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Simple Summary: Climate change has been regarded as one of the major threats to biodiversity
by altering habitats and food sources for wildlife as well as the function of ecosystems. The giant
panda is an endangered endemic species in China and a flagship species of the world’s biodiversity
conservation. Previous studies mostly focused on the effect of climate change on the giant panda
itself. Few studies have addressed potential niche overlapping and interspecific competition between
giant pandas and sympatric competitive species under future climate change. By assessing the
spatial overlapping between giant pandas and sympatric competitive animals changes under future
climate conditions in the Qinling Mountains, we found that the distribution areas of giant pandas
and sympatric species would decrease remarkably under future climate changes. The shifting of the
spatial aggregation between giant pandas and sympatric species vary under different climate change
scenarios. New protected areas may need to be planned in order to maintain suitable habitats able to
promote the survival of the species to climate changes.

Abstract: Understanding how climate change alters the spatial aggregation of sympatric species
is important for biodiversity conservation. Previous studies usually focused on spatial shifting of
species but paid little attention to changes in interspecific competitions under climate change. In this
study, we evaluated the potential effects of climate change on the spatial aggregation of giant pandas
(Ailuropoda melanoleuca) and three sympatric competitive species (i.e., black bears (Ursus thibetanus),
golden takins (Budorcas taxicolor), and wild boars (Sus scrofa)) in the Qinling Mountains, China. We
employed an ensemble species distribution modeling (SDM) approach to map the current spatial
distributions of giant pandas and sympatric animals and projected them to future climate scenarios
in 2050s and 2070s. We then examined the range overlapping and niche similarities of these species
under different climate change scenarios. The results showed that the distribution areas of giant
pandas and sympatric species would decrease remarkably under future climate changes. The shifting
directions of the overlapping between giant pandas and sympatric species vary under different
climate change scenarios. In conclusion, future climate change greatly shapes the spatial overlap-
ping pattern of giant pandas and sympatric species in the Qinling Mountains, while interspecific
competition would be intensified under both mild and worst-case climate change scenarios.

Keywords: niche similarity; interspecific competition; spatial overlapping; giant pandas; sympatric
species; climate change

1. Introduction

Climate change can alter the spatial distributions of species, which may result in the
changes in interspecies relationships [1]. Interspecific competition will arise from the spatial
aggregation of two or more species in a limited space [1]. This competition may result in
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long-term effects on population dynamics or significant shifts in resource utilization to
avoid overlapping. The maintenance of populations is subject to resources availability,
viable populations, competition, and climate impacts in a changing environment [2]. Some
studies have confirmed that both competition [3–5] and climate [6–8] are important factors
driving species distribution. Climate change has influenced the distribution of wildlife and
altered the habitat structure and function of many species since the Last Glacial Maximum
(LGM; 24,000–18,000 years ago) [9–11]. An increasing number of species are responding
to the changing climate by expanding or contracting their distribution ranges, which will
continue as the climate warms [11–13].

Although few mammals are known to be directly affected by climate change, the
intensity of interspecific competition may be affected by the changes of habitats and food
sources under climate change [14]. A number of ecological studies have been performed
on the topic of interspecific competition and climate change [15,16]. For example, in-
terspecific competition in mixed forests under climate change has been explored [17].
Stenseth et al. [18] investigated the competitive interaction between blue tits and great tits
under climate change, and found that climate change can, but does not always, generate
local differences in the equilibrium conditions of spatially structured species assemblages.
Milazzo et al. [19] and Braz et al. [20] highlighted that the consideration of species inter-
actions is important for predictive modeling of responses to warming. However, little
is known about the potential impact of climate change on the competitive patterns of
multiple mammalian species. Understanding how the intensity of interspecific interactions
responds to climate change would great help the conservation and management of species
in a changing environment.

The giant panda (Ailuropoda melanoleuca) is an endangered endemic species in China
and is a flagship species of the world’s biodiversity conservation. Research on giant pandas
has attracted domestic and foreign scholars’ attention [21–23]. Some of these studies
assessed the influence of climate change on the giant panda in the Qinling Mountains and
found that the area of suitable habitat for giant pandas was projected to decrease [9,24–26].
The studies conducted in the Daxiangling and Qionglai Mountains indicated that suitable
habitat loss will increase significantly under climate change as limited by the availability
of bamboo and forest [27,28]. Shen et al. [29] combined long-term data on giant pandas
with climate change scenarios and found that 11.4% of the remaining habitat fragments
would be smaller than the extinction threshold area as the extent of fragmentation increases
nearly fourfold. In the Qinling Mountains, black bears (Ursus thibetanus), golden takins
(Budorcas taxicolor), and wild boars (Sus scrofa) are the main food competitors of giant pandas
by eating bamboo shoots, which is an important energy source for nutritional recovery of
giant pandas after the winter season [30]. However, previous studies mostly focused on the
response of the giant panda itself to climate change, the interactions between giant pandas
and sympatric large-bodied herbivores have been rarely examined [31–33]. There has been
none on potential shifting of niche overlapping and interspecific competition between giant
pandas and sympatric competitive species under climate change in the Qinling Mountains.

In this study, we predicted the current and future distributions of giant pandas
and three sympatric species in the Qinling Mountains using species distribution models
(SDMs), and analyzed niche similarities and potential interspecific competition under
climate change scenarios. We evaluated how the degrees of niche similarity and spatial
overlapping patterns of giant pandas and sympatric competitive animals change under
future climate conditions, and predicted possible feeding pressures on giant pandas arising
from interspecific competition in the future. The results will enrich our knowledge of the
potential impacts of climate changes on giant pandas and have strong implications for the
biodiversity conservation and management in the Qinling Mountains of China.
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2. Materials and Methods
2.1. Study Area and Selected Species

The study area (33◦12′–34◦12′ N, 106◦24′–109◦ E) is located in the Qinling Mountains
in Shaanxi Province (Figure 1), the natural boundary between northern and southern
China and the northernmost mountain range that wild giant pandas inhabit (State Forestry
Administration 2015). The study area is mostly covered by evergreen broadleaved and
mixed deciduous broadleaved forests in the low- and mid-elevation regions and coniferous
forests in the higher elevational bands (State Forestry Administration 2015). Bamboo forests
(e.g., Fargesia qinlingensis and Bashania fargesii) are the dominant understory vegetation
and nourish a large number of giant pandas. It is estimated that approximately 350 wild
giant pandas are present in the study area, most of which live in Foping County, Yangxian
County, and Taibai County [24,34]. Three sympatric mammals compete with giant pandas
for bamboo resources: golden takins, wild boars, and black bears. According to a previous
survey, over 4000 golden takins and 200 black bears live in the study area (State Forestry
Administration 2015).
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Figure 1. Location and elevation gradient of the study area in the Qinling Mountains in Shaanxi
Province, China. The species occurrence points used in the study are displayed as points with
different colors.

2.2. Species Occurrence Data

Original giant panda occurrence records were collected from the Third National Giant
Panda Survey dataset, and the records of golden takins, black bears, and wild boars were
obtained from the dataset of the sympatric species investigation performed during the
giant panda survey. To reduce the effect of spatial autocorrelation, the original occurrence
data were spatially thinned by using a distance of 2 km in ArcGIS 10.2 (ESRI, 2013). The
resulting data contained 221 occurrence samples for giant pandas, 316 for wild boars,
445 for golden takins, and 96 for black bears, as shown in Figure 1. These data were used
as input presence data for the SDMs of each species.

2.3. Environmental Variables

We firstly considered 22 environmental variables potentially affecting the distribution
of the species, including 19 bioclimatic variables, elevation, slope, and aspect, based on
previous research [9,26]. Climate data containing 19 bioclimatic variables were derived
from WorldClim 1.4 (www.worldclim.org (accessed on 3 March 2019)) at 30 arc-second

www.worldclim.org
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resolution (~1 km) for contemporary climatic conditions (1960–1990; hereafter ‘current’) as
well as future climatic scenarios of 2041–2060 (hereafter ‘2050s’) and 2061–2080 (hereafter
‘2070s’). For future climate data, we selected two global climate models (GCMs) that were
developed for the Coupled Model Intercomparison Project, phase 5 (CMIP5: BCC-CSM1-1
and MRI-CGCM3), which have been commonly used in previous climate modeling in the
study area [35,36]. For each GCM, we chose two different representative concentration
pathway (RCP) scenarios, RCP4.5, an optimistic scenario where greenhouse gas (GHG)
emissions peak around 2040 and then decline, resulting in 4.5 W/m2 radiative forcing by
2100; and RCP8.5, a pessimistic scenario where emissions continue to rise throughout the
21st century, resulting in 8.5 W/m2 radiative forcing in the year 2100 [5,35,37–39]. Three
topographical variables, i.e., elevation, slope, and aspect, were also derived from a digital
elevation model at 30 arc-second resolution from the WorldClim database.

To identify a subset of environmental variables with minimal multicollinearity, we cal-
culated the pairwise Pearson correlation coefficients for all 22 environmental variables. For
a pair of variables with a correlation coefficient |r| > 0.7, we tested all environmental vari-
ables in a pairwise way, and retained the variable with the lowest variance inflation factor
(VIF) in each pair of variables [25,40–42]. Finally, six variables were used for constructing
the SDMs: isothermality (Bio03), annual precipitation (Bio12), precipitation seasonality
(Bio15), elevation, slope, and aspect.

2.4. Species Distribution Modeling

We built the SDMs for each species under the current climate conditions and then
projected them into the 2050s and 2070s scenarios via an ensemble modeling approach
provided by the R package ‘biomod2′ [43]. Ensemble modeling is the process of running
two or more related but different analytical models and then synthesizing the results
into a single score in order to improve the accuracy of predictive analytics [43]. We used
nine modeling techniques available in the ‘biomod2′ package for ensemble modeling:
generalized linear models (GLMs), generalized boosted models (GBMs), classification
tree analysis (CTA), artificial neural networks (ANNs), surface range envelopes (SREs),
flexible discriminant analysis (FDA), multivariate adaptive regression splines (MARS),
random forest (RF) and maximum entropy (MAXENT) [44]. As the absence of species was
unavailable, we generated 10,000 pseudo-absences within the study area [45–47].

We used a random subset of 70% of the data to calibrate the model and the remaining
30% to evaluate it. Model performance was evaluated by the following measures: the area
under the receiver operating characteristic (ROC) curve (AUC), the true skill statistic (TSS),
and the kappa coefficient [48,49]. The AUC value is generally between 0.5 and 1, where a
value higher than 0.7 is considered good model performance [50,51]. The TSS is a measure
of agreement that accounts for both the sensitivity and specificity of the model [52,53].
The final distribution of each species was ensembled as the weighted mean of the nine
modeling algorithms by the TSS scores (i.e., better a model is, more importance it has in
the ensemble).

2.5. Spatial Analysis

To investigate how future climate change would affect spatially overlapping areas
of giant pandas and their sympatric competitors, we performed a series of analyses in
ArcGIS 10.2. Firstly, we refined the current and future species distributions by using land
cover layers and classified habitats into binary data by the maximum training sensitivity
plus the specificity logistic threshold [54,55]. We then calculated the binary layers of
giant pandas and black bears (followed by golden takins and wild boars) by a raster
calculator to generate habitat overlap maps. Finally, using the SDMtoolbox 2.2 package in
ArcGIS 10.2 (http://www.sdmtoolbox.org (accessed on 10 January 2018)), we compared
the distribution changes for each species between the current and future (the 2050s and
2070s) and, obtained the centroid changes of the species to depict the magnitude and
direction of change based on centers of the species ranges.

http://www.sdmtoolbox.org
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2.6. Ecological Niche Similarity Analysis

The degrees of niche similarity between giant pandas and their sympatric competitors
were calculated by using ENMTools 1.3 (http://purl.oclc.org/enmtools (accessed on 10
January 2018)). This software measures niche similarity using three statistics: Schoener’s
D [56], I statistic [57] and relative rank (RR) [58]. In our study, D and I statistics were
selected, which are obtained by comparing the normalized habitat suitability for each grid
cell of the study area form SDMs [59]. Both metrics range from 0 to 1, in which the value
of 0 indicates species-predicted environmental tolerances do not overlap and a value of
1 indicates that all the grid cells are estimated to be equally suitable for both species [59].

3. Results
3.1. Model Performance

The ensemble models of giant pandas, golden takins, and wild boars generally showed
good predictive performance (Table 1). The ensemble model of black bears performed
relatively poor, partially due to the small sample size (Table 1).

Table 1. Performances of the SDMs for giant pandas and sympatric competitive species. TSS: true
skill statistic; AUC: area under the receiver operating characteristic curve.

Species Kappa TSS AUC

Giant pandas 0.631 0.769 0.937
Black bears 0.313 0.581 0.822

Golden takins 0.669 0.717 0.916
Wild boars 0.537 0.620 0.866

3.2. Suitable Habitat Change between the Current and Future Conditions

Compared with the current scenario, the distribution range of giant pandas will ex-
pand under the RCP4.5 emission scenario, and the suitable habitat area of giant pandas will
increase by 36.61% and 25.74% by 2050s and 2070s, respectively (Table 2). The distribution
range of black bears, golden takins and wild boars will contract under future climate
change scenarios. Under the RCP8.5 emission scenario, the area of suitable habitats for
black bears and wild boars will decrease by more than 80% by 2070 compared with the
current area (Table 2).

Table 2. Statistics on the areas of suitable habitats for giant pandas and sympatric competitive species
under different climate scenarios.

Species Current
2050s 2070s

RCP4.5 RCP8.5 RCP4.5 RCP8.5

Giant pandas 6566.31 8969.98 4603.31 8256.33 4916.34
Black bears 7947.02 2987.82 3350.23 6576.55 1529.78

Golden takins 6989.28 6548.60 4609.83 5484.65 5426.89
Wild boars 7957.27 2674.78 4681.57 4668.52 1475.74

3.3. Niche Similarity Analysis

The degrees of niche similarity between giant pandas and their sympatric competitors
are shown in Table 3. Under current climate, giant pandas and golden takins had the
highest niche similarity (D = 0.8454, I = 0.9697), while a lower level of niche similarity was
observed between giant pandas and wild boars (D = 0.6976 and I = 0.9272). The lowest
level of niche similarity was obtained between giant pandas and black bears (D = 0.6854,
I = 0.9190). The highest niche similarity was still between giant pandas and golden takins
under future climate change scenarios.

http://purl.oclc.org/enmtools
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Table 3. Niche similarity between giant pandas and sympatric competitive species under different
climate scenarios.

Climate Scenarios
Black Bears Golden Takins Wild Boars

D I D I D I

Current 0.6854 0.9190 0.8454 0.9697 0.6976 0.9272
2050-RCP4.5 0.7444 0.9392 0.8651 0.9829 0.8147 0.9676
2050-RCP8.5 0.6851 0.9163 0.8034 0.9609 0.6689 0.9131
2070-RCP4.5 0.7604 0.9491 0.8662 0.9818 0.8256 0.9690
2070-RCP8.5 0.7101 0.9251 0.8401 0.9694 0.6943 0.9225

3.4. Analysis of Overlapping Area Changes

The predicted overlapping of the suitable habitats for giant pandas and black bears,
golden takins, and wild boars is shown in Figures 2–4, respectively. Compared with the
current habitats, the overlapping habitats between giant pandas and competitive animals
will generally decrease under future climate scenarios (Table 4). Under the RCP4.5 emission
scenario, the overlapping areas for giant pandas and black bears will expand in the eastern
Qinling Mountains by 2070s (Figure 2). The centroid shifting trends of overlapping areas
between giant pandas and black bears will vary under different climate change scenarios.
The overlapping areas for giant pandas and golden takins will expand mainly to the east of
the Qinling Mountains under the RCP4.5 emission scenario, whereas the overlapping area
centroids will shift to the northwest under the RCP8.5 emission scenario (Figure 3). The
shifting directions of centroids of overlapping areas between giant pandas and wild boars
varied under different climate change scenarios (Figure 4).
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Table 4. Statistics on overlapping area of suitable habitats between giant pandas and sympatric
competitive species under different climate scenarios. Calculated as the proportion of suitable habitat
area for giant pandas (%).

Climate Scenarios Black Bears Golden Takins Wild Boars

Current 86.30 88.64 86.16
2050-RCP4.5 30.97 71.37 29.11
2070-RCP4.5 72.19 65.41 55.72
2050-RCP8.5 48.73 77.66 56.06
2070-RCP8.5 27.82 87.02 25.43

The number of species overlapping with giant pandas will decrease in the central
Qinling Mountains under future climate change scenarios, indicating that potential compe-
tition for food resources faced by giant pandas in the central part of the Qinling Mountains
is likely to decrease (Figure 5). Interestingly, the competitive pressure on giant pandas in
the eastern Qinling Mountains may increase by 2070s under the RCP4.5 emission scenario.
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4. Discussion

The study evaluated the potential impact of future climate change on the competitive
patterns of giant pandas and sympatric competitors in the Qinling Mountains of China.
Current habitat distribution pattern of giant pandas is consistent with the results of the
Fourth National Giant Panda Survey in Shaanxi Province, which to some extent confirms
the reliability of our model. In this study, the simulated habitat area for giant pandas was
greater than the results of the report on the Fourth National Giant Panda Survey [60] and
those of Songer et al. [36]. This difference may be caused by differences in environmental
factors, selected models and habitat suitability classification methods and thresholds, or
the model may not be able to simulate the real habitat conditions completely. Our results
show that new areas will become suitable for the species in the future. However, most of
these areas are far from the current geographical distribution and are beyond the scope of
existing protected areas. Therefore, new protected areas may need planning in order to
create suitable habitats able to promote the survival of the species to climate changes.

The degree of niche similarities between giant pandas and the sympatric competitive
species is high, which indicates that there are great overlaps in habitat use between giant
pandas and sympatric competitors. This result is similar to the findings of other studies that
showed no evidence of sympatric species restricting the distribution of giant pandas [30].
Although spatial avoidance is a strong indicator that interactions exist, not all competition
between pandas and the other species would be reflected in spatial avoidance, partially
due to the temporal separation from consuming same resources [30,61,62]. The results of
the Fourth National Giant Panda Survey also showed that golden takins are the sympatric
species giant pandas most likely to encounter, followed by wild boars and black bears [60].
Some studies have shown that golden takins are the most competitive species due to the
high consumption of bamboo leaves, while black bears and wild boars are thought to alter
giant panda habitat selection by foraging for bamboo shoots [30,63,64]. As with the studies
of Milazzo et al. [19], Poloczanska et al. [14], and Stenseth et al. [18], our results suggest that
the overlapping patterns of giant pandas and sympatric competitors and their overlapping
area centroids will change significantly under future climate change, indicating that current
protection network will face big challenges under future climate changes.

The Qinling Mountains are a hotpot of biodiversity in China. Numerous nature
reserves have been built for giant pandas, crested ibis and other key protected species. The
existing reserve system provides adequate protection for giant pandas. Giant pandas can be
regarded as an umbrella species. While carrying out giant pandas’ protection, the ‘umbrella
effect’ also protects other sympatric species [65–67]. However, not all these species can be
fully protected. The fact is, current reserves were established solely for conserving giant
pandas. In the context of biodiversity conservation, we need to monitor the dynamics of
sympatric animals in addition to giant pandas so as to protect them under future climate
changes in the Qinling Mountains.

Some uncertainties may influence the results of this study. Some models in the package
“biomod2” require both presence and absence data, while others require presence data
only. To ensure the operation of all models, the pseudo-absence data were generated in
the “biomod2” package, which may affect model prediction [45–47]. Therefore, the model
performance conclusion of this paper may be optimistic. The selection of SDMs has an
overarching influence on the final results compared to the choice of GCMs and RCPs [68].
The premise of applying a climatic SDM is that climate factors are the main limiting factors
of matter distribution [69]. Nevertheless, our results showed that current reserve network
may fail to protect biodiversity adequately under future climate, which has important
implications for multispecies management and regional biodiversity conservation under
climate changes.
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5. Conclusions

The patterns of spatial aggregation of giant pandas and sympatric species changed
remarkably under future climate changes in the Qinling Mountains, China. The degree
of niche similarity and spatial overlapping patterns between giant pandas and sympatric
competitive animals will also be greatly shaped by the change of climate conditions. The
shifting of the overlap between giant pandas and sympatric species varies under different
climate change scenarios. New protected areas need to be established outside current
reserve network so as to maintain biodiversity under future climate changes.
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