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Simple Summary: Studies investigating whether a captive environment is meeting the needs of the
species housed are relatively common among captive mammals. However, studies exploring fish
behaviour in captive display enclosures are far less common in the scientific literature. Focusing
on a small group of sharks, rays and smaller fish within a single display, our objectives were to;
assess whether the behaviours of a select number of individual fishes within a single display are
altered after the environment is enriched to enhance environmental complexity and visitor exposure
is reduced, and also to increase our understanding of captive fish behaviour to improve capacity
for evidence-based management decisions. In summary, increased environmental complexity and
reduced visitor interaction showed correlations with increased expression of natural behaviours
in all fish studied, including increased space use and decreased abnormal repetitive behaviours in
some species. These results reflect a change toward more natural wild behavioural time budgets.
Studying behaviour change in fish in different environmental conditions provides a good basis for
evidence-based decision making.

Abstract: This study investigated the behaviour of two Elasmobranch species; Southern fiddler
ray (Trygonorrhina dumerilii, n = 1) and Port Jackson shark (Heterodontus portusjacksoni, n = 4) and
two teleost species; moonlighter (Tilodon sexfasciatus, n = 1) and banded morwong (Cheilodactylus
spectabilis, n = 1) living within a single enclosure. For this study, two treatments were compared,
the original enclosure design, and then after the enclosure had been renovated to more closely
represent the species natural habitats, with a raised front viewing glass to prevent visitor interaction.
Behaviours such as resting, swimming and abnormal behaviours such as surface and perimeter
swimming (elasmobranchs only) were recorded as well as location within the enclosure, for 10 days
pre and 10 days post renovation. The Port Jackson sharks significantly reduced the performance of
abnormal behaviours after renovation, and significantly increased the time spent near the exhibit
front. The Southern fiddler ray increased resting post renovation, while the teleost species also
spent more time near the exhibit front. Although a small sample size was used, the results suggest
that a more naturalistic environment with multiple micro-habitats and effective visitor barriers
allows for a greater proportion of the day spent exhibiting natural behaviours, greater space use and
reduced stereotypes.

Keywords: welfare; fish; captive animal behaviour; enclosure design; visitor effect

1. Introduction

Historically, captive institutions such as zoos and aquariums were guided by a min-
imum standard when designing animal enclosures, providing perceived adequate en-
vironmental conditions for the basic needs for the animal’s survival and physiological
health [1–3]. These standards were largely based on a limited understanding of the specific
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and varied behavioural ecologies of the species under care, and perhaps also reflecting
the current attitudes towards animal welfare importance of the era [4]. With the zoo and
aquarium industry increasingly becoming more welfare-focused, it is now common for
enclosures to be designed around the biological functioning and capabilities of the animals,
in consideration of potential affective (mental) states/experiences [1,5].

There is now a great deal of targeted research focusing on the relationship between
behavioural ecology, environmental complexity and the overall welfare states of captive
animals. [1,6–9]. Using various indicators, including behaviour, numerous studies have
emphasised the complexity of an enclosure and the environmental enrichment provided
can be critical in facilitating positive welfare outcomes, as well as allowing individuals
to express agency through choice and control when confronted with stressors associated
with captivity [10–16]. Enclosures that reflect more naturalistic living conditions have been
found to accommodate greater species-specific natural behaviours, likely reflecting more
positive experiences in animals [1,10,17–19].

Environmental enrichment has been described as a process for improving or enhancing
environments aligned with the animal’s behavioural biology and natural history [20]. This
can be achieved through varying the stimuli available to the animals across multiple
aspects of their day. This variation can result in an increase in complexity within the
environment provided, thereby increasing the behavioural choices available to animals,
enhancing variation, novelty, choice and control, and has been shown to be a critical aspect
to achieving good welfare [10,20–24]. In this study we have focused on physical enrichment
and the associated effects on behaviour.

Key behavioural indicators of interest in these animal-welfare-focused studies include
behavioural diversity defined as a measure of the richness and frequency of behaviours [25]
as well as space use. For example, Chamove et al. [26] found the use of deep wood chip
litter scattered in the exhibits of eight primate species led to increased behavioural diversity,
with more time spent on the ground foraging and less time engaging in fighting and periods
of inactivity. Using instantaneous scan sampling of eight sitatunga, Tragelaphus spekii, Rose
and Robert [27] found their overall space use was higher in areas of their exhibit that were
more biologically relevant and reflected more naturalistic habitat. Abnormal repetitive
behaviours can also be a useful behaviour to investigate the impacts of environmental
conditions on captive animals [28]. For example, In Southern India, the stereotypic pacing
levels of Indian leopards, Panthera pardus, in four zoos were found to be significantly lower
when on-exhibit in a more enriched space compared to a simpler off-exhibit space [13].

To date, this focus on enclosure impacts on captive animal welfare has largely concen-
trated on higher class vertebrates and mega fauna [2,5,29,30] and less on species that have
vastly differing behavioural repertoires and perceptions to that of humans [31,32]. Studies
investigating the behaviour and welfare of fish species housed in zoos and aquariums are
extremely limited [33]. Much of the literature addressing fish welfare focuses on questions
such as their ability to feel pain, express emotion and whether they are indeed sentient
and lead complex lives worthy of a more complex welfare discussion [34–37]. Numerous
studies have now shown that fish do possess similar neuroendocrine and physiological
stress responses comparative to higher vertebrates and consciously alter their behaviour
in response to noxious stimuli and prolonged periods of stress [8,34–36,38]. Beyond the
discussion of pain perception, some further research has started to explore fish emotion
and cognition [39,40], learning and familiarity [41,42] demonstrating different species’
impressive memory capabilities [16,43], individual recognition abilities and even complex
social ranking [44].

Fish welfare indicators that have been studied thus far largely focus on identifying
poor welfare states, with limited identification of good welfare indicators [45]. They include;
physiological indicators such as plasma cortisol [46], glucose, lactate, performance/growth
indicators and behavioural indicators including swimming activity, stereotypies, aggression
and surface airbreathing [47]. Changes in feeding behaviour and intake, as well as increased
ventilatory activity, have also been used as indicators of poor welfare in fish [45].
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Similarly to captive mammals, the knowledge of how different fish species perceive
their external environment and how that perception influences behavioural responses
and motivation to perform certain behaviours is invaluable for evidence-based decision
making [45]. Much of the research in this field has focused on fish species common to the
laboratory or farming sector [48] and is demonstrating fish have clear behavioural and
physiological changes in response to environmental enrichment and complexity [34,35,49].
For example, zebrafish, Danio rerio, showed significantly altered behaviours when housed
in varying levels of environmentally enriched tanks [50,51]. Studies of seabream, Sparus
aurata, showed an increase in space use and exploration with increased environmental
enrichment [11], while Alexandre da Silva et al. [43] found Serrapinnus notomelas, foraged
less when exposed to low levels of enrichment. Zonghang Zhang et al. [16] exposed
captive juvenile black rockfish, Sebastes schlegelii to differing levels of plant and structure
enrichment and found that control fish exposed to no enrichment had significantly higher
basal stress levels (defined by cortisol level and opercular beat rate). Additionally, studies
of the Nile tilapia, Oreochromis niloticus, three-spined stickleback, Gasterosteus aculeatus and
gold fish, Carassius auratus, demonstrate that all of these species exhibit a preference for
enriched environments that more accurately mimic their natural habitat [52–55].

In addition to environmental complexity, another feature of the zoo and aquarium
environment that is likely to impact fish behaviour and welfare is exposure to visitors. The
visitor effect has been well studied in other taxa, with a range of responses found from
negative to positive [56–63]. The proximity to humans combined with the presence or
lack of retreat spaces has shown clear behavioural changes in numerous species including
intraspecies aggression, vigilance, as well as changes in overall activity levels [58,64–66].
The evidence suggests a key determinant of the direction of the response from an animal is
likely to be enclosure design and the associated level of control an animal has to manage
exposure to visitors [15,58]. However, to date, this has not been well investigated in fish
species but is nonetheless a key part of the environment that needs consideration.

Port Jackson shark, Heterodontus portusjacksoni, and Southern fiddler ray, Trygonorrhina
dumerilii, are ideal species for assessing elasmobranch behaviour in captivity. There is
limited detailed knowledge of wild elasmobranch behavioural activity and spatial struc-
ture [67]; however, it is well known that both species are primarily benthic in nature,
meaning they spend a majority of their time on, or near the sea bottom [68–70]. Therefore,
behaviours at the surface such as swimming breaking the surface water or swimming on
their side against the perimeter housing walls, are considered unnatural if frequently ob-
served in captivity. With these surface behaviours undocumented in healthy wild animals,
it is predicted that elements of captivity may induce these behaviours and could be reflec-
tive of deficiency in their environment. Wild benthic elasmobranch species have also been
found to have low vagility [67]. Port Jackson sharks are commonly found resting in caves
and gullies in the daylight hours [68] and acoustic monitoring has revealed substantial pe-
riods of inactivity overall [69–71]. Acoustic monitoring of Southern fiddler rays also found
they do not regularly move long distances [72] and are largely encountered on the sea floor
resting, or partially submerged under the sand often in dimly lit environments [70,72–74].
As non-obligate ventilators, they have well-defined resting and swimming activity periods
making these species ideal for captive observations as their activity budgets and space use
can be easily documented [71].

Detailed knowledge of the activity budgets of the moonlighter, Tilodon sexfasciatus
and banded morwong, Cheilodactylus spectabilis, the teleost species studied here, is also
limited. Wild studies of moonlighter fish have shown some act as cleaner fish within a
reef environment, adopting a small home range within caves and crevices where other
fish gather for cleaning services, whilst at other times individuals were documented
travelling up to 30 m from their shelters cleaning opportunistically [75]. While studies
of banded morwongs have not shown any systemic feeding migrations their density
has been positively correlated with topographic complexity, and they are known to be
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diurnally active [76]. Both species, therefore, were considered good subjects due to their
wild association with reef structure and complexity [76,77].

This preliminary study aimed to assess the impact of enclosure changes on a selection
of fish species. The enclosure changes included; (1) increased environmental complexity
through the use of more species-appropriate furnishings and substrate, and (2) reduction of
visitor interaction through the addition of a glass barrier preventing visitors from putting
their hands into the tank. Ultimately, the aim was to increase our understanding of captive
fish behaviour to improve capacity for evidence-based management decisions.

It was hypothesised that after the exhibit is renovated to provide a more naturalistic,
safe environment with multiple micro habitats the activity budgets of the elasmobranchs
and teleosts will more closely align with wild activity, alongside an increase in space use
and an overall reduction in stereotypes.

2. Materials and Methods
2.1. Study Subjects and General Housing Conditions

Observations were carried out on four Port Jackson sharks (two male and two fe-
male), one Southern fiddler ray (female), one banded morwong (sex unknown) and one
moonlighter (sex unknown) in a single display tank located at Melbourne Zoo.

The subject animals also shared this tank with 13 Yellow-eyed Mullet (Aldichetta
forsteri), one Globefish (Diodon nicthemerus) two Sea Sweep (Scorpius aequipinnis), and one
Southern Rock Lobster (Jasus edwardsii). Whilst all these species occupy different niches or
micro habitats, they are all common to the inshore temperate waters of the Southern Ocean.
These animals were not studied as part of this research.
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Figure 1. (a) The tank at Melbourne Zoo where all species were housed prior to renovations. Dark grey shapes represent
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2.2. Tank Renovations (Treatments)

Fish behaviour and space use was studied under two conditions (Figure 1):

1. Pre-renovation: tank had minimal environmental complexity with very little overhead
cover, no seaweed theming, thick shell grit substrate and high visitor exposure
through lack of barrier at water’s surface. The height of the glass on the visitor
viewing side reached a height of 75 cm at the lowest point, rising to 97 cm at the
highest (towards the ledge overhang) as the visitor ground sloped downward. The
only structures within the tank included 40/60 cm × 40/60 cm size garden rocks,
some clumped together, and two PVC pipes wedged in between two rock clumps
providing cover for only small fish.

2. Post-renovation: the tank was renovated to incorporate more naturalistic environmen-
tal features including the addition of four themed structures; a large swim through
cave, two small enclosed caves with a front entrance and a large bommie structure
providing overhead cover, finer coral sand substrate and multiple seaweed clusters.
The glass wall was elevated to a height of 150 cm rising to 175 cm at the far side
blocking direct visitor contact with water.

The in-tank renovation took 18 days to complete. During this time, animals were
housed in two temporary indoor holding tanks, both equivalent size and collective volume
of 10,000 L (not inclusive of life support volumes) and on the same filtration system. The
Port Jackson sharks and the Southern rock lobster were held in one tank, fiddler rays in the
other and the teleost fish equally were split by number between the two.
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The tank was visually separated into three locations: exhibit front (1.5 m closest to
the visitor viewing area), exhibit back (1.5 m furthest from the visitor viewing area) and a
ledge overhang which consisted of the area underneath wall theming that overhangs the
tank by 80 cm–1 m running along nearly the full width of the tank on the right-hand side
(referred to here on out as the “ledge” location, Figure 1).

2.3. Behavioural Observations

An ethogram was developed based on preliminary observations of the individuals
over a two-day period before the study began. It was decided to focus on broad state target
behaviours for each species (Table 1).

Table 1. Behavioural ethogram used for elasmobranch and teleost species in tank pre-post renovations. The sampling
method indicates whether the behaviour was sampled using the instantaneous scan sampling method every five minutes
during the observation period or using the all-occurrences method throughout the observation period.

Behaviour Type/Label Description Sampling Method

Active Swimming below the water surface at a consistent/steady pace
throughout the tank (not in a repetitive pattern). Scan

Resting Being motionless on the sand or structure, at rest Scan

Perimeter Swimming
Moving against the perimeter of the tank in a horizontal position,
meaning the ventral surface of the animal is in contact with the

glass/tank walls.
Scan

Surface Swimming Moving with a portion of body out of the water Scan

Spy Hopping
Vigorously propelling the body out of the water in a vertical motion.
At minimum, the head breaches the water but can extend to half the

body length. Typically occurs at the edges of the tank.
All-occurrence

The perimeter, surface swimming and spy hopping are only relevant for the elasmo-
branchs observed not the teleost fish who were not observed to engage in those behaviours.

Observations were conducted for 10 days in each treatment period: pre-renovation (22
June 2018–11 July 2018) and post-renovation (10 December 2018–10 February 2019). The
in-tank renovations occurred in September 2018 and the animals were moved back after
completion. The external glass barrier installation occurred in early November and we
allowed an additional four weeks post this for animals to settle back into the environment to
reduce any potential impact of the temporary housing and glass installation on behaviours.

In addition to recording behaviour, the observers also recorded where each individ-
ual was according to the three locations shown in Figure 1. One observer recorded all
behaviours and locations from a distance so that there was no interference with normal
activity of both study subjects and visitors.

The data were sampled in 6 × 45-min periods between 7 a.m. and 5:45 p.m. A
scan sample was conducted every 5 min within the 45-min period and each individual’s
behaviour and location was recorded. If spy-hopping behaviour was observed in the
elasmobranchs during the observation period it was recorded using an all-occurrence
sampling method.

2.4. Analysis

All statistical analysis was conducted using JASP Statistical Software (Version 0.14.1
(2020), JASP Team, Amsterdam, The Netherlands). For all scan sampled behaviours and
locations, the average proportion of time spent performing each behaviour/time spent in
each location was calculated for each individual for each time period. Therefore, there were
six units of observation (time periods) per day, per period (n = 120 units of observation per
individual). For the all-occurrence sampled spy hopping the total count of all occurrences
was calculated per day for each treatment (n = 20 units of observations per individual).
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Because there were multiple individuals of the Port Jackson sharks (n = 4), their results were
analysed as a group, the Southern fiddler ray and fish species were analysed as individuals.

All behaviour and location data were non-normally distributed and could not be
transformed. A Wilcoxon’s signed rank test was used to compare each behaviour and
location pre-post renovation. W-statistics are presented in the results and p-values < 0.05
are considered statistically significant.

3. Results
3.1. Elasmobranchs

The average proportion of time spent engaged in swimming behaviour significantly
increased for the Port Jackson shark (n = 4) from pre-renovation (Mean = 0.26 ± 0.02) to
post renovation (Mean = 0.32 ± 0.02; W = 8170.5, p = 0.02; Figure 2a). Perimeter swimming
decreased from pre-renovation (Mean = 0.10 ± 0.01) to post-renovation (Mean = 0.07 ± 0.01;
W = 5879.0, p = 0.01), as did surface swimming (pre-Mean = 0.06 ± 0.01, post-
Mean = 0.04 ± 0.004; W = 3791.0, p = 0.02). There was no difference in resting behaviour
pre-post renovation.
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Pre-renovation, the Port Jackson sharks spent a greater proportion of time under the
ledge (Mean = 0.40 ± 0.02) compared to post-renovation (Mean = 0.21 ± 0.02; W = 15719.0,
p ≤ 0.001; Figure 2b), and at the back of the exhibit (pre-Mean = 0.29 ± 0.02, post-
Mean = 0.24 ± 0.02, W = 10716.0, p = 0.03). Whereas the proportion of time spent at
the front of the exhibit significantly increased from pre-renovation (Mean = 0.31 ± 0.02) to
post-renovation (Mean = 0.56 ± 0.02; W = 5145.5, p < 0.001).
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There was no statistically significant difference in the daily performance of spy
hopping in the Port Jackson sharks from pre-renovation (Mean = 15.17 ± 7.52) to post-
renovation (Mean = 11.51 ± 5.67; W = 469.0, p = 0.16).

For the Southern fiddler ray (n = 1), the average proportion of time spent engaged
in swimming behaviour significantly decreased from pre-renovation (Mean = 0.79 ± 0.03)
to post-renovation (0.47 ± 0.04; W = 1362.0, p = 0.001; Figure 2c). Alternatively, rest-
ing behaviour increased from pre-renovation (Mean = 0.14 ± 0.02) to post-renovation
(Mean = 0.45 ± 0.04; W = 122.0, p ≤ 0.001). There was no difference in the proportion of
time spent engaged in perimeter swimming from pre-renovation (Mean = 0.02 ± 0.007)
to post-renovation (Mean = 0.02 ± 0.007, W = 59.5, p = 1.0), and no difference in the
proportion of time spent surface swimming from pre-renovation (Mean = 0.05 ± 0.02) to
post-renovation (Mean = 0.06 ± 0.01, W = 177.0, p = 0.55). There was no significant differ-
ence observed in the proportion of time spent in the exhibit front (pre-Mean = 0.48 ± 0.02,
post-Mean = 0.43 ± 0.04, W = 955.5, p = 0.20), the exhibit back (pre-Mean = 0.45 ± 0.02,
post-Mean = 0.47 ± 0.03, W = 599.5, p = 0.55), or at the ledge (pre-Mean = 0.07 ± 0.01,
post-Mean = 0.10 ± 0.02, W = 297.5, p = 0.13) (Figure 2d).

There was no statistically significant difference in the daily performance of spy hop-
ping in the Southern fiddler ray (n = 1), from pre-renovation (Mean = 12.00 ± 4.87) to
post-renovation (Mean = 4.30 ± 0.83; W = 36, p = 0.12).

3.2. Teleost

The average proportion of time the moonlighter spent swimming significantly in-
creased from pre-renovation (Mean = 0.40 ± 0.03) to post-renovation (Mean = 0.57 ± 0.04;
W = 456.0, p = 0.002; Figure 3a). This also reflected in the moonlighter spending signif-
icantly less time resting from pre-renovation (Mean = 0.60 ± 0.03) to post-renovation
(Mean = 0.43 ± 0.04: W = 1257.5, p = 0.002).
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The moonlighter spent significantly more time at the exhibit front (Mean = 0.16 ± 0.02)
and under the ledge (Mean = 0.55 ± 0.038) post renovation compared to pre-renovation
(exhibit front Mean = 0.05 ± 0.01; W = 95.5, p ≤ 0.001; ledge Mean = 0.05 ± 0.01; W = 6.0,
p ≤ 0.001).

There was no difference in the average proportion of time the banded morwong spent
engaged in either swimming or resting behaviours pre-post renovation (Figure 3c). The
banded morwong spent significantly more time at the back of the exhibit pre-renovation
(Mean = 0.61 ± 0.03) compared to post-renovation (Mean = 0.29 ± 0.03; W = 1380.5,
p ≤ 0.001; Figure 3d). Similarly, the banded morwong spent significant more time under
the ledge in the exhibit pre-renovation (Mean = 0.18 ± 0.03) compared to post-renovation
(Mean = 0.02 ± 0.01; W = 870.5, p ≤ 0.001). Time spent in the front of the exhibit significantly
increased from pre-renovation (Mean = 0.21 ± 0.03) to post-renovation (Mean = 0.69 ± 0.03;
W = 24.0, p ≤ 0.001).

4. Discussion

This research has added to the currently limited suite of studies investigating fish
behaviour in zoos and aquariums. It provides evidence that enhancing environmental com-
plexity based on species wild habitat can impact the behaviour of benthic elasmobranchs
and teleost fish.

4.1. Port Jackson sharks

When environmental complexity was enhanced, Port Jackson sharks increased time
spent swimming overall, but decreased time spent perimeter swimming and surface
swimming. It is possible that the reductions in these behaviours reflect a more positive
experience for the animal as these behaviours are considered abnormal for this species
in the wild. Being benthic demersal fish, Port Jackson sharks spend a majority of their
time on or very near the sea floor, resting, hunting and swimming [68–71]. Surface-
breaking behaviours are well documented in some species of captive elasmobranchs.
In a 2004 study in the UK, “Surface Breaking Behaviour” was documented in nearly
three-quarters of public aquaria, making up a third of the stereotypic behaviours studied,
predominately exhibited by sharks and rays [78]. These behaviours are thought to be a
result of environmental factors, temporal links to feeding schedules and/or methods of
feeding are often witnessed in touch pools [79–81]. In some captive environments, the
frequency of surface-breaking behaviour performed by a group of rays was reduced when
provided benthic feeding opportunities [81]. In our case, benthic feeding for the sharks
existed in both treatments. Other studies found no correlation with feeding or foraging
opportunities, rather, surface-breaking behaviour was more frequent in tanks with less
environmental enrichment [80]. Perhaps the significant overall change of habitat to a more
species-specific benthos friendly environment, combined with a visitor barrier contributed
to the decrease of abnormal repetitive behaviours and surface breaking, leading to a more
natural behavioural expression.

Interestingly, we did not see a significant difference in the daily performance of spy
hopping in the Port Jackson sharks between treatments. Perhaps this could be explained by
the amount of variation in the frequency of spy hopping between individuals, with some
performing the behaviour more than others. It is possible that this variation, however,
may have been less significant with a larger sample size. Another potential contributing
factor not investigated in this study could be the lack of depth variation. Port Jackson
sharks are known to migrate from inshore rocky reefs to deeper water at the end of the
breeding season (September/October) and may travel up to hundreds of kilometres in
migration [82]. Tagged individuals have also shown that they regularly move between
different sites within a reef throughout the year [82]. The uniform shallow environment in
this enclosure could elicit a behavioural response, such as spy hopping to seek alternate
environments and depth.
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Resting behaviour remained high and was observed to be the dominant behaviour
of the activity budget. This is similar to wild observations where Port Jackson sharks are
commonly observed resting and studies have shown large periods of inactivity overall,
particularly in daylight hours [68–71].

Results also showed a change in location in the post-renovation condition. Port
Jackson sharks spent less time under the ledge and increased overall space use within the
exhibit. In the wild, this species is well-documented to be found resting and spending
time in and around caves and gullies, particularly in the daylight hours [68,69]. In pre-
renovation conditions, the option for any significant shelter was limited to the ledge space
only. Post-renovation conditions provided multiple enhanced features including caves,
structures and seaweed clusters across the length of the tank. This allowed the Port Jackson
sharks to disperse more when resting and offered more choice over resting space.

More time was also spent at the front of the tank post renovations which could also
potentially be attributed to the installation of a glass barrier. Before renovations, the
perimeter glass edge was at a lower height, meaning visitors were easily able to reach
over the barrier and contact the water and the animals. It is likely this may have been
an aversive visitor behaviour that resulted in the Port Jackson sharks avoiding this front
section. A similar result was found in a group of captive little penguins, Eudyptula minor,
who when exposed to visitors, looming over the barrier, showed an increase in avoidance
behaviours and increased distance from the visitor viewing area [60].

4.2. Southern Fiddler Ray

The Southern fiddler ray showed an increase in resting behaviour, decrease in swim-
ming, but no significant change in time spent in different locations between conditions. The
latter can potentially be explained by wild Southern fiddler ray habitat preference. This
species is found to spend the majority of their time in open sandy bay areas or seagrass
meadows and have not been found to be associated with any structures or significant cover
in the wild [68,72–74]. The pre- and post-renovation changes did not decrease the open
sandy space available throughout the tank, rather substituted the existing low rising rock
formations with more complex habitat inspired structures. With relatively the same amount
of sand space available, no change was expected. Interesting to note, there was a slight
increase in the use of the ledge/overhang space, which between conditions, remained the
same in terms of lack of structure. It is possible this was due to a vacation of this area by
the Port Jackson sharks allowing the Southern fiddler ray greater opportunity to utilise this
sandy patch.

Furthermore, increased environmental complexity and decreased exposure to visitors
did not impact the time spent perimeter swimming or surface swimming. These behaviours
were already at very low levels (less than 10% of the time budget). Additionally, no
significant difference was noted in the performance of spy hopping between treatments.
Similarly to the Port Jackson sharks, fiddler rays will often occupy variable depth habitats,
up to 100 m [83]; therefore, again, the lack of depth variation could have contributed to the
maintenance of this behaviour. This is only one possible factor and clearly, more research,
with larger sample sizes, is needed to understand this behaviour and function across both
elasmobranch species.

The increase in resting behaviour observed in this species is more aligned with nat-
ural activity budgets observed in wild individuals. Benthic elasmobranchs such as the
Southern fiddler ray are found to have relatively low vagility in the wild [67] and are often
encountered resting in sandy substrate, at times partially submerged [68,72–74]. The pre-
renovation substrate was a heavy mix of large compacted shell grit, potentially preventing
the Southern fiddler rays’ ability to submerge easily and effectively. Post-renovation, this
was changed to a finer more natural coral sand that can easily be disturbed. Whilst we
did not record this behaviour as a discrete behaviour separate from resting, anecdotally an
increase in partial sand submergence was observed. This would be useful to include as a
target behaviour for future observational studies.
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It is also possible that the increase in resting behaviour was influenced by the reduction
in visitor exposure, potentially representing a more relaxed or comfortable state. Other
research has suggested similar findings, for example, one study found an increase in resting
with reduced visitor numbers, possibly indicative of a relaxed state in a group of captive
gorillas [63]. Similarly, studies with captive Koalas, Phascolarctos cinereus, and Sulawesi
crested macaques, Macaca nigra, found that there was an increase in visitor-related vigilance
and decrease in resting states with increasing visitor numbers [57,59].

4.3. Moonlighter and Banded Morwong

The moonlighter significantly increased swimming behaviour and decreased resting
behaviour in the post-renovation condition. In the wild, this species commonly shelters
in shallow water caves, crevices and jetty’s with complex reef habitats but studies have
shown they can move great distances within this habitat to forage [75]. The previously
dominant resting behaviour was shown to be mainly exhibited in the back area of the
tank. Whilst this space previously had no real significant shelter, a planted garden pocket
behind the tank did provide some overhead shadowing, as branches stretched out over
the water. In post-renovation conditions, multiple microhabitats and shelters were now
distributed throughout the length of the tank, providing safe movement. Also, interesting
to note, in post-renovation conditions, not only was there an increase in swimming time
but also an increase in time spent under the ledge/overhang area. This correlates with
the Port Jackson sharks decreasing their time spent in this space. It is possible that with
fewer sharks resting in the area, the moonlighter felt more comfortable utilizing this shelter.
These inter-species interactions are likely to be a factor that influences individual animal
behaviour and warrant further investigation.

The banded morwong is also a shallow demersal reef fish and can be found in areas
with greater topographic complexity [76,84]. As such, with increased tank complexity we
expected to see some changes in behaviour akin to the moonlighter. Whilst the banded
morwong activity did not significantly differ between treatments, both fish did significantly
increase their time spent at the front of the tank and decreased time spent at the back of the
tank. This is similar to what was observed in the Port Jackson sharks. It is possible that this
reduced avoidance behaviour once the potentially aversive stimuli (visitor exposure and
risk of hands in tank) was removed supporting the visitor effect hypothesis.

5. Limitations and Future Research

This study was designed as a preliminary investigation into environmental change
effects on target species of elasmobranchs and teleosts. The small sample size of individuals
limits our ability to extrapolate results to individuals in other situations. Nonetheless,
it is common for these small-scale interventions to occur in zoos and aquariums, and it
is worth conducting such studies to better understand the impact of these changes to
support evidence-based management [85–88]. It would be of value for other studies to also
investigate the impact of enclosure changes in other species, using comparative approaches
to facilitate collective learning and insight into the importance of ecological factors on
species, ultimately leading to better-designed environments [87,88].

This study focussed on better understanding the impact of enclosure changes on target
behaviours including space use and swimming activity, as such, the ethogram was not
extensive and we are limited in our ability to interpret the effect of environmental changes
on other behaviours. Future work should be directed towards a more detailed investigation
of behavioural changes in these species such as aggression, feeding, play, social interactions,
breeding behaviours and territorial interactions. Furthermore, a more in-depth assessment
of enclosure use would be interesting to explore using space use indices to provide more
detail on how the animals utilise the different areas of the enclosure

It should also be noted that this study was conducted in a mixed-species exhibit. The
focus was on the elasmobranch species and a select number of teleost fish that are easily ob-
served and we did not explore interactions between these species and other species housed
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in this environment. Previous studies have found that environmental modifications and
enrichment can decrease aggressive interactions and increase the diversity and frequency
of affiliative interactions between naturally associating species [89], with some research
even identifying interspecies commensalism occurrences [90].

Moreover, future research should cover a 24-h period due to the crepuscular nature of
some of the study species. It would be interesting to assess the nocturnal activity budgets
of the elasmobranchs to see whether their activity increases analogous to their wild twilight
foraging behaviours as seen in research by Kadar et al. [71]. As keepers do not provide
food overnight, it would be very interesting to see if this wild-type natural behaviour still
persists. Conversely, it would also be interesting to note whether the teleost fish decrease
their swimming activity and space use, remaining more sedentary at night time akin to
wild type predator avoidance behaviour.

Future experimental work should also tease apart and differentiate between the
environmental effects vs visitor effects. A deeper understanding of visitor effects in these
settings would be of importance to many captive display facilities given the commonality
of housing elasmobranchs in “touch tanks”, and potential welfare implications. Moreover,
to determine if these behavioural changes are reflective of underlying welfare changes
in these species, it would be of value to explore a greater suite of welfare indices. The
assessment of stress hormone concentration has been used in previous studies on other
species [91–96] however, as far as the authors are aware, the non-invasive viable assessment
of cortisol concentration is yet to be fully validated for these species [46]. This would be of
significant value for future research to support better welfare outcomes for species housed
in these settings. Furthermore, a greater understanding of natural wild time budgets is
needed for all such species housed in captivity as this research has demonstrated the value
of species-specific enclosure design to facilitate more natural behavioural opportunities.

6. Conclusions

In summary, increased environmental complexity and the additional visitor barrier
resulted in increased expression of natural behaviours in all fish studied. The Port Jackson
sharks increased space utilisation and decreased abnormal behaviours, while the Southern
fiddler ray increased natural resting behaviours. Both teleost species, the moonlighter and
the banded morwong, increased space use with the moonlighter also showing an increase
in time spent swimming. These results are more closely aligned with wild behavioural
activities for these species. Studying the behaviour change of fish in different environmental
conditions provides a good basis for evidence-based decision making and highlights the
value of more species-specific environmental design.
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