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Simple Summary: The high costs of genotyping normally compel researchers to work with reduced
sample sizes. Contextually, population observations may no longer compensate for the lack of sufficient
data to fit lactation curves, hindering model efficiency, explicative ability, and predictive potential.
Individualized lactation curve analyses may save these drawbacks, but may be time-demanding,
which may be prevented through computational automatization. An SPSS model syntax was defined
and used to evaluate the individual performance of 49 linear and non-linear models to fit the
curve described by the milk components of the milk of 159 Murciano-Granadina does selected for
genotyping analyses. Protein, fat, dry matter, lactose, and somatic cell counts curves were evaluated
and modelled, while peak and persistence were estimated to maximize the ability to understand and
anticipate productive responses in Murciano-Granadina goats, which may translate into improved
profitability of goat milk as a product.

Abstract: SPSS syntax was described to evaluate the individual performance of 49 linear and
non-linear models to fit the milk component evolution curve of 159 Murciano-Granadina does selected
for genotyping analyses. Peak and persistence for protein, fat, dry matter, lactose, and somatic cell
counts were evaluated using 3107 controls (3.91 ± 2.01 average lactations/goat). Best-fit (adjusted R2)
values (0.548, 0.374, 0.429, and 0.624 for protein, fat, dry matter, and lactose content, respectively)
were reached by the five-parameter logarithmic model of Ali and Schaeffer (ALISCH), and for the
three-parameter model of parabolic yield-density (PARYLDENS) for somatic cell counts (0.481).
Cross-validation was performed using the Minimum Mean-Square Error (MMSE). Model comparison
was performed using Residual Sum of Squares (RSS), Mean-Squared Prediction Error (MSPE), adjusted
R2 and its standard deviation (SD), Akaike (AIC), corrected Akaike (AICc), and Bayesian information
criteria (BIC). The adjusted R2 SD across individuals was around 0.2 for all models. Thirty-nine models
successfully fitted the individual lactation curve for all components. Parametric and computational
complexity promote variability-capturing properties, while model flexibility does not significantly
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(p > 0.05) improve the predictive and explanatory potential. Conclusively, ALISCH and PARYLDENS
can be used to study goat milk composition genetic variability as trustable evaluation models to face
future challenges of the goat dairy industry.

Keywords: goodness of fit; linear and nonlinear regression; mathematical modeling; parametric
models; shape of milk components curve

1. Introduction

The mathematical representation of the biological behavior of the lactation period can be very
useful when breeding strategies are implemented as they permit a rather accurate control over the
parameters that configure curve shape [1]. The identification of peaks and lows and increasing and
decreasing sections of the lactation curve may allow adequate milking routines to the production of
goats within herds. As a result, decision-making on the maintenance or elimination of females from
the herd and the design of milk production simulation systems may be performed by relying on a
solid basis, which may promote beneficial aspects and counteract potentially detrimental elements
of the cycle [2,3]. Genetic evaluation of curve parameters may also permit the preselection of young
goats, which may permit discarding low productive animals early, but also act as a potential source for
identification of the underlying problems that may be causing such an underproductive status, such as
subclinical pathologies [4–7]. Although the modelization of the curve of milk components has often
been described for dairy cows [8], examples for dairy goats, among other species [9], especially when
milk composition curves are considered at the individual level, are not frequently addressed.

Disentangling the trends described by milk components may be important, not only from an
economical-productive perspective but also given the relationship of these components with a higher
energy expenditure, which can condition the efficiency of management and husbandry practices.
Conjoining the development of mathematical and statistical techniques with the increased accuracy
that can be offered by genomic studies, we will not only be able to determine what is the current
status of the animals being milked on farms, but to anticipate the future trends that their offspring
will describe once they become productive. However, these studies are costly, which often compels
researchers to use limited sample sizes and to design proper tools that may permit to issue valid
conclusions out of such reduced sources [10–12].

The individualized evaluation of the goodness-of-fit of the different models available is not only
important, given it enables the design of tools which better fit the real situation, but it can also prevent
issues derived from incorrectly fitting biologically abnormal curves to normalized models, which may
distort the real information that can be found in the field. There are multiple software possibilities
available. However, their utilization requires an extra effort from researchers whose background may
widely depart from biostatistics disciplines. SPSS software [13,14] improves the possibilities for the
automatization of the computational stages of the process of model fitting, and at the same time it may
save time resources.

Contextually, the present paper aims to describe the model syntax for the SPSS software for
forty-nine models found in the literature to fit milk component curves (protein, fat, dry matter, lactose,
and somatic cells). Then, to compare the model explanatory capacity and predictive ability to identify
the best-fitting models in each case. Once the best-fitting functions had been determined, peak and
persistency were computed for each component using the specific methods that may mathematically
be more appropriate in each case. Afterwards, the model fitting properties and parameter estimation
performance will be compared in a sample of Murciano-Granadina goats selected to perform genotyping
studies using Bayesian methods. Conclusively, the automatized assessment of the component curves
may permit the comparison of individual curves and parameters more realistically, while considering
the mathematical properties of the best-fitting models for the particular situation of each animal.
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2. Materials and Methods

2.1. Animal Sample and Sample Selection Process

The animals registered in the herdbook of the National Association of Breeders of Goats of the
Murciano-Granadina breed (CAPRIGRAN) were ranked, depending on their official breeding value
for milk yield and composition at the latest genetic evaluation at the time of sampling (published in
the stud catalog in 2015). A total of 159 herdbook-registered does [15] from 28 farms in Andalusia
(Spain) were considered in the analysis. All farms followed permanent stabling practices, with ad
libitum water, forage, and supplemental concentrate. The Murciano-Granadina breed feed formula is
standardized and a further description of the detailed and analytical composition of the diet provided
to the animals in the study can be consulted in Fernández Álvarez et al. [16]. Records were collected
from 2005 to 2018. The age range of the animals in the sample was 1 to 9.15 years (1.57 ± 1.11 years,
mean ± SD). According to Yañez-Ruiz [17], 26.01% of Murciano-Granadina goats have their first
kidding before 13–14 months.

2.2. Milk Performance Standardization

The Murciano-Granadina is a polyestrous breed with two kidding seasons each year, with a
lactation range between 210 and 240 days [18]. The official control procedure is described in the Royal
Decree-Law 368/2005 of 8th April 2005, and the milk performance recordings were performed at each
farm according to the International Committee for Animal Recording (ICAR) protocol (AT4, AT4T,
AT4M, A6, AT6M, or AT6T) chosen by the farmer. This legal provision suggested ICAR guidelines
should be taken into consideration to perform production controls. The ICAR guidelines were set up
for the first time in 1992 with a rather technically informative than normative character and have been
regularly updated since then considering the new scientific computational and measuring advances to
issue recommendations on the registration of diverse animal traits.

Total milk production per goat was estimated until 210 lactation days and expressed in kg as
described in Pizarro et al. [19], following the protocol implemented in CAPRIGRAN (proved to be as
accurate as the Fleischmann method as required in the guidelines in ICAR [20]).

The production controls considered in the present study were official, hence the normalization of
real production to 210 days was performed.

To this aim, real production (RPj) for each goat was first computed as follows, RP j = d1P1 +

30
∑n j−1

i=n Pi j +
[
d2 − 30

(
n j − 2

)]
Pn j where RPj is real production of the jth goat; P1 is milk yield at first

control; n is the number of controls; Pij is milk yield in ith control i for the jth goat; and Pnj is milk
yield at the last control for the jth goat.

For the first control and the last, which were assessed individually for each goat, we computed
the days (d1) between the kidding date (KD) and the date of the first control (FC), using the following
formula, d1 = FC–KD; and the days between the penultimate control (PC) and the last control (LC),
using d2 = LC–PC.

Afterwards, lactation yields were then standardized/normalized to provide a reasonably equitable
comparison of dairy goats with different lactation characteristics, as suggested in Norman et al. [21].
The normalized milk yield per each goat at 210 days was calculated using the following formula,
NPj = d1 P1 + A + B, where NPj is the normalized yield for goat j. A and B could be defined as

A = 30
∑n j−2

i=1
PiP j+1

2 , B =
[
d2 − 30

(
n j − 2

)]Pn j−1+Pn j
2 .

The model used to calculate normalized yields at 210 days is described by MP210 =∑n−1
i=1

[(
pldci+pldci+1

2

)
· Ii i+1

]
, from which MP210 is the accumulated milk yield until 210 lactation days;

pldci is milk yield during milk control i; pldci+1 is milk yield in the following milk control; and Ii,i+1 is
the day interval between two consecutive controls.
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2.3. Milk Composition Technical Records

A number of 3107 milk component (protein, fat, dry matter, lactose, and somatic cells) controls
from 399 lactations (average of 3.91 ± 2.01 lactations per goat) belonging to 159 unrelated genotyped
goats were considered in the statistical analyses. Days from parity to first control were on average
21.21 ± 13.71. The number of controls per lactation was on average 4.80 ± 2.86. Primers and genotyping
conditions can be consulted in Pizarro Inostroza et al. [12].

2.4. Milk Composition Biological Analysis and Percentual Records

Milk sampling was performed every month and analyzed at the official Milk Quality Laboratory
in Cordoba (Spain). Percentages of protein, fat, dry matter, and lactose content were analyzed with a
MilkoScan analyzer™ FT1 while a Fossomatic™ FC somatic cell counter was used to test for somatic
cell counts. The dataset comprised 3107 productive records for milk content (protein, fat, dry matter,
lactose, and somatic cells). On-farm sampling was performed by the same operator taking milk from
both mammary glands cumulatively. A minimum of two valid samples per month for each trait was
necessary (milk yield and composition; protein, fat, dry matter, and lactose, except for the study of
somatic cells, for which at least one valid sample per month was necessary). Samples were taken from
the storage tank of raw milk and were stored and transported to the laboratory a maximum of 24 h
after sampling under refrigeration conditions (between 0 ◦C and 4 ◦C or 8 ◦C, depending on whether
conservation agents were added or not). Single samples per individual were taken from each tank.
All tanks comprised raw milk on the farm at the time of collection and were marked with an individual
identification label, to ensure all the necessary data to enable the analysis in the lab, to correctly identify
the sample, and for sending the results to the “Letter Q database”. The date of sampling was always
indicated. The Letter Q Database facilitates the traceability of milk through the identification and
registration of all agents involved in the production, collection, transportation, storage, and treatment
of milk and milk containers. The record number description per test is shown in Table 1.

Table 1. Record number description.

Test System Trait Total Biological
Samples Considered

Total Technical Records
Considered

MilkoScan analyzer™
FT1

Protein (%)

3107 15,535
Fat (%)

Dry Matter (%)
Lactose (%)

Fossomatic™ FC Somatic
cell counting

Somatic cell count
(sc/mL)

The samples belonging to animals with missing or incomplete phenotype registries were discarded, hence the final
set comprised observations from 159 studbook-registered goats out of the 200 animals that were initially considered.

2.5. Statistical Analysis

2.5.1. Parametric Assumption Testing

Normality and homoscedasticity assumptions were tested on our study sample to determine
whether sample properties could be biased after animal selection to configure the study sample.
Shapiro-Francia (Stata Version 15.0 software, College Station, TX) was used to evaluate the normality
assumption. Levene’s test (SPSS Statistics for Windows statistical program, Version 25.0, Armonk,
NY) was used to test homoscedasticity. Residual values were computed after the result of the
difference between the observed and predicted values. When the residuals are normally distributed,
the conditional distribution of the dependent variable (Y) given the independent variables (Xs) must
be normal, which means the dependent variable normally distribute at any level of the independent
variables. The Shapiro-Francia test was run on the residuals of each model to determine whether they
are normally distributed or not. The Durbin-Watson test [22] was conducted on the residuals of each
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model (using the mean percentage for each component of each day of lactation) to test for possible
first-order autocorrelations among the residuals (using the linear regression test of regression procedure
in SPSS version 25.0 Armonk, NY). The Durbin-Watson statistic ranges from 0 to 4. The Durbin-Watson
test is reliable for sample sizes larger than 15 [23]. The Durbin-Watson statistic is only suitable for
ordered time or spatial series [24], such as the ones used in the present study (days in milk).

2.5.2. Composition Curve Models and Shape Parameters

One linear model and forty-eight non-linear models were used to describe the composition curves
for protein, fat, dry matter, lactose, and somatic cells of the 159 does considered in the study sample.
The potential differences across different lactations per animal were tested using Bayesian inference of
ANOVA, as lactation order has been reported to condition milk composition. No statistically significant
difference was found for any of the component across lactations (p > 0.05), hence we decided not to
include such a factor in the models that were evaluated. Supplementary Materials Table S1 shows the
equations for the 49 models used, the abbreviation used to identify each model, and the bibliographic
references from which such information was collected. Linear and non-linear functions were used to
regress the milk composition as a function of days in milk. An SPSS Model syntax for each of the 49
models in this study was described. Supplementary Materials Table S2 presents the SPSS equations
designed to facilitate the automatized application of the models in this study. The model syntax
presented is ready to be copied and pasted into the non-linear regression task from the “Regression”
procedure of SPSS version 25.0, Armonk, NY [25].

The curve estimation task from the “Regression” procedure of SPSS version 25.0, Armonk,
NY [25] was used to iteratively specify the parameter bounds of each model (b0, b1, b2, b3, and b4
parameters) using the Levenberg-Marquardt method of iteration [26]. The iterative process considered
as many rounds as was necessary until a tolerance convergence criterion (error sum of squares between
successive iterations [5]) of 10−8 was reached, as suggested by other authors, as stricter criteria such
as 10−6 or 10−8 have been suggested to report the same outcomes out of a slightly higher number
of iterations [27,28]. After convergence was reached, the initial parameters were predefined and
considered to run the mechanized protocols for model fitting. A mean of 3.158 ± 0.682 (µ ± SD)
iteration rounds was needed to reach the convergence criterion.

2.5.3. Model Selection Criteria

The selection criteria used to determine the best explicative and predictive models included
the percentage of fitted lactation curves, RSS, MSPE, adjusted R-squared (Adj. R2) and its standard
deviation across the does, Akaike (AIC), corrected Akaike (AICc), and Bayesian information criteria
(BIC). The Residual Sum of Squares (RSS) is a statistical technique used to measure the amount of
variance in a data set that is not explained by a regression model. RSS computes the explanatory ability
of the model. The cross-validated Minimum Mean-Square Residual or Error (MMSE) [29] was chosen
to determine the error variation as an alternative to the cross-validated Mean-Squared Error (MSE),
which has been suggested to be influenced by the number of parameters [30] if sample sizes are limited
like those in genotyping studies.

In comparison to R2, adjusted R-squared or modified R-squared (Adj. R2) is a measure of the
models’ ability to predict responses for new observations while it compensates (penalizes) for the
overfitting event occurring after the inclusion of a high numbers of predictors. The adjusted R2 was

calculated as follows: Adj. R2 = 1−
[
(1−R2)(n−1)

(n−k−1)

]
, where R2 is the coefficient of determination, n is the

number of data points, and p is the number of model parameters. The fit of a model is satisfactory if the
Adj. R2 is close to one (Adj. R2 ranges from 0 to 1, with 0 meaning the model does not capture variability
in the data sample and 1 meaning the model can capture all the variability in the data sampled).

Adj. R2 to R2 ratio ranges from 0 to 1 and measures the likely decrease in model fit when a certain
model is applied to new data. The higher this ratio is, the less affected by overfitting the model will be
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(Adj. R2 should be as much close to R2 as possible for a good fit, which means overfitting may have
been considered and quantified). Overfitting problems arise when the Adj. R2 to R2 ratio ranges from
0 and 0.4.

Following the premises of information theory, several methods have been described (AIC and
AICc) and (BIC) of the model designed for the data being modelled. Akaike information criterion
(AIC) and the corrected Akaike information criterion (AICc) were computed to compare models with
regard to their ability to explain or capture the variability observed in the data set being studied and
the Bayesian information criterion (BIC) was calculated to determine the predictive potential of each
model, as suggested in Karangeli et al. [31].

In cases of a limited number of data points (observations) (N) or relatively complex models (high
number of parameters), the corrected AICc may be more accurate. Still, AIC and AICc become similar
when a higher number of observations is studied. AICc should be used when N/K < 40 [32]. As with
the Adj. R2, Bayesian information criterion (BIC) is a model order selection criterion and penalizes
more complicated models for the inclusion of additional parameters and was computed after Leonard
and Hsu [33].

2.5.4. Bayesian Model Criterion Comparison

Bayesian approximation for Pearson correlations functions was computed using the Pearson
correlation task from the Bayesian statistics procedure in SPSS Statistics, Version 25.0, IBM Corp.
(Armonk, NY, USA) (2017), to characterize the posterior distribution of the linear correlation among
pairs of the curve shape parameters (b0, b1, b2, b3, and b4) to identify interparameter relationships.
The algorithms used by SPSS for the computation of Bayesian Inference on Pearson correlation
are described in IBM SPSS Statistics Algorithms version 25.0 by IBM Corp. [34]. Afterwards, the
conditioning effect of model complexity on the fitting properties was tested.

Bayesian inference for ANOVA was considered given the sample size limitations and given the
sample properties had violated parametric assumptions. Statistical differences in the mean for the
determination coefficient (scored through Adj. R2) and flexibility selection criteria (AIC, AICc, and
BIC) were tested across models consisting of two, three, four, or five regressors to determine whether
model complexity can condition the best-fitting properties of the variability-capturing ability (Adj.
R2), observed data explanation (AIC, AICc), and predictive potential (BIC). In this regard, smaller
numerical values of the flexibility selection criteria (AIC, AICc, BIC) were reported to be indicative of
better fit properties when comparing models [31].

The algorithms used by SPSS to perform Bayesian inference on analysis of variance (ANOVA) are
described and publicly available in IBM SPSS Statistics Algorithms version 25.0 by IBM Corp. [34].
The tolerance value for the numerical methods and the number of method iterations was set as a
default by SPSS v25.0 [25].

The estimated effect of the factors considered in the predictive models, its 95% credibility interval,
and the posterior distribution statistics were computed. The significant effect of a certain factor may be
detected if 0 is not contained within the credibility range.

The Bayes factor (BF) is a measure of the strength of the evidence against null or alternative
hypothesis when comparing hypothesis pairs. The larger the BF the higher the evidence for the
alternative hypothesis; that is, of one model over the other. Jeffreys [35] and Lee and Wagenmakers [36]
set thresholds for BF to define the significance of evidence.

The Jeffrey-Zellner-Siow (JZS) mixture of g-priors [37] was used for both Bayesian inferences on
Pearson’s correlations and ANOVA. Contextually, Bayes factors for JZS prior can be relatively easily
and highly precisely computed [38], and have been adapted for the default t-test [39], ANOVA [40],
and linear regression [41]. JZS prior [40] is particularly appropriate when using ANOVA as this
prior is symmetric and centered at zero, in line with the predictive matching criterion as reported by
Bayarri et al. [42], hence positive and negative values of the slope parameters have a priori the same
probability to occur. Additionally, it is scale-invariant, hence the Bayes factors are also independent of
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factors or covariates. As a result, the outputs may not change if the variables measured on different units
are evaluated together, which is typical in field studies metanalyses. As suggested by Rouder et al. [40],
defining a scaled prior for unstandardized coefficients (βi) equals defining a prior for standardized
coefficients

(
β∗i

)
.

Additionally, when using the JZS prior, the scale parameter γ is fixed to a constant by the user,
which allows prior beliefs to be specified about the expected effect size. The IBM Corp. [34] algorithm
guide reports that the algorithm of JZS prior for linear regression analyses, to compute the Bayes factor,
uses the default value of γ = 2

√
π = 3.5, which reflects a prior belief of a medium effect size. For a

single covariate x, this choice implies that the standardized regression slope β∗i = βi· SD(xi)/σi has an
a priori probability of 53.2% of being in the range (±0.50).

2.5.5. Curve Shape Parameters Computation for the Best-Fitting Model

Curve shape parameters (protein, fat, dry matter, lactose, and somatic cell count peaks and
persistency values) were computed as described by the papers referenced in Supplementary Materials
Table S1. If the computation of peak yield was not possible, change in variable units per event was
computed as suggested in Supplementary Materials Table S3. Persistency and peak values should be
computed differently across models as follows: the descending rate of the curve after the lactation
peak, the rth relative rate of decline at the point halfway between the peak yield and end of lactation,
or the instantaneous rate of change. For the cases in which no specific manner to compute the curve
and shape parameters were found in the literature, the Symbolab® Mathematical calculation tool for
education [43] was used to determine the relative maxima (peak yield) and descending rates in the
curve, depending on the model fitted (persistency).

3. Results

Descriptive statistics for protein, fat, dry matter, and lactose (%), as well as for somatic cell count
(sc/mL) records are presented in Supplementary Materials Table S4. The variation coefficient for milk
components, namely, protein, fat, dry matter, lactose (%), and for somatic cell counts (sc/mL) reported
a value of 14.1, 21.7, 10.0, 6.6, and 148.7%, respectively.

Tables S5–S7 show summaries of the adjusted coefficients of determination (Adj. R2), percentages
of successfully fitted curves, and Adj. R2 standard deviations of the models for milk protein, fat,
dry matter, lactose (%), and somatic cell counts (sc/mL) curve fitting in Murciano-Granadina goats.
The adjusted R2 for the model reporting the best ability to capture variability was 0.548, 0.374, 0.429,
and 0.624 for protein, fat, dry matter, and lactose content, respectively, for the model of Ali and Schaeffer
(ALISCH), while the parabolic yield-density (PARYLDENS) model reported the highest values for Adj.
R2 for somatic cell counts (0.481) (Figure 1).

The minimum for the Adj. R2 values (0.013, 0.029, 0.002, 0.037, and 0.000, for protein, fat, dry
matter, lactose contents, and somatic cell counts) were reported for Richard’s model (RICHRDS).
All goats converged for ALISCH and PARYLDENS, while the minimum fraction of goats converging
for a specific model was 5.88%, 1.96%, 3.92%, and 1.96%% for protein, fat, dry matter, and somatic
cell count when RICHRDS was considered. The minimum percentage of successfully fitted curves
for lactose was 1.96% when modelled using the Log Modified Weibull (LGMWEIB) model. Standard
deviation values for the Adj. R2 was in the range of 0.200 to 0.250 for all models (Supplementary
Materials Table S4). However, these values reduced in those models for which a lower number of
animals successfully fitted, for instance for Gompertz (GMPRTZ), Richards (RICHRDS), and third-order
Legendre orthogonal polynomial (3ORDLEG), as shown in Supplementary Materials Table S5.
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Figure 1. Graphic representation of best-fitting models for milk composition traits in
Murciano-Granadina goats; Ali and Schaeffer model (ALISCH) for fat (%), protein (%), dry Matter
(%), and lactose (%) and the parabolic yield density model (PARYLDENS) for somatic cell count
(sc/mL), respectively.

Parametric assumptions (normality, Shapiro-Francia test p < 0.05) and homoscedasticity, Levene’s
test, p < 0.05 across groups) were violated in our study dataset, hence we opted for the use of a
nonparametric statistical alternative. As the sample used in this study was small, Bayesian analyses
were run in an attempt to preserve the model accuracy and power of the techniques applied.

Additionally, the Shapiro-Francia test was performed to test for the residuals’ normality, reporting
statistically significant results for all fitted models (p < 0.001). Thus, residuals were not normally
distributed. The Durbin-Watson statistic showed that all values were within the range of 0 to 2; thus,
the residuals of all models were positively autocorrelated. The run test in our study indicated that
the residuals of all models were not independent. These results are consistent with the earlier studies
reported by Mohanty et al. [44].

Supplementary Materials Tables S8–S12 show a summary of the model curve shape parameters
(b0, b1, b2, b3, and b4), the number of model regressors, measures for model fit and flexibility selection
criteria computed through the Residual Sum of Squares (RSS), Mean-Squared Prediction Error (MSPE),
variability explanation power through the Akaike Information Criterion (AIC) and corrected Akaike
Information Criterion (AICc), and predictive power through the Bayesian Information Criterion of the
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models that were used to fit the Murciano-Granadina lactation curves. There was wide variability
with regard to curve shape parameters. Almost all models reported values for b0 around 4, 5, 14, 5,
and 800 for protein, fat, dry matter, lactose contents and somatic cell count, respectively, as shown in
Tables S8–S12, except for those implying a higher computational complexity, which in fact may have
conditioned their better explicative and predictive potential (CEXPGR, CUBSPL, CURVES, DJKSTR,
HAYSHI, INVQPOL, LGMWEIB, MILKBOT, NELDER, PARYLDENS, RATCUB, and 3ORDLEG for
protein, fat, dry matter, and lactose; and LOGLOG, MICHMEN, MILKBOT, MORMFLO, PEMSIK,
POWER, QUADSPL, RATCUB, RICHRDS, SIMLIN, SIN&GOP, VBRTLNFY, PARSURW, and WILMINK
for somatic cell count).

Concretely, DENSITY, GAUSS, INVQPOL, LOGLOG, LGMWEIB, MICHMEN, PARYLDENS,
3ORDLEG, and PARSURW failed to converge for almost all milk components, hence no Adj. R2 is
reported for them. The correlations between estimates of curve shape parameters (b0, b1, b2, b3, and
b4) are presented in Supplementary Materials Table S7. Large correlations between b0, b3, and b4
were reported (Supplementary Materials Table S7) for lactose and dry matter. For somatic cell count,
moderate to large negative correlations were found between b1, b4, b2, and b3. For fat and protein
contents, large positive correlations were also found between b3 and b4.

Supplementary Materials Tables S9 and S13–S15 report a summary of the Bayesian ANOVA to
test for differences in the mean for the adjusted R2, AIC, AICc, and BIC across models comprising
two, three, four, or five regressors, respectively. Significant differences were found for the mean of the
adjusted determination coefficient while no significant difference was found for the flexibility selection
criteria (AIC, AICc, and BIC) when models comprised two, three, four, or five regressors. An increasing
trend was described with each element added to the model (mean increase for all components was
0.111 when model complexity increased from 2 to 3 parameters, of 0.036 from 3 to 4 parameters and of
0.105 from 4 to 5 parameters, respectively). Regarding the flexibility selection criteria, the explicative
and predictive potential of the models did not significantly increase nor decrease with the number of
regressors considered in the models.

ALISCH was the best model, not only concerning its ability to capture population variability in
all components, except for the somatic cell count for which the parabolic yield-density (PARYLDENS)
resulted in the best-fitting model. This better performance could be attributed to the inclusion of
logarithms, powers, and exponents or sine and cosine elements in the model, as it was also reported for
other models tested such as Cubic (CUBIC), Cubic Spline function with one knot (CUBSPL), Quadratic
cum log model (QDCMLOG), Grossman (GROSMN), Dijkstra (DJKSTR), Quadratic model (QUADRT),
Quadratic model Dave (DAVE), Quadratic spline function with one knot (QUADSPL), Dhanoa
(DHANOA), Parabolic exponential model and Parabolic, Sikka (PEMSIK), Ratio Cubics/ Partial Fraction
with Cubic Denominator (RATCUB), Singh And Gopal (SIN&GOP), Cappio Borlino/biexponential
(CAPBOR), Asymptotic Regression, Lactation modification of Metcherlich Law of Diminishing Returns
or Exponential growth model (METLAW), Morgan Mercer Florin (MORMFLO), Wilmink’s exponential
(WILMINK), and Wood (WOOD), which reported very close adjusted determination coefficient around
0.5, but presented a close value of flexibility selection criteria. These best-fitting models always included
over three regressors as Table 2 had suggested being the best performing models on average regarding
their ability to capture data variability; that is, explained variation. Once the best-fitting models
have been identified, the summary of the results for the specific computation of peak and persistency
following the methods proposed in Supplementary Materials Table S1 are shown in Supplementary
Materials Table S16.
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Table 2. Summary of the Bayesian ANOVA to test for differences in the mean for the adjusted R2 across
models comprising two, three, four, or five elements.

Parameter Protein
(%)

Fat
(%)

Dry Matter
(%)

Lactose
(%)

Somatic Cell
Count

(sc/mL)

Sum of Squares 0.237 0.128 0.164 0.234 0.184
df 3 3 3 3 3

Mean Square 0.079 0.043 0.055 0.078 0.061
F 4.78 6.102 4.479 3.361 4.461

Sig. 0.007 0.002 0.009 0.029 0.009
Bayes Factor 2.173 8.367 1.536 0.451 1.564

2 elements models
Posterior Mean 0.215 0.130 0.153 0.312 0.136

2 elements model 95CI 0.128–0.302 0.074–0.187 0.079–0.228 0.209–0.415 0.056–0.215
3 elements models

Posterior Mean 0.342 0.217 0.241 0.454 0.259

3 elements model 95CI 0.279–0.406 0.176–0.258 0.188–0.294 0.379–0.529 0.200–0.319
4 elements models

Posterior Mean 0.389 0.242 0.289 0.479 0.277

4 elements model 95CI 0.267–0.432 0.169–0.271 0.195–0.330 0.333–0.529 0.174–0.325
5 elements models

Posterior Mean 0.497 0.341 0.391 0.588 0.381

5 elements model 95CI 0.366–0.627 0.257–0.426 0.279–0.503 0.433–0.742 0.262–0.500

4. Discussion

Models capable of forecasting the evolution of milk components and somatic cell counts provide
useful information for time-related management decisions in dairy farm breeding and management
programs. The highest adjusted R2 values were reported in the ALISCH model for protein, fat, dry
matter, and lactose (0.548, 0.374, 0.429, and 0.624, respectively), and the PARYLDENS (0.481) model
for somatic cell count. This suggests the ALISCH model enables capturing a greater fraction of the
variability in the data sample when compared to other models, and the great repercussion that time
evolution has on the components being measured. González-Peña et al. [45] and Harder et al. [46]
found slightly lower results for the Adj. R2 of the ALISCH model, which can be attributed to the
properties and characteristics of the sample that was used.

The polynomial regression of ALISCH has been reported to perform well when fitting for milk
content in breeds and crossbred goats across the world. For instance, Oravcová and Margetín [47]
reported R2 values that were slightly above 0.6 for fat content and above 0.7 for protein content.
In this context, ALISCH has been reported to be preferable over other commonly fitted models such
as WOOD or WILMINK, although it is more demanding than the aforementioned models in terms
of the minimum number of test-day records required per lactation for the fitting procedures to be
successful [48]. In line with these results, Buttchereit et al. [49] suggested random regression models to
be superior compared with fixed regression models and, in general, the ALISCH function to be most
suitable for modeling both the fixed and random regression part of the mixed model, when a sufficient
number of observations is present [48], although as our results suggest this minimum limit may be
somehow flexible if observations are evenly (or almost evenly) distributed across time.

In the context of studies seeking the understanding of the genetic background behind the lactation
curve shape parameters, Santos et al. [50] suggested the models using the ALISCH function for the
additive genetic and permanent environmental effects can be adopted, as little variation is observed in
the genetic parameter estimates compared to those estimated by models using the B-spline function.
Again, Santos et al. [50] reported ALISCH usually outperform other models, such as WOOD, especially
in different scenarios of data distribution [51], although it tends to generate mathematical artifacts
such as negative or too high predicted values of milk production at the beginning or at the end of
lactation [51].
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Aforementioned failures to fit specific stages of the lactation curve and its evolution should be
analyzed from different statistical perspectives. First, less records are usually available at the edges of
the lactation compared to middle stages; hence, shortcomings of extrapolating relationships between
traits (either yield or composition) and days in milk (DIM) beyond their known range of validity may
occur when models are fitted [52].

Grossman and Koops [53] also addressed an additional theoretical issue, common to several
models used to fit lactation curves, which is the fact that the whole lactation is often considered as a
single process. These authors introduced the assumption that lactation may result after the sum of two
different overlapping phases. The diphasic model (two linear and two quadratic logistic functions)
has estimated theoretical durations of the two overlapping phases of approximately 200 and 410 days.
As a result, multiphasic models are characterized by a large number of parameters (three for each
phase), thus requiring a greater number of tests to achieve a convenient degree of fitness, as in the
case of average curves and extended lactations [5], which have been reported to frequently occur in
Murciano-Granadina goats [18]. This may be supported as well on the lower values for RSS and MSPE
(Tables S7–S11), which may evidence the increased accuracy of the ALISCH and PARYLDENS models
when fitting for protein, fat, dry matter, lactose, and somatic cell count, respectively, in comparison to
the rest of models that were tested.

For somatic cell count, an indicator of mastitis, which is markedly influenced by other factors
such as the breed being evaluated and days in milk, a slightly lower result was found. The highest
somatic cells in milk were 9,756,000 sc/mL, which means some of the goats considered may potentially
have had subclinical mastitis, which may have affected milk yield and composition. Additionally, the
inverse proportion between somatic cells and milk yield over time may be due to the dilution factor,
which means the same number of cells will give a lower cell count if the milk volume is higher [54,55].

To explain this, Bohmanova et al. [56] reported the parabolic shape of the variance function may
rather be a mathematical artifact than based on a factual biological background. Still, the provided
test-day records should evenly be distributed across lactation (which is an assumption to fulfil when
evaluating time series-dependent data) and the overestimation and underestimation of the variances
should balance across lactation; thus, it does not condition genetic evaluation of these traits.

According to González-Peña et al. [45], the Ali and Schaeffer model (ALISCH) [57] and the
third-order orthogonal polynomials of Legendre (3ORDLEG) were able to recognize 9 and 14 types of
curves. The correlations between the estimated parameter values for ALISCH were greater than those
estimated for 3ORDLEG. These two functions have been used to model dry matter intake [58] and to
estimate the genetic effect on dairy traits [59].

In the context of our results, the different shapes of the curves found when the five-parameter
models were fitted derive from the specific deformation of two basic shapes (typical or atypical). Then
a certain degree of variability occurs depending on the presence of inflection points in the different
groups of the curves, which causes the standard individual patterns to provide an inverted form, with
a phase of initial decrease to a minimum followed by an increase stage, which is common for fat and
protein contents in time [60,61]

The most common shape found in the field (about 20–30% of cases) is the atypical form [8,62],
which represents mainly a computational problem due to the interaction between the mathematical
structure of the model used and the combinations of test day values and their distribution along the
lactation trajectory [8,60,61].

According to Palacios Espinosa et al. [63] and Buttchereit et al. [49], the Ali and Schaeffer (ALISCH)
and Legendre models presented better-fitting properties than Wilmink’s exponential (WILMINK)
model for fat, protein, and dry matter. These better-fitting properties may base on the better adjustment
to the distribution patterns, indicating that the models with fewer parameters find more difficulty
to model the variation occurring along the entire curve. This suggests not only the logarithmic
shapes included in computational methods promote model fit, but also exponential shapes, as it was
supported by our results for Adj. R2 and Adj. R2 SD with the models of Cubic (CUBIC), Cubic Spline
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function with one knot (CUBSPL), Quadratic cum log model (QDCMLOG), Grossman (GROSMN),
Dijkstra (DJKSTR), Quadratic model (QUADRT), Quadratic model Dave (DAVE), Quadratic spline
function with one knot (QUADSPL), Dhanoa (DHANOA), Parabolic exponential model and Parabolic,
Sikka (PEMSIK), Ratio Cubics/Partial Fraction with Cubic Denominator (RATCUB), Singh And Gopal
(SIN&GOP), Cappio Borlino/biexponential (CAPBOR), Asymptotic Regression, Lactation modification
of Metcherlich Law of Diminishing Returns or Exponential growth model (METLAW), Morgan Mercer
Florin (MORMFLO), Wilmink’s exponential (WILMINK), and Wood (WOOD).

According to Palacios Espinosa et al. [63], the parameters related to the fitting performance
reported by the Legendre polynomials were lower than those obtained for the Ali and Schaeffer
(ALISCH) function. This behavior was referred to by Ali and Schaeffer [57], who found it difficult to
find biological reasons why the functions of the Ali-Schaeffer and Legendre polynomials can detect
dissimilar types of curves; however, this behavior is particularly useful for random regression analyses,
where individual deviations from a curve are sought.

Assuming that the ALISCH model is a complex parametric model, given the number of elements
that it comprises, our results suggest that the inclusion of logarithmic and exponential forms in the
formula may somehow promote the adaptation of the curves described by the components in the
milk produced by each goat individually to the properties of the model, which may result in the
improvement of its ability to capture the variability of the models compared to the rest. However,
Meyer [64] reported that these better model adjustment results can be balanced by the increased
power of prediction or a decrease in explicative error, since random regression models using cubic,
quadratic, or even higher polynomials provide erratic and unlikely estimates of variance components.
The same authors may suggest this situation accentuates in contexts in which few records per animal
are available in favor of third-order polynomials. However, this may contradict our findings. This
result disagreement may be based upon the fact that in comparison to R2, Adj. R2 compensates
(penalizes) for the overfitting event occurring after the inclusion of high numbers of predictors.

Alternatives to reduce the degree of polynomials, such as spline functions, which have also
been called segmented polynomials, have also been studied. These functions are curves consisting
of individual segments of low-grade polynomials that merge at specific points, called knots. Spline
functions can be modeled in different ways and, depending on the choice, reduce multicollinearity, are
easy to estimate, and have a simple biological interpretation.

Cubic spline regressions have been suggested to perform well given their ability to balance
adjustment performance, data sensitivity, smoothness, and parameterization in average adjustment
curves [65,66]. Besides, they may adapt to sudden local variations as it has been suggested for the
specific case of the patterns described by somatic cell counts around a clinical mastitis event [67,68].
A technical problem in spline adjustment is represented by optimizing the number and location of the
knots. Some authors recommend that knots be as many as possible, placed at maximum concentration
points of records [65,66], even if such a criterion necessarily increases the number of records and
function parameters.

In several documents, the number and position of the knot are fixed a priori, usually evenly
spaced [65,66,69]. However, our results showed for spline functions (QUADSPL and CUBSPL with
a single knowledge), slightly lower values for the ability to capture variability (Adj. R2) did not
exceed those reported by the ALISCH model, for milk components, or PARYLDENS for somatic cell
counts. Therefore, since the flexibility selection criteria (AIC, AICc, and BIC) were negligibly lower
and statistically insignificant for CUBSPL than for ALISCH or QUADSPL, respectively, the ALISCH
and PARYLDENS model remained preferable when individualized lactation curves are made.

Slight increases in the b0 shape parameter did not imply high increases in the values of the
flexibility selection criteria. However, when the values for b0 highly differed from 0 in absolute value,
a higher poorer ability to explain and predict was suggested, as shown in Tables S8–S12. With only
a few exceptions, values for b1, b2, b3, and b4 were maintained around 0 except for the models
that were reported above to have highly increased or highly decreased values of b0. The correlation
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values obtained in our analyses may be supported by those of Macciotta et al. [8], as moderate to
large correlations between b0, b3, and b4 were reported for lactose and dry matter, moderate to large
negative correlations were found between b1 and b4 as well as b2 and b3 for somatic cell counts and
large positive correlations were also found between b3 and b4 for fat and protein contents. Where b0
is responsible for the upward phase of the curve (peak) in the models per individual goat, finding
ALISCH values ranging between 2.570 and 14.972 for fat (%), protein (%), dry matter (%), and lactose
(%), and 717.39 for the PARYLDENS model for somatic cells (sc/mL).

In this context, our findings for those b parameters linked to the persistence are similar to
those found by other authors [70–72] in Alpine and Saanen goats under different environmental
conditions. Superior values for individual lactation curves were also found in the Ali and Schaeffer
model (ALISCH), Wilmink’s exponential (WILMINK), and Wood (WOOD) models, as described by
other authors [8,65,73].

Even in the context of a limited sample, our data may be in the limit to obtain reliable results,
as supported by Græsbøll et al. [74], whose preliminary results, derived from a small data sample,
suggested that when data is enough, there is a greater likelihood of the b parameters of the curve shape
to distribute normally around a positive value different from 0, which occurred for the models fitted in
our study.

Wilmink’s combined exponential (WILMINK) and linear model and the Ali and Schaeffer
(ALISCH) polynomial regression can be considered as a transition between early and more recent
models. The Wilmink’s (WILMINK) function consists of three terms that additively combine, which
could have been presumed to improve the flexibility and variability-capturing ability performance. In
our case, a significant flexibility improvement was not detected, while a strong statistical significance
was reported for variability explanatory ability.

These models can be easily linearized by setting the k parameter to an appropriate fixed value [75]
and its parameters still maintain a relationship to the shape of the lactation curve. The ALISCH model
comprises a higher number of parameters that may allow us to adjust a wider range of shapes, even
if these parameters do not have a technical meaning. Both models have been successfully used to
adjust individual curves [8,65] and were implemented in previous applications of random regression
models [66].

Although these models generally surpass Wood’s (WOOD) function, especially when different
data distribution scenarios are compared [65]. These two models (WILMINK and WOOD) tend to
produce mathematical artifacts, such as negative or too high dairy performance values predicted at the
beginning or end of lactation [8,66].

Adjusting R2, via Adj. R2, and the analysis of flexibility selection criteria (AIC, AICc, and BIC)
can actively help us reduce the effects of overcompensation from the inclusion of a greater number
of parameters. Contextually, the penalty computed by BIC may be stricter than for the AIC for a
reasonable sample size. However, for a small n, a corrected version of the AICc might be the most
suitable as it would provide us with a stronger penalty than the AIC and BIC (Brewer et al. [76]).

According to Burnham and Anderson [77], the effect of a higher penalty increases the probability
of the selection of smaller models to present better-fitting properties, hence the AICc tends to choose
smaller models than AIC in situations of small sample sizes. As a result, BIC, in realistic situations, can
tend to select models that are too simple (which may not fit). In this context, our results suggest the
relationship between the complexity and flexibility of the selection criteria may not be strictly linear,
while it may depend rather on the concepts of computational and parametric complexity. In this regard,
despite models presenting a higher number of elements normally reporting best-fitting properties,
in cases in which models presented a slightly lower number of parameters, the slight decrease in
explanatory ability was compensated by the inclusion of logarithmic or exponential elements, which
increased the model’s computational complexity. This computational complexity compensation made
the Adj. R2 values to overcome those from the rather parametrically more complex models, as could
have been expected.
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Our results suggest AIC, AICc, and BIC should not be the preferable option to consider when
choosing the model to describe milk component trends, but Adj. R2. This could be attributed to the
individualized adjustment of the curve model, given the specific treatment of the data belonging to
each specific animal may mean that the explanation of intraindividual variability is maximized as much
as possible in the context of the observations available to that particular animal, but this is detrimental
for other aspects, for instance, predictive potential of general models applied at a large scale.

5. Conclusions

Conclusively, our results emphasize that even in limited sample size contexts, the ALISCH
model’s superiority in the modelization of components (protein, fat, dry matter, and lactose) may
rather be ascribed to its higher computational complexity than to its parametric complexity. Parametric
complexity may condition the variability capturing ability of models, but it may not alter or condition
the better performance of models regarding flexibility criteria (AIC, AICc, and BIC). The PARYLDENS
model’s more successful results when fitting for total somatic cell count may be attributed to the fact
that it may better represent the punctual events of mastitis, which may presumably be based on the
smaller number of parameters of the PARYLDENS model. Contextually, while a three-parameter model
requires more records for a credible estimate, it may be able to more accurately predict persistence,
given the independence of parameters. The PARYLDENS model may outperform the mean values
for the Adj. R2 for models with the same or even higher number of parameters. Hence, its better
explicative ability may rather be based on its computational complexity, derived from the inclusion of
a negative exponent. The methodology and model syntax used here may be of use when aiming to
determine the specific approach to follow internationally in an attempt to adapt to all of the wide scope
of potential conditions that goat breeds may face worldwide, and which may condition the nutritional
quality of the milk that they produce.
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AIC, AICc and BIC) for linear and non-linear models for milk somatic cell count in Murciano-Granadina goats;
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two, three, four or five elements; Table S13: Summary of Bayesian ANOVA to test for differences in the mean for
AICc across models comprising two, three, four or five elements; Table S14: Summary of Bayesian ANOVA to test
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Author Contributions: Data curation, F.J.N.G. and J.M.L.J.; formal analysis, M.G.P.I., F.J.N.G. and V.L.; funding
acquisition, J.V.D.B.; investigation, M.G.P.I., F.J.N.G., J.M.L.J., J.V.D.B. and M.d.A.M.M.; methodology, F.J.N.G. and
J.V.D.B.; project administration, J.V.D.B.; resources, F.J.N.G., J.M.L.J., J.F.Á. and M.d.A.M.M.; software, M.G.P.I.,
F.J.N.G. and J.M.L.J.; supervision, F.J.N.G., J.V.D.B. and M.d.A.M.M.; visualization, V.L.; writing—original draft,
M.G.P.I. and F.J.N.G.; writing—review and editing, F.J.N.G., V.L., J.M.L.J., J.F.Á. and M.d.A.M.M. All authors have
read and agreed to the published version of the manuscript.

http://www.mdpi.com/2076-2615/10/9/1693/s1


Animals 2020, 10, 1693 15 of 18

Funding: This research received no external funding.

Acknowledgments: The authors want to thank the support and assistance of the National Association of Breeders
of Murciano-Granadina Goat Breed, Fuente Vaqueros (Spain), and the PAIDI AGR 218 research group.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ehrlich, J.L. Quantifying inter-group variability in lactation curve shape and magnitude with the
MilkBot®lactation model. PeerJ. 2013, 1, e54. [CrossRef]

2. Cankaya, S.; Unalan, A.; Soydan, E. Selection of a mathematical model to describe the lactation curves of
Jersey cattle. Arch. Anim. Breed. 2011, 54, 27–35. [CrossRef]

3. Hossein-Zadeh, N.G. Comparison of non-linear models to describe the lactation curves of milk yield and
composition in Iranian Holsteins. J. Agric. Sci. 2014, 152, 309–324. [CrossRef]

4. Shaat, I. Application of the Wood lactation curve in analysing the variation of daily milk yield in the Zaraibi
goats in Egypt. Small Rumin. Res. 2014, 117, 25–33. [CrossRef]

5. Dematawewa, C.; Pearson, R.; VanRaden, P. Modeling extended lactations of Holsteins. J. Dairy Sci. 2007, 90,
3924–3936. [CrossRef] [PubMed]

6. Adewumi, O.; Oluwatosin, B.; Tona, G.; Williams, T.; Olajide, O. Milk yield and milk composition of Kalahari
Red goat and the performance of their kids in the humid zone. Arch. Zootec. 2017, 66, 587–592. [CrossRef]

7. Fernández, C.; Sánchez, A.; Garcés, C. Modeling the lactation curve for test-day milk yield in
Murciano-Granadina goats. Small Rumin. Res. 2002, 46, 29–41. [CrossRef]

8. Macciotta, N.P.P.; Vicario, D.; Cappio-Borlino, A. Detection of different shapes of lactation curve for milk
yield in dairy cattle by empirical mathematical models. J. Dairy Sci. 2005, 88, 1178–1191. [CrossRef]

9. León, J.M.; Macciotta, N.P.P.; Gama, L.T.; Barba, C.; Delgado, J.V. Characterization of the lactation curve in
Murciano-Granadina dairy goats. Small Rumin. Res. 2012, 107, 76–84. [CrossRef]

10. Pizarro Inostroza, M.G.; Landi, V.; Navas González, F.J.; León Jurado, J.M.; Martínez Martínez, M.d.A.;
Fernández Álvarez, J.; Delgado Bermejo, J.V. Non-parametric analysis of casein complex genes epistasis
and their effect on phenotypic expression of milk yield and composition in Murciano-Granadina goats.
J. Dairy Sci. 2020, 103, 8274–8291. [CrossRef]

11. Pizarro Inostroza, M.G.; Landi, V.; Navas González, F.J.; León Jurado, J.M.; Delgado Bermejo, J.V.; Fernández
Álvarez, J.; Martínez Martínez, M.d.A. Integrating Casein Complex SNPs Additive, Dominance and Epistatic
Effects on Genetic Parameters and Breeding Values Estimation for Murciano-Granadina Goat Milk Yield and
Components. Genes 2020, 11, 309. [CrossRef] [PubMed]

12. Pizarro Inostroza, M.G.; Landi, V.; Navas González, F.J.; León Jurado, J.M.; Martínez Martínez, M.d.A.;
Fernández Álvarez, J.; Delgado Bermejo, J.V. Non-parametric association analysis of additive and dominance
effects of casein complex SNPs on milk content and quality in Murciano-Granadina goats. J. Anim. Breed. Genet.
2019, 137, 407–422. [CrossRef] [PubMed]

13. Šebjan, U.; Tominc, P. Impact of support of teacher and compatibility with needs of study on usefulness of
SPSS by students. Comput. Hum. Behav. 2015, 53, 354–365. [CrossRef]

14. Ozgur, C.; Alam, P.; Booth, D. R, Python, Excel, SPSS, SAS, and MINITAB in Research; 2018. Proceedings of
Decision Sciences Institute 2019 Annual Conference, New Orleans, Louisiana, 20–22 February 2019; p. 9.

15. Delgado, J.V.; León, J.M.; Quiroz, J.L.; Lozano, M.I. Esquema de selección de sementales caprinos de aptitud
lechera de raza Murciano-Granadina. FEAGAS 2005, 27, 109–113.

16. Fernández Álvarez, J.; León Jurado, J.M.; Navas González, F.J.; Iglesias Pastrana, C.; Delgado Bermejo, J.V.
Optimization and Validation of a Linear Appraisal Scoring System for Milk Production-Linked Zoometric
Traits in Murciano-Granadina Dairy Goats and Bucks. Appl. Sci. 2020, 10, 5502. [CrossRef]

17. Yañez-Ruiz, D.R. Goat Production in Spain; CSIC-SOLID: Granada, Spain, 2016.
18. Delgado, J.V.; Landi, V.; Barba, C.J.; Fernández, J.; Gómez, M.M.; Camacho, M.E.; Martínez, M.A.; Navas, F.J.;

León, J.M. Murciano-Granadina Goat: A Spanish Local Breed Ready for the Challenges of the Twenty-First
Century. In Sustainable Goat Production in Adverse Environments: Volume II, 1st ed.; Simoes, J., Gutierrez, C.,
Eds.; Springer International Plubishing: Cham, Switzerland, 2017; pp. 205–219.

http://dx.doi.org/10.7717/peerj.54
http://dx.doi.org/10.5194/aab-54-27-2011
http://dx.doi.org/10.1017/S0021859613000415
http://dx.doi.org/10.1016/j.smallrumres.2013.11.012
http://dx.doi.org/10.3168/jds.2006-790
http://www.ncbi.nlm.nih.gov/pubmed/17639004
http://dx.doi.org/10.21071/az.v66i256.2776
http://dx.doi.org/10.1016/S0921-4488(02)00179-7
http://dx.doi.org/10.3168/jds.S0022-0302(05)72784-3
http://dx.doi.org/10.1016/j.smallrumres.2012.05.012
http://dx.doi.org/10.3168/jds.2019-17833
http://dx.doi.org/10.3390/genes11030309
http://www.ncbi.nlm.nih.gov/pubmed/32183253
http://dx.doi.org/10.1111/jbg.12457
http://www.ncbi.nlm.nih.gov/pubmed/31743943
http://dx.doi.org/10.1016/j.chb.2015.07.022
http://dx.doi.org/10.3390/app10165502


Animals 2020, 10, 1693 16 of 18

19. Pizarro, G.; Landi, V.; León Jurado, J.M.; Navas González, F.J.; Delgado Bermejo, J.V. Non-parametric analysis
of the effects of αS1-casein genotype and parturition nongenetic factors on milk yield and composition in
Murciano-Granadina goats. Ital. J. Anim. Sci. 2019, 18, 1021–1034. [CrossRef]

20. International committee fo Animal Recording (ICAR). Guidelines for Performance Recording in Dairy Sheep and
Dairy Goats; ICAR: Rome, Italy, 2018; p. 35.

21. Norman, H.; Cooper, T.; Ross, J.F.A. State and National Standardized Lactation Averages by Breed for Cows Calving
in 2010; Animal Improvement Programs Laboratory, Agricultural Research Service, USDA: Beltsville, MD,
USA, 2010.

22. Durbin, J. Testing for serial correlation in least-squares regression when some of the regressors are lagged
dependent variables. Econometrica 1970, 38, 410–421. [CrossRef]

23. Greenberg, D.; Kerwick, S.; Encheva, T.; Williamson, D.; Mingyuan, Z.; Muthuraman, K.; Moliski, L.; Murray, J.
Durbin watson statistic after the two statisticians. In STA 371G; University of Texas: Austin, TX, USA, 2020;
pp. 2–16.

24. Chen, Y. Spatial autocorrelation approaches to testing residuals from least squares regression. PLoS ONE
2016, 11, e0146865. [CrossRef]

25. IBM Corp. IBM SPSS Statistics for Windows, Version 25.0; Software for IBM Corp: Armonk, NY, USA, 2017.
26. Kaygisiz, F.; Sezgin, F.H. Forecasting goat milk production in Turkey using Artificial Neural Networks and

Box-Jenkins models. Anim. Rev. 2017, 4, 45–52.
27. Feistauer, M.; Dolejší, V.; Knobloch, P.; Najzar, K. Numerical Mathematics and Advanced Applications. In

Proceedings of the ENUMATH 2003 the 5th European Conference on Numerical Mathematics and Advanced
Applications, Prague, Czech Republic, 18–22 August 2003; Springer: Berlin/Heidelberg, Germany, 2004;
p. 876.

28. Arora, J.S. Chapter 14-Practical Applications of Optimization. In Introduction to Optimum Design, 4th ed.;
Arora, J.S., Ed.; Academic Press: Boston, MA, USA, 2017; pp. 601–680.

29. Asherson, R.; Walker, S.; Jara, L.J. Endocrine Manifestations of Systemic Autoimmune Diseases; Elsevier Science:
Amsterdam, The Netherlands, 2008; p. 340.

30. Val-Arreola, D.; Kebreab, E.; Dijkstra, J.; France, J. Study of the lactation curve in dairy cattle on farms in
central Mexico. J. Dairy Sci. 2004, 87, 3789–3799. [CrossRef]

31. Karangeli, M.; Abas, Z.; Koutroumanidis, T.; Malesios, C.; Giannakopoulos, C. Comparison of Models for
Describing the Lactation Curves of Chios Sheep Using Daily Records Obtained from an Automatic Milking
System. Proceedings of 5th International Conference on Information and Communication Technologies for
Sustainable Agri-production and Environment, Skiathos Island, Greece, 8–11 September 2011; pp. 571–589.

32. Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection.
Sociol. Methods Res. 2004, 33, 261–304. [CrossRef]

33. Leonard, T.; Hsu, J.S. Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Researchers; Cambridge
University Press: Cambridge, UK, 2001; p. 333.

34. IBM Corp. IBM SPSS Statistics Algorithms, 25th ed.; IBM Corp.: Armonk, NY, USA, 2017; p. 110.
35. Jeffreys, H. Theory of Probability, 3rd ed.; Oxford University Press: Oxford, UK, 1961.
36. Lee, M.; Wagenmakers, E. Bayesian Cognitive Modeling: A Practical Course; Cambridge University Press:

Cambridge, UK, 2013; pp. 3–247.
37. Liang, F.; Paulo, R.; Molina, G.; Clyde, M.A.; Berger, J.O. Mixtures of g priors for Bayesian variable selection.

J. Am. Stat. Assoc. 2008, 103, 410–423. [CrossRef]
38. Morey, R.; Rouder, J. Bayes Factor 0.9. 12-2. Comprehensive R Archive Network (CRAN); RC Team: Vienna,

Austria, 2015.
39. Rouder, J.N.; Speckman, P.L.; Sun, D.; Morey, R.D.; Iverson, G. Bayesian t tests for accepting and rejecting the

null hypothesis. Psychon Bull. Rev. 2009, 16, 225–237. [CrossRef] [PubMed]
40. Rouder, J.N.; Morey, R.D.; Speckman, P.L.; Province, J.M. Default Bayes factors for ANOVA designs.

J. Math. Psychol. 2012, 56, 356–374. [CrossRef]
41. Heck, D. A Caveat on the Savage-Dickey Density Ratio: The Case of Computing Bayes Factors for Regression

Parameters. Br. J. Math. Stat. Psychol. 2019, 72, 316–333. [CrossRef] [PubMed]
42. Bayarri, M.J.; Berger, J.O.; Forte, A.; García-Donato, G. Criteria for Bayesian model choice with application to

variable selection. Ann. Stat. 2012, 40, 1550–1577. [CrossRef]
43. Eqsquest. Symbolab. Available online: https://es.symbolab.com/ (accessed on 25 April 2020).

http://dx.doi.org/10.1080/1828051X.2019.1611388
http://dx.doi.org/10.2307/1909547
http://dx.doi.org/10.1371/journal.pone.0146865
http://dx.doi.org/10.3168/jds.S0022-0302(04)73518-3
http://dx.doi.org/10.1177/0049124104268644
http://dx.doi.org/10.1198/016214507000001337
http://dx.doi.org/10.3758/PBR.16.2.225
http://www.ncbi.nlm.nih.gov/pubmed/19293088
http://dx.doi.org/10.1016/j.jmp.2012.08.001
http://dx.doi.org/10.1111/bmsp.12150
http://www.ncbi.nlm.nih.gov/pubmed/30451277
http://dx.doi.org/10.1214/12-AOS1013
https://es.symbolab.com/


Animals 2020, 10, 1693 17 of 18

44. Mohanty, B.S.; Verma, M.R.; Sharma, V.B.; Roy, P.K. Comparative study of lactation curve models in crossbred
dairy cows. Int. J. Agric. Stat. Sci. 2017, 13, 545–551.

45. González-Peña, D.; Acosta, J.; Guerra, D.; González, N.; Acosta, M.; Sosa, D.; Torres-Hernández, G. Modeling
of individual lactation curves for milk production in a population of Alpine goats in Cuba. Livest. Sci. 2012,
150, 42–50. [CrossRef]

46. Harder, I.; Stamer, E.; Junge, W.; Thaller, G. Lactation curves and model evaluation for feed intake and energy
balance in dairy cows. J. Dairy Sci. 2019, 102, 7204–7216. [CrossRef]

47. Oravcová, M.; Margetín, M. First estimates of lactation curves in White Shorthaired goats. Slovak J. Anim. Sci.
2015, 48, 1–7.

48. Silvestre, A.M.; Petim-Batista, F.; Colaço, J. The Accuracy of Seven Mathematical Functions in Modeling
Dairy Cattle Lactation Curves Based on Test-Day Records from Varying Sample Schemes. J. Dairy Sci. 2006,
89, 1813–1821. [CrossRef]

49. Buttchereit, N.; Stamer, E.; Junge, W.; Thaller, G. Evaluation of five lactation curve models fitted for fat:
Protein ratio of milk and daily energy balance. J. Dairy Sci. 2010, 93, 1702–1712. [CrossRef] [PubMed]

50. Santos, D.J.A.; Peixoto, M.G.C.D.; Aspilcueta Borquis, R.R.; Panetto, J.C.C.; El Faro, L.; Tonhati, H. Predicting
breeding values for milk yield of Guzerá (Bos indicus) cows using random regression models. Livest. Sci.
2014, 167, 41–50. [CrossRef]

51. Macciotta, N.P.P.; Dimauro, C.; Rassu, S.P.G.; Steri, R.; Pulina, G. The mathematical description of lactation
curves in dairy cattle. Ital. J. Anim. Sci. 2011, 10, e51. [CrossRef]

52. Mead, J.R.; Irvine, S.A.; Ramji, D.P. Lipoprotein lipase: Structure, function, regulation, and role in disease.
J. Mol. Med. 2002, 80, 753–769. [CrossRef] [PubMed]

53. Grossman, M.; Koops, W. Multiphasic analysis of lactation curves in dairy cattle. J. Dairy Sci. 1988, 71,
1598–1608. [CrossRef]

54. Green, L.; Schukken, Y.; Green, M. On distinguishing cause and consequence: Do high somatic cell counts
lead to lower milk yield or does high milk yield lead to lower somatic cell count? Prev. Vet. Med. 2006, 76,
74–89. [CrossRef]

55. Green, M.; Bradley, A.; Newton, H.; Browne, W. Seasonal variation of bulk milk somatic cell counts in UK
dairy herds: Investigations of the summer rise. Prev. Vet. Med. 2006, 74, 293–308. [CrossRef]

56. Bohmanova, J.; Miglior, F.; Jamrozik, J.; Misztal, I.; Sullivan, P.G. Comparison of Random Regression Models
with Legendre Polynomials and Linear Splines for Production Traits and Somatic Cell Score of Canadian
Holstein Cows. J. Dairy Sci. 2008, 91, 3627–3638. [CrossRef]

57. Ali, T.; Schaeffer, L. Accounting for covariances among test day milk yields in dairy cows. Can. J. Anim. Sci.
1987, 67, 637–644. [CrossRef]

58. Kramer, E.; Stamer, E.; Spilke, J.; Thaller, G.; Krieter, J. Analysis of water intake and dry matter intake using
different lactation curve models. J. Dairy Sci. 2009, 92, 4072–4081. [CrossRef] [PubMed]

59. Strucken, E.; De Koning, D.; Rahmatalla, S.; Brockmann, G.A. Lactation curve models for estimating gene
effects over a timeline. J. Dairy Sci. 2011, 94, 442–449. [CrossRef] [PubMed]

60. Congleton, W., Jr.; Everett, R. Error and bias in using the incomplete gamma function to describe lactation
curves. J. Dairy Sci. 1980, 63, 101–108. [CrossRef]

61. Congleton, W., Jr.; Everett, R. Application of the incomplete gamma function to predict cumulative milk
production. J. Dairy Sci. 1980, 63, 109–119. [CrossRef]

62. Macciotta, N.; Dimauro, C.; Steri, R.; Cappio-Borlino, A. Mathematical modelling of goat lactation curves.
In Dairy Goats Feeding and Nutrition, 1st ed.; Cannas, A., Pulina, G., Eds.; CABI: Sassari, Italy, 2008; pp. 31–46.

63. Palacios Espinosa, A.; González-Peña Fundora, D.; Guerra Iglesias, D.; Espinoza Villavicencio, J.L.; Ortega
Pérez, R.; Guillén Trujillo, A.; Ávila Serrano, N. Curvas de lactancia individuales en vacas Siboney de Cuba.
Rev. Mex. Cienc. Pecu. 2016, 7, 15–28. [CrossRef]

64. Meyer, K. Random regression analyses using B-splines to model growth of Australian Angus cattle.
Genet. Sel. Evol. 2005, 37, 473. [CrossRef]

65. Silvestre, A.; Martins, A.; Santos, V.; Ginja, M.; Colaço, J. Lactation curves for milk, fat and protein in dairy
cows: A full approach. Livest. Sci. 2009, 122, 308–313. [CrossRef]

66. Druet, T.; Jaffrézic, F.; Boichard, D.; Ducrocq, V. Modeling lactation curves and estimation of genetic
parameters for first lactation test-day records of French Holstein cows. J. Dairy Sci. 2003, 86, 2480–2490.
[CrossRef]

http://dx.doi.org/10.1016/j.livsci.2012.07.026
http://dx.doi.org/10.3168/jds.2018-15300
http://dx.doi.org/10.3168/jds.S0022-0302(06)72250-0
http://dx.doi.org/10.3168/jds.2009-2198
http://www.ncbi.nlm.nih.gov/pubmed/20338448
http://dx.doi.org/10.1016/j.livsci.2014.05.023
http://dx.doi.org/10.4081/ijas.2011.e51
http://dx.doi.org/10.1007/s00109-002-0384-9
http://www.ncbi.nlm.nih.gov/pubmed/12483461
http://dx.doi.org/10.3168/jds.S0022-0302(88)79723-4
http://dx.doi.org/10.1016/j.prevetmed.2006.04.012
http://dx.doi.org/10.1016/j.prevetmed.2005.12.005
http://dx.doi.org/10.3168/jds.2007-0945
http://dx.doi.org/10.4141/cjas87-067
http://dx.doi.org/10.3168/jds.2008-1957
http://www.ncbi.nlm.nih.gov/pubmed/19620691
http://dx.doi.org/10.3168/jds.2009-2932
http://www.ncbi.nlm.nih.gov/pubmed/21183055
http://dx.doi.org/10.3168/jds.S0022-0302(80)82894-3
http://dx.doi.org/10.3168/jds.S0022-0302(80)82895-5
http://dx.doi.org/10.22319/rmcp.v7i1.4147
http://dx.doi.org/10.1186/1297-9686-37-6-473
http://dx.doi.org/10.1016/j.livsci.2008.09.017
http://dx.doi.org/10.3168/jds.S0022-0302(03)73842-9


Animals 2020, 10, 1693 18 of 18

67. de Haas, Y.; Barkema, H.W.; Veerkamp, R.F. The effect of pathogen-specific clinical mastitis on the lactation
curve for somatic cell count. J. Dairy Sci. 2002, 85, 1314–1323. [CrossRef]

68. Green, M.; Green, L.; Schukken, Y.; Bradley, A.; Peeler, E.; Barkema, H.; De Haas, Y.; Collis, V.; Medley, G.
Somatic cell count distributions during lactation predict clinical mastitis. J. Dairy Sci. 2004, 87, 1256–1264.
[CrossRef]

69. Hickson, R.; Lopez-Villalobos, N.; Dalley, D.; Clark, D.; Holmes, C. Yields and persistency of lactation in
Friesian and Jersey cows milked once daily. J. Dairy Sci. 2006, 89, 2017–2024. [CrossRef]

70. Siqueira, O.; Mota, R.; Oliveira, H.; Duarte, D.; Glória, L.; Rodrigues, M.; Silva, F. Genetic evaluation of
lactation persistency and total milk yield in dairy goats. Livest. Res. Rural. Dev. 2017, 29, 142.

71. Henao, K.; Blandón, Y.; González-Herrera, L.; Cardona-Cadavid, H.; Corrales, J.; Calvo, S. Efectos genéticos
y ambientales sobre la curva de lactancia en cabras lecheras del trópico. Livest. Res. Rural. Dev. 2017, 29, 97.

72. Noguera, R.; Ortiz, D.; Marin, L. Comparación de modelos matemáticos para describir curvas de lactancia
en cabras Sannen y Alpina. Livest. Res. Rural Dev. 2011, 23, 11.

73. Torshizi, M.E.; Aslamenejad, A.; Nassiri, M.; Farhangfar, H. Comparison and evaluation of mathematical
lactation curve functions of Iranian primiparous Holsteins. S. Afr. J. Anim. Sci. 2011, 41, 104–115. [CrossRef]

74. Græsbøll, K.; Kirkeby, C.; Nielsen, S.S.; Halasa, T.; Toft, N.; Christiansen, L.E. Models to estimate lactation
curves of milk yield and somatic cell count in dairy cows at the herd level for the use in simulations and
predictive models. Front. Vet. Sci. 2016, 3, 115. [CrossRef]

75. Brotherstone, S.; White, I.; Meyer, K. Genetic modelling of daily milk yield using orthogonal polynomials
and parametric curves. Anim. Sci. 2000, 70, 407–415. [CrossRef]

76. Brewer, M.J.; Butler, A.; Cooksley, S.L. The relative performance of AIC, AICC and BIC in the presence of
unobserved heterogeneity. Methods Ecol. Evol. 2016, 7, 679–692. [CrossRef]

77. Burnham, K.; Anderson, D.R. Model. Selection and Multimodel Inference. A Practical Information-Theoretic
Approach; Springer: New York, NY, USA, 2002; pp. 1–454.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3168/jds.S0022-0302(02)74196-9
http://dx.doi.org/10.3168/jds.S0022-0302(04)73276-2
http://dx.doi.org/10.3168/jds.S0022-0302(06)72269-X
http://dx.doi.org/10.4314/sajas.v41i2.71013
http://dx.doi.org/10.3389/fvets.2016.00115
http://dx.doi.org/10.1017/S1357729800051754
http://dx.doi.org/10.1111/2041-210X.12541
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Animal Sample and Sample Selection Process 
	Milk Performance Standardization 
	Milk Composition Technical Records 
	Milk Composition Biological Analysis and Percentual Records 
	Statistical Analysis 
	Parametric Assumption Testing 
	Composition Curve Models and Shape Parameters 
	Model Selection Criteria 
	Bayesian Model Criterion Comparison 
	Curve Shape Parameters Computation for the Best-Fitting Model 


	Results 
	Discussion 
	Conclusions 
	References

