selecting a
further three kids for each behaviour (K = 0.88 for head shaking; K = 0.83 for head scratching; K = 0.87
for self-grooming; K = 0.83 for feeding and K = 1.00 for body shaking).

2.7. Statistical Analysis

Data were analysed using Genstat software (Version 18, VSN International, Hemel Hempstead,
UK). Residual plots for all analyses were assessed to detect departures from the underlying model
assumptions of normality, independence and constant variance. Log transformations were required
for all of the 5-min period behaviour data to stabilize the variance. Mean cortisol, glucose and lactate
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concentrations, rectal temperature, body weight and total frequency and duration of behaviour (over 1 h
post-treatment) were expressed as a difference from baseline values (i.e., the pre-treatment values were
subtracted from the post-treatment values). Data from one kid was excluded from all analyses as it
suffered an allergic reaction after receiving its treatment (MEL). Due to a video camera malfunction,
behavioural data from five kids were not available.

The changes in cortisol, glucose and lactate concentrations, rectal temperature and body weight
data were run through separate repeated measures models fitted by restricted maximum likelihood
(REML). The model included the fixed effects for treatment, time, and their interaction, and the random
effects for kid and kid within time, age, weight (as a variate), breed and pen within treatment date
(i.e., the blocking variable). The correlation structure on the same kid over time was modelled using a
power model of order 1, with the allowance for heterogeneity over time.

The changes in behaviour frequency and duration data across pre- and post-treatment hours
were analysed using a one-way analysis of variance (blocked by pen within treatment date). Further
analyses were carried out on head shaking, head scratching and self-grooming data within the first hour
post-treatment (i.e., 12 5-min periods) using a linear mixed model fitted by REML. The model included
the fixed effects for treatment, time (5-min periods) and their interaction and the random effects for kid,
and kid within time, age, weight (variate), breed and pen within treatment date. The average of the 12
5-min periods for the pre-treatment hour was used as the covariate. Due to low frequencies of feeding
and body shaking during the 5-min periods, the data were converted to a binary outcome, where
1 represented an occurrence within the 5-min period and 0 represented no occurrence. The binary
response was analysed using a linear mixed model fitted by REML. The fixed and random variables
were the same as the head shaking, head scratching and self-grooming data within the first hour
post-treatment (described above). The correlation between observations on the same kid over time
were modelled using an autoregressive model of order 1. Frequency and duration data were highly
correlated (r ≥ 0.75); therefore, only frequency data will be presented.

Fisher’s unprotected least significant differences test was used to detect differences between and
within treatments. Mean values (back-transformed if required, with exact 95% confidence intervals)
were provided with standard error of the difference and the level of significance was set at p ≤ 0.05.

The data used in this study can be found in Table S1 in the supplementary materials .

3. Results

3.1. Cortisol, Lactate and Glucose Concentrations

For change in cortisol concentrations, the time effect was highly significant (F2, 45 = 39.2, p < 0.001),
but there was no evidence of a treatment effect (F4, 41 = 0.24, p = 0.91). However, there was weak
statistical evidence of an interaction of treatment and time (F8, 60 = 2.0, p = 0.07; Figure 1). All kids,
regardless of treatment, had increased cortisol concentrations 15 min post-treatment (p≤ 0.05). However,
the effect was greater in CAUT than SHAM kids when considering only the first 15 min (p ≤ 0.05;
Figure 1). The change in cortisol concentration was smaller in ISO and ISO + MEL than CAUT kids
15 min post-treatment (p ≤ 0.05; Figure 1). Cortisol concentrations of all kids returned to basal levels by
60 min post-treatment and did not change for the remainder of the study (p > 0.05).

There was no treatment-by-time interaction for change in glucose concentrations (F8, 63 = 0.8,
p = 0.62; Table 2). However, there was a time effect (F2, 49 = 6.6, p = 0.003) and weak statistical evidence
for a treatment effect (F4, 36 = 2.4, p = 0.07). The changes in glucose concentrations were higher at
120 min post-treatment than the other sampling times (0.37 ± 0.11 mmol/L, −0.02 ± 0.13 mmol/L and
0.05 ± 0.11 mmol/L for 120, 60 and 15 min, respectively; p ≤ 0.05). The changes in glucose concentrations
were not different between CAUT- and SHAM-treated kids (0.03 ± 0.37 mmol/L and 0.55 ± 0.37 mmol/L;
p > 0.05). Kids treated with ISO + MEL had a smaller change in glucose concentration than SHAM and
MEL kids (−0.53 ± 0.37 mmol/L, 0.55 ± 0.37 mmol/L and 0.40 ± 0.37 mmol/L for ISO + MEL, SHAM
and MEL, respectively; p ≤ 0.05).
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Figure 1. Mean change (±maximum standard error of the difference) in plasma cortisol concentrations
(from baseline; nmol/L) over 2 h post-treatment of goat kids (n = 10/treatment) that were either
(i) cautery-disbudded with no pain relief (CAUT) or disbudded following administration of
(ii) isoflurane (ISO), (iii) meloxicam s.c. and isoflurane (ISO + MEL) or (iv) meloxicam s.c. alone (MEL).
(v) Sham-handled kids (SHAM) acted as controls. Asterisks represent means that differ from CAUT
kid means within each time point at p ≤ 0.05. Arrow indicates time of treatment.

There was no treatment-by-time interaction for change in lactate concentrations (F8, 62 = 0.7,
p = 0.69; Table 2). In addition, there were no effects of treatment (F4, 41 = 2.0, p = 0.11) or time (F2, 47 = 0.5,
p = 0.59).

Treatment-by-time interaction a p = 0.62; b p = 0.68.

Table 2. Mean change (±maximum standard error of the difference; SED) in plasma glucose and lactate
concentrations (from baseline; mmol/L) over 2 h post-treatment of goat kids (n = 10/treatment) that
were either (i) cautery-disbudded with no pain relief (CAUT), or disbudded following administration
of (ii) isoflurane (ISO), (iii) meloxicam s.c. and isoflurane (ISO + MEL) or (iv) meloxicam s.c. alone
(MEL). (v) Sham-handled kids (SHAM) acted as controls.

Plasma Concentrations
Time (min)

15 60 120
a ∆ Glucose (mmol/L)

CAUT <−0.1 <−0.1 0.2
ISO <0.1 0.2 0.5

ISO + MEL −0.8 −0.7 −0.1
MEL 0.5 0.2 0.5

SHAM 0.6 0.3 0.8
Max SED 0.4 0.5 0.4

b ∆ Lactate (mmol/L)
CAUT 0.2 <−0.1 −0.1

ISO −0.2 0.1 −0.2
ISO + MEL −0.3 −0.2 −0.2

MEL 0.4 0.1 0.3
SHAM −0.1 −0.6 −0.5

Max SED 0.4 0.4 0.3

Treatment-by-time interaction a p = 0.62; b p = 0.68.
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3.2. Rectal Temperature

There was a treatment-by-time interaction for change in rectal temperature (F8, 65 = 2.2, p = 0.04;
Figure 2). At 120 min post-treatment, ISO kids had a greater change in rectal temperature than kids
experiencing other treatments (except for CAUT kids) (p ≤ 0.05). At 15 and 60 min post-treatment,
the change in rectal temperature did not differ across treatments (p > 0.05). There were no differences
in the change in rectal temperature between CAUT and SHAM kids post-treatment (p > 0.05).
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◦C) over 2 h post-treatment of goat kids (n = 10/treatment) that were either (i) cautery-disbudded with
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acted as controls. Asterisks represent means that differ from ISO kid means within each time point at
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3.3. Body Weight

There was no treatment-by-time interaction for mean weight gain (F4, 44 = 1.6, p = 0.19) or a
treatment effect (F4, 33 = 0.5, p = 0.73). However, there was a time effect (F2, 48 = 14.5, p < 0.001). Over the
two days following treatment, there was increased weight gain from 0.6 to 0.8 ± 0.05 kg (p ≤ 0.05).

3.4. Behaviour

3.4.1. 1-h Period

There was no treatment effect on the change in head shaking frequency (F4, 31 = 1.6, p = 0.20),
body shaking frequency (F4, 31 = 1.2, p = 0.32), head scratching frequency (F4, 31 = 0.6, p = 0.66),
or self-grooming frequency (F4, 31 = 0.9, p = 0.46) 1 h post-treatment (Table 3).

There was a treatment effect on the change in feeding frequency 1 h post-treatment (F4, 31 = 3.0,
p = 0.04; Table 3). Kids that were treated with MEL fed more often than SHAM and ISO kids
(Table 3; p ≤ 0.05). There was no difference in feeding frequency between kids treated with CAUT and
ISO + MEL or between those treated with ISO and SHAM (Table 3; p > 0.05).
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Table 3. Mean frequency (no./h) of head shaking, body shaking, head scratching, self−grooming and
feeding over 1 h post−treatment (± standard error of the difference). Goat kids (n = 10/treatment) were
either (i) cautery-disbudded with no pain relief (CAUT), or disbudded following administration of
(ii) isoflurane (ISO), (iii) meloxicam s.c. and isoflurane (ISO + MEL) or (iv) meloxicam s.c. alone (MEL).
(v) Sham-handled kids (SHAM) acted as controls. Means with differing superscripts were significantly
different at p ≤ 0.05.

Behaviours CAUT ISO ISO +MEL MEL SHAM SED

Head shaking (No./h) 24.4 12.6 15.7 20.5 18.0 5.1
Body shaking (No./h) 1.9 1.1 2.9 1.6 2.7 0.9

Head scratching (No./h) 10.6 9.8 7.1 7.0 4.9 4.5
Self-grooming (No./h) 2.9 −0.8 3.0 4.1 5.2 3.3

Feeding (No./h) 4.0 a,b −1.7 a 5.8 a,b 9.9 b 0.7a 3.7

3.4.2. 5-min Periods

There was a treatment-by-time interaction for head shaking frequency (F44, 453 = 1.4, p = 0.04).
At 35 min post-treatment, SHAM kids performed less head shaking (0.4 [−0.05, 1.18] no./5 min) than
CAUT, ISO and MEL kids (2.4 [1.24, 4.11], 1.7 [0.76, 3.02] and 1.75 [0.82, 3.15] no./5 min, respectively;
p ≤ 0.05).

There was no treatment-by-time interaction (F44, 451 = 1.2, p = 0.16) or treatment effect for body
shaking frequency (F4, 31 = 1.2, p = 0.32), although there was a time effect (F11, 460 = 5.7, p < 0.001): there
were three times as many body shakes 5 min post-treatment than 55 min post-treatment (p ≤ 0.05).

There was no treatment-by-time interaction for head scratching frequency (F44, 453 = 0.7, p = 0.93)
or a treatment effect (F4, 35 = 1.1, p = 0.39). However, there was a time effect (F11, 467 = 6.1, p < 0.001).
Head scratching was five times as frequent 30 min post-treatment than 5 min post-treatment (p ≤ 0.05).

There was no treatment-by-time interaction for self-grooming frequency (F44, 453 = 0.6, p = 0.99)
or a treatment effect (F4, 34 = 0.2, p = 0.93). However, there was a time effect (F11, 467 = 5.3, p < 0.001).
All kids performed six times as many self-grooming events 20 min post-treatment compared with
those 5 min post-treatment (p ≤ 0.05).

There was no treatment-by-time interaction for feeding frequency (F44, 451 = 0.6, p = 0.98) or a
treatment effect (F4, 34 = 1.5, p = 0.22). However, there was a time effect (F11, 423 = 8.6, p < 0.001).
Feeding was five times as frequent 5 min post-treatment compared to 60 min post-treatment (p ≤ 0.05).

4. Discussion

We examined the effect of isoflurane and meloxicam, alone or in combination, on the behaviour,
physiology and live weight gain of 3-week-old cautery-disbudded goat kids. Although there was
no clear treatment effect, there was weak statistical evidence for lower cortisol concentrations of
kids disbudded while anesthetized with isoflurane compared with those that were disbudded only;
this indicates that isoflurane, to some degree, may have reduced the acute stress response associated
with disbudding. In previous research, 4-day-old goat kids that were disbudded whilst under isoflurane
(with or without meloxicam) had lower cortisol concentrations and performed fewer head and body
shakes than kids disbudded without pain relief, during the first hour post-treatment [9]. However, it is
possible that isoflurane itself altered the cortisol concentrations of the kids that were administered
anaesthesia during disbudding. Calves that were administered isoflurane during umbilical surgery
displayed an increase in cortisol until 15 min into the operation, which decreased from then on [42].
To examine the effect of isoflurane on the acute stress response of goat kids, an additional treatment
group administered isoflurane, but not disbudded, should ideally have been included. Logistic
constraints prevented us from including this additional treatment in the study. Isoflurane has been
shown to induce and maintain anaesthesia in goats with minimal complications [24,25,43]. Additionally,
isoflurane has multiple benefits over other inhalant anaesthetic agents or injectable general anaesthesia
as it is minimally metabolised (therefore, the anaesthetic depth can be quickly adjusted), and recovery is



Animals 2020, 10, 878 10 of 13

faster (which may reduce risks associated with prolonged recumbency; e.g., bloat, reflux, aspiration) [26].
Based on research to date, it appears that isoflurane can reduce the behavioural or physiological
indicators of acute pain associated with cautery disbudding of goat kids [9]. However, this method
may not be feasible for on-farm use due to the requirement of veterinary administration and specialist
equipment, and therefore, other more practical options (e.g., effective local anaesthetic techniques) for
reducing or eliminating pain at the time of disbudding should be investigated.

In the present study, there was no evidence to suggest that meloxicam administered immediately
prior to disbudding reduced the behavioural or physiological indicators of pain in 3-week-old kids
during the first hour post-treatment; behavioural responses were not assessed beyond this time.
An earlier study by our group monitored the behaviour of 4-day-old kids over 24 h post-disbudding
and found those that were administered meloxicam performed less head scratching than kids that were
disbudded without meloxicam 1 h post-treatment [9]. Additionally, the kids that were administered
meloxicam had similar head scratching durations as sham-handled kids over the remaining 24 h [9].
Ingvast-Larsson et al. [14] administered meloxicam shortly after disbudding and reported fewer
behavioural signs of pain in kids given meloxicam than those disbudded without meloxicam for up to
7 h post-treatment. The observation period may not have been long enough to detect any behavioural
differences across treatments in the present study. In our study, meloxicam was administered
immediately prior to disbudding for practical reasons. It would be of interest to determine if
administering an NSAID at least 20 min prior to disbudding would improve its efficacy at reducing
acute pain associated with this procedure.

Goat kids that were disbudded under isoflurane showed no difference in body temperature before
or after the procedure, or with other groups that did not receive anaesthesia [9]. Generally, anaesthesia
alters thermoregulation, resulting in heat loss and a decrease in body temperature [44]. However, in the
present study, kids treated with ISO had statistically higher rectal temperatures 2 h post-treatment
when compared to other treatments, with the exception of CAUT; we cannot offer an explanation for
this result. Further research may be required to ascertain the effect general anaesthesia has on body
temperature of disbudded goat kids.

Activation of the HPA axis causes an elevation of cortisol, which results in increased production
of glucose and lactate via glycolysis [26]. In the present study, cortisol concentrations were higher in
cautery-disbudded kids than sham-handled kids post-treatment, but glucose and lactate concentrations
did not differ between treatments. However, kids that were provided both isoflurane and meloxicam had
lower glucose concentrations after treatment than sham-handled kids or disbudded kids administered
either isoflurane or meloxicam alone. As the kids that were disbudded without pain relief showed
similar glucose concentrations to sham-handled kids, the result may be associated with the physiological
consequences of combining meloxicam and isoflurane, rather than pain associated with disbudding [25].
Previous studies also found no difference in glucose concentrations of kids before and after disbudding [9,
14]. It appears that neither glucose nor lactate correlate with acute stress or pain associated with
disbudding of goat kids.

Meloxicam may have affected feeding rates, as kids administered meloxicam prior to disbudding
showed higher feeding frequencies than sham-handled kids and those administered isoflurane.
A tendency for meloxicam-treated disbudded calves to feed more often than those not provided
meloxicam has been reported previously [45]. Theurer et al. [46] found that calves given meloxicam
prior to disbudding spent more time than control calves (not given meloxicam) around the feed bunk.
In addition, Todd et al. [47] found that calves treated with meloxicam for neonatal diarrhoea displayed
a reduced latency to feed and also ingested higher amounts of feed compared with those not treated
with meloxicam. Collectively, these findings may reflect pain alleviation associated with meloxicam,
resulting in an increase in appetite.

Body weight increased steadily for all kids, regardless of treatment. In earlier studies, kids aged
between 4 and 11 days that were disbudded (i.e., using either caustic paste, liquid nitrogen, clove oil or
a cautery iron), had no difference in average daily gains over 2 weeks in comparison to those that were
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sham-handled [4,8]. It appears that pain associated with disbudding may not affect the growth rates of
goat kids over these timeframes.

To our knowledge, we present the first evidence that isoflurane (with or without meloxicam) may
reduce the acute stress response in 3-week-old goat kids; however, the study is not without limitations.
To fully comprehend how differences in disbudding age can influence the responses, and the ontogeny
of acute pain responses, a study simultaneously comparing 3-week-old kids with younger animals
(e.g., ≤1-week-old) would be required.

5. Conclusions

There was weak statistical evidence that isoflurane, with or without meloxicam, initially reduced
plasma cortisol concentrations in cautery-disbudded 3-week-old goat kids compared with kids
disbudded without pain mitigation strategies, and therefore may reduce acute stress associated
with this procedure. However, as isoflurane did not appear to affect any other physiological or
behavioural responses to disbudding, more research is needed to assess whether isoflurane (with or
without meloxicam) provides sufficient pain relief when disbudding 3-week-old goat kids. Although
meloxicam used singly appeared to have no effect on reducing the behavioural or physiological
indicators of pain within 1 h of disbudding, it did appear to have a positive effect on feeding rates.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/5/878/s1,
Table S1: Data set used in the present study.
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