
animals

Article

Genome-Wide Association Study Demonstrates the Role Played
by the CD226 Gene in Rasa Aragonesa Sheep
Reproductive Seasonality

Kenza Lakhssassi 1,2 , Belén Lahoz 1 , Pilar Sarto 1, Laura Pilar Iguácel 1 , José Folch 1, José Luis Alabart 1 ,
Malena Serrano 3 and Jorge Hugo Calvo 1,4,*

����������
�������

Citation: Lakhssassi, K.; Lahoz, B.;

Sarto, P.; Iguácel, L.P.; Folch, J.;

Alabart, J.L.; Serrano, M.; Calvo, J.H.

Genome-Wide Association Study

Demonstrates the Role Played by the

CD226 Gene in Rasa Aragonesa Sheep

Reproductive Seasonality. Animals

2021, 11, 1171. https://doi.org/

10.3390/ani11041171

Academic Editors: Maria

Consuelo Mura, Sebastiano Luridiana

and Giovanni Cosso

Received: 23 February 2021

Accepted: 15 April 2021

Published: 19 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de
Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; klakhssassi@cita-aragon.es (K.L.);
blahozc@cita-aragon.es (B.L.); mpsarto@aragon.es (P.S.); lpiguacel@cita-aragon.es (L.P.I.);
jfolch@cita-aragon.es (J.F.); jlalabart@cita-aragon.es (J.L.A.)

2 INRA, Instituts Morocco, 6356 Rabat, Morocco
3 Departamento de Mejora Genética Animal INIA, 28040 Madrid, Spain; malena@inia.es
4 The Aragonese Foundation for Research and Development (ARAID), 50018 Zaragoza, Spain
* Correspondence: jhcalvo@cita-aragon.es; Tel.: +34976716471

Simple Summary: To elucidate the genetic basis of reproductive seasonality in Rasa Aragonesa sheep
breed, we performed a genome-wide association study (GWAS) in order to detect single nucleotide
polymorphisms (SNPs) or regions associated with traits related to ovarian function and behavioural
signs of estrous. The GWAS included 205 ewes with genotypes for 583882 SNPs. Only one SNP
overcame the genome-wide significance level. Nine potential SNPs overcame the chromosome-
wise significance level (FDR 10%). Gene annotation demonstrated that CD226 molecule (CD226)
and neuropeptide Y (NPY) genes that could be involved in reproductive seasonality were close to
the significant SNPs. To validate the results, we sequenced the entire coding region of the NPY
gene and four exons of the CD226 gene to search for polymorphisms that could be involved in the
phenotypes studied. Two synonymous and two nonsynonymous SNPs in the NPY and CD226 genes,
respectively, were genotyped in the whole population. We demonstrated that the AA genotype of the
SNP rs404360094 located in exon 3 of the CD226 gene was associated with higher and lower total
days of anoestrus and oestrous cycling months, respectively. Therefore, this SNP could be utilized as
a genetic marker for assisted selection marker to reduce seasonality.

Abstract: A genome-wide association study (GWAS) was used to identify genomic regions influ-
encing seasonality reproduction traits in Rasa Aragonesa sheep. Three traits associated with either
ovarian function based on blood progesterone levels (total days of anoestrus and progesterone cycling
months) or behavioral signs of oestrous (oestrous cycling months) were studied. The GWAS included
205 ewes genotyped using the 50k and 680k Illumina Ovine Beadchips. Only one SNP associated
with the progesterone cycling months overcame the genome-wide significance level (rs404991855).
Nine SNPs exhibited significant associations at the chromosome level, being the SNPs rs404991855
and rs418191944, that are located in the CD226 molecule (CD226) gene, associated with the three
traits. This gene is related to reproductive diseases. Two other SNPs were located close to the
neuropeptide Y (NPY) gene, which is involved in circadian rhythms. To validate the GWAS, partial
characterization of both genes by Sanger sequencing, and genotyping of two synonymous and two
nonsynonymous SNPs in the NPY and CD226 genes, respectively, were performed. SNP association
analysis showed that only SNP rs404360094 in the exon 3 of the CD226 gene, which produces an
amino acid substitution from asparagine (uncharged polar) to aspartic acid (acidic), was associated
with the three seasonality traits. Our results suggest that the CD226 gene may be involved in the
reproductive seasonality in Rasa Aragonesa.
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1. Introduction

Sheep reproduction at temperate latitudes is widely known to exhibit marked sea-
sonality [1]. The photoperiod represents a temporal signal to initiate changes in sheep
reproductive status [2,3]. Lambing normally occurs at the end of winter-early spring, which
causes seasonal variation in lamb production throughout the year. Accordingly, there is
an imbalance between the availability of animal products and consumer demand. To
overcome this disequilibrium, several alternatives have been developed, such as hormonal
and/or photoperiod treatments. Nevertheless, at the initiative of the European Commis-
sion and to achieve “clean, green, and ethical” animal production [4], the use of hormones
is being reviewed, primarily because it generates hormonal residues in animal carcasses.
Therefore, breeders need other alternatives that minimize or completely avoid the use of
hormonal treatments.

Differences in the duration of the breeding season between breeds and between indi-
viduals within a breed raised in the same region have been reported [5,6]. Ewes exhibiting
spontaneous out-of-season ovulatory activity (SOA) are of considerable interest for iden-
tifying genes and mutations involved in molecular pathways controlling reproductive
seasonality in sheep. In Rasa Aragonesa, Folch and Alabart [7] reported that approximately
25% of ewes have spontaneous ovulations in spring and can be naturally mated throughout
the year with good management and feeding conditions. Therefore, developing a genetic
approach for improving the out-of-season breeding ability of animals may represent a
useful way to address this challenge. Hanocq et al. [8] reported relatively high heritability
and repeatability estimates (0.20 and 0.30, respectively) for SOA in the Merinos d’Arles
breed. Similar heritability of SOAs was found in the Chios breed in Greece [9] and in the
Latxa breed in Spain [10]. Hence, the estimation of genetic parameters for SOA indicated
that this trait could be used in selection [11].

Advances in genomic research and high-throughput genotyping techniques have
enhanced the ability of researchers to search for mutations that underlie variations in
complex traits [12,13]. Genome-wide association studies (GWAS) have become an im-
portant method for identifying genes and genomic regions associated with economically
important traits in livestock. These studies are used to screen the whole genome for tar-
get genes that correlate with phenotypic traits using single nucleotide polymorphisms
(SNPs) as genetic markers [14]. In sheep, progress has been made in the genetic basis of
reproductive seasonality. In fact, three genes have been reported to be associated with
out-of-season breeding: melatonin receptor subtype 1A (MTNR1A) [15–25], arylalkylamine
N-acetyltransferase (AANAT) [26], and leptin receptor (LEPR) [27]. The first gene acts through
high-affinity G-protein coupled receptors, one of which is melatonin receptor 1A encoded
by the MTNR1A gene. Calvo et al. [28] and Lakhssassi et al. [27] showed that the SNPs
rs403212791 in exon 2 of the MTNR1A gene and rs403578195 in exon 8 of the LEPR gene
were associated with reproductive seasonality traits in the Rasa Aragonesa sheep breed.
AANAT is involved in the biosynthesis of melatonin and controls daily changes in mela-
tonin production. Additional candidate genes involved in seasonal breeding in sheep,
such as the aryl hydrocarbon receptor nuclear translocator-like protein (ARNTL), casein kinase 1
epsilon (CSNK1E), clock circadian regulator (CLOCK), cryptochrome circadian regulator 1 (CRY1),
period circadian regulator 1 (PER1), period circadian regulator 2 (PER2), and neuronal pas domain
protein 4 (NPAS4), have been reported in functional genomic studies of genes associated
with circadian and circannual rhythms [29–31], although association studies of these genes
with seasonality in ovine species have not been published to date.

As an initial attempt to identify genomic regions associated with reproductive sea-
sonality in Rasa Aragonesa, our research group carried out a GWAS using 110 ewes
genotyped by the Illumina OvineSNP50 Beadchip [32]. Several genes were identified near
the significant SNPs, namely, neuropeptide s receptor 1 (NPSR1), heparan sulfate-glucosamine
3-sulfotransferase 5 (HS3ST5), regulatory associated protein of mtor complex 1 (RPTOR), and
neuronal pentraxin 1 (NPTX1), which are related to circadian and circannual rhythms. The
aims of this study were the following: first, to perform a GWAS with a larger animal



Animals 2021, 11, 1171 3 of 16

sample (205 ewes) using medium (50k) and high-density (680k) arrays from an Illumina
Ovine Beadchip to identify new SNPs underlying sheep reproductive seasonality traits.
Second, we confirmed the results obtained in the GWAS analysis through partial charac-
terization of the genes located close to significant SNPs with putative functions related to
seasonal reproduction and subsequent genotyping of some SNPs identified in these genes
for association studies.

2. Materials and Methods
2.1. Animal Samples

Phenotypic seasonality data were collected from an experimental flock of Rasa Aragonesa
sheep, described by Martinez-Royo et al. [32]. Flock management was the same for all
ewes. Briefly, 3 different flock age groups were considered for a total number of 265 ewes:
155 mature ewes (5.2–7.2 y; 5.5 ± 0.5; mean ± SD), 84 young ewes (1.9 ± 0.0 y), and
26 lambs (0.94 ± 0.0 y). From these 265 ewes, 205 were used for GWAS distributed as
follows: 122 mature (5.4 ± 0.45 y), 66 young (1.9 ± 0.0 y) and 17 ewe lambs (0.94 ± 0.0 y).
Every three weeks, individual live weight (LW) and body condition score (BCS) on a 1 to
5 scale [33] were assessed. The mean LW and BCS were similar in the mature and young
ewe age groups. The pooled overall means and standard deviations for mature and young
ewes for the entire experimental period were 52.5 ± 7.7 kg and 2.9 ± 0.3 for LW and BCS,
respectively. Ewe lambs had LW and BCS values of 40.6 ± 3.8 kg and 2.8 ± 0.1, respectively.
The experimental period lasted from January to August 2012.

2.2. Measurement of Reproductive Seasonality Traits

In Martinez-Royo et al. [32] are reported the three reproductive seasonality phenotypes
analysed in this study in detail. The first two phenotypes were based on weekly individual
plasma progesterone level measurements. The total days of anoestrous (TDA) were the
sum of days in anoestrous. This period of ovarian inactivity was characterised by three or
more consecutive progesterone concentrations lower than a threshold of 0.5 ng/mL. The
second reproductive seasonality phenotype was the progesterone cycling months (P4CM),
defined for each ewe as the rate of cycling months according to the progesterone level
measurements. Progesterone was determined using a commercial ELISA kit designed
for ovine plasma (Ridgeway Science, St. Briavels, Gloucestershire, UK). An ewe was
considered cyclic in a month when the progesterone concentration was higher than or
equal to the threshold of 0.5 ng/mL in at least one progesterone determination in that
month. It is outstanding that ewes with progesterone levels below the 0.5 ng/mL threshold
in all samples taken in January and with more than 4 consecutive samples higher than the
threshold (potential pathological ewes) were discarded for the GWAS. In the same way, the
ewes had to be cycling in the preceding breeding season, according to three progesterone
determinations performed one week apart in October. Finally, the oestrous cycling months
(OCM) was the third phenotype analysed. This trait was explained for each ewe as the rate
of months cycling based on daily oestrous records, using eight vasectomised rams fitted
with breeding harnesses with a replaceable marking crayon [34]. Consequently, oestrous
was recorded daily as crayon marks on the rumps of the ewes.

2.3. Sampling and Genotyping Analysis

The GWAS included 110 ewes genotyped with the OvineSNP50 Infinium Beadchip
(Illumina Inc., San Diego, CA, USA) designed by the International Sheep Genome Consor-
tium [35], as employed in the study performed by Martinez-Royo et al. [32], and 97 ewes
genotyped with the 680k (IlluminaAgResearchSheep HD). Genomic DNA was extracted
from blood samples using the SpeedTools DNA Extraction kit (Biotools, Madrid, Spain).
SNP genotyping services were provided by the Spanish centre “Centro Nacional de Genoti-
pado (CEGEN-ISCIII)” (https://www.usc.es/cegen/; accessed on 19 April 2021) and
“Xenetica Fontao” company (https://www.xeneticafontao.com; accessed on 19 April 2021).

https://www.usc.es/cegen/
https://www.xeneticafontao.com
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2.4. Data Quality Control and Genome-Wide Association Analysis

The software Plink1.9 [36] was used for quality control (QC) of each genotyped data.
Individuals with a low call rate (< 0.90) were excluded from additional analysis. The SNPs
that met the following criteria were selected: call rate > 0.97 and minor allele frequency
(MAF) > 0.01. SNPs that failed Hardy–Weinberg equilibrium (HWE) (p-Value < 0.001)
were excluded. Next, the two datasets were merged with PLINK 1.9, and the Beagle4.0
program [37] was used to impute 50k to 680k genotypes. We performed clustering and mul-
tidimensional scaling (MDS) to check for population stratification using PLINK 1.9. SNPs
that passed QC were pruned using the linkage disequilibrium (LD) pruning parameters of
r2 < 0.2 over a window size of 50 SNPs, and a step of 10 SNPs. Genome-wide identity-by-
state (IBS) pairwise distances were calculated using all SNPs that remained after pruning.
A pairwise population concordance test constraint was applied to the clustering proce-
dure (-ppc option). GWAS was performed using the GCTA (Genome-wide Complex Trait
Analysis) program [38] running a mixed linear model association (MLMA) and excluding
the chromosome on which the candidate SNP is located (leaving-one-chromosome-out,
or LOCO). The model also considered age and clusters obtained by MDS as a fixed effect,
and BCS and LW effects as quantitative covariates. The estimated genetic relationships
matrix (GRM) was included in the mixed model analysis to correct the effect of population
substructure. The significance of association was assessed using Bonferroni correction and
the false discovery rate (FDR) multitest correction tests. Chromosome-wise significance
association was also assessed using a false discovery rate (FDR = 0.1) multitest correction
threshold [39]. The choice of a threshold of 10% can be explained by the fact that in this
study, the objective is mainly exploratory in order to identify new SNPs underlying sheep
reproductive seasonality traits, and these are low heritable female traits. Visualization
of the association data in Manhattan plots and quantile-quantile plots was performed
using SNPEVG software [40]. To control the number of false positives, genomic inflation
factors were calculated in R v3.5.1 software for each reproductive seasonality trait. The
genomic inflation factor was estimated as the observed median χ2 divided by the expected
median χ2.

2.5. Gene Identification

Genes located within a 500 kb-long interval centered on the significant SNPs associated
with the three seasonality traits were obtained according to the sheep genome assembly
(Oar_v3.1) and based on Ensembl release 81.

2.6. Validation of GWAS Results
2.6.1. CD226 and NPY Gene Characterization

Gene annotation based on the results of GWAS demonstrated that CD226 and NPY
genes could be involved in reproductive seasonality. The ovine CD226 gene is located on
chromosome 23, covering approximately 100.7 kb with 6 exons (GenBank acc. Number
NC_040274), whereas the NPY gene is located on chromosome OAR4 and covers approxi-
mately 6.8 kb with 4 exons (GenBank acc. Number NC_040255). All exons of the NPY gene
were characterized, while four exons were chosen to characterize the CD226 gene. The
significant SNPs were located in intron 2 of CD226, approximately 52 and 4 kb from exons
2 and 3, respectively. These exons were selected because they have nonsynonymous poly-
morphisms in the Ensembl Variation database (https://www.ensembl.org/info/genome/
variation/index.html; accessed on 19 April 2021) of the Oar 3.1 version of the sheep genome.
Primer3 software was used to design the primers (https://bioinfo.ut.ee/primer3--0.4.0/;
accessed on 19 April 2021). Target-specific primers were designed in intron-flanking regions
around the targeted exon. Table 1 shows the oligonucleotide sequences, the amplified exon,
the annealing temperature, and expected product sizes. Genomic DNA was extracted from
blood samples using standard protocols. The genomic DNA (25 ng) was amplified in a
final polymerase chain reaction (PCR) volume of 25 µL containing 5 pmol of each primer,
200 nM dNTPs, 2.4 mM MgCl2, 50 mM KCl, 10 mM Tris-HCl, 0.1% Triton X-100, and 1 U

https://www.ensembl.org/info/genome/variation/index.html
https://www.ensembl.org/info/genome/variation/index.html
https://bioinfo.ut.ee/primer3--0.4.0/
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Taq polymerase (Biotools, Madrid, Spain). The following cycling conditions were used for
all amplification fragments: an initial denaturation step of 94 ◦C for 3 min followed by 35
cycles of PCR, with cycling conditions of 30 s at 94 ◦C, 30 s at annealing temperature, and
30 s at 72 ◦C, and a final extension step of 72 ◦C for 5 min.

Table 1. Primer sequences, amplified exon (site), annealing temperatures (AT), and amplification
fragment sizes.

Target Gene Site Primer Sequence (5′–3′) 1 AT (◦C) 2 Size (bp)

CD226

Exon 1 F: GCATGATGGCAAGGATTTTT 52 486
- R: GCGTCATAAATTCTGAACGTG - -

Exon 2 F: TTTCTGATATTTCTCTGGTGTTTCA 52 493
- R: GACCCCAAAATGGGATAAGG - -

Exon 3 F: CCTCATATCCAAGAACTTGAGGA 52 498
- R:TGTATAAGAAAGTCATGAGAAAGACAA - -

Exon 4 F: TCCCAACTTCCTCTCTATTCTAGC 55 212
- R: GCATCAGAATTACTCAGGAGGAG - -

NPY

Exon 1 F: CACAGGGGTTAGGGATCG 55 236
- R: AGCCATAAAAACCCTGTTGC - -

Exon 2 F: AAGATGCCCATGATCTCCAG 55 300
- R: GAATTCCCTAAGCCCCCTTC - -

Exon 3 F: CTTTCCCTGACCACCTTGAG 55 188
- R: AAGAACTTTTACTCCCCCAACC - -

Exon 4 F: TGACGACAAAGGGAAACTGC 55 220
- R: TCTTACAAGCCTCCCAGGAA - -

1 F: forward; R: reverse; 2 AT: annealing temperature.

Direct Sanger sequencing of the PCR products from the 8 exons in 18 ewes with ex-
treme and intermediate values for TDA (low TDA: 0 days, n = 6; intermediate TDA:
56 ± 19.8 days, n = 6; high TDA: 142.3 ± 15.7 days, n = 6) was utilized to look for
polymorphisms in the experimental population. The PCR products were purified us-
ing the FavorPrep Gel/PCR purification mini kit (Favorgen, Ibian, Zaragoza, Spain),
and sequenced in both directions by STAB Vida company (Caparica, Portugal) using an
ABI 3730XL sequencer (Applied Biosystems, Foster City, CA, USA). Homology searches
were performed using BLAST (National Centre for Biotechnology Information: https:
//blast.ncbi.nlm.nih.gov/Blast.cgi; accessed on 19 April 2021). To align the sequences,
BioEdit [41] software and CLUSTAL Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/;
accessed on 19 April 2021) were used. The impact of amino acid substitution on the struc-
ture and function of the protein was predicted using the PolyPhen-2 (http://genetics.bwh.
harvard.edu/pph2/; accessed on 19 April 2021) [42] and Variant Effect Predictor (VEP:
http://www.ensembl.org/Ovisaries/Tools/VEP?db=core; accessed on 19 April 2021) soft-
wares. The locations of SNPs were determined based on the genome version of Ovis aries
Oar_v3.1.

2.6.2. CD226 and NPY Polymorphism Genotyping

Genomic DNA was extracted from blood samples of 265 ewes of the flock using
standard protocols. Two nonsynonymous SNPs in the CD226 gene were selected for
genotyping the whole population by Kompetitive allele-specific PCR (KASP) following
the manufacturer’s instructions: one in exon 2 (rs588529642) and the second in exon 3
(rs404360094). The sequence surrounding the target polymorphism was submitted for
assay design to the KASP genotyping provider (LGC Genomics, Biotools, Spain). Assays
were performed in 96-well formats in a 10 µL volume containing 1 µL of DNA (20 ng final
concentration of DNA), 5 µL of 2X KASP V4.0 master mix standard ROX (LGC Genomics,
UK), 0.14 µL of assay mix (KASP by Design assay mix, LGC Genomics, UK) and 3.86 µL
nuclease-free water. Reactions were performed in a CFX96 Bio-Rad thermocycler (Bio-Rad,
Madrid, Spain) with conditions as follows: 94 ◦C for 15 min followed by 9 touchdown
cycles of 94 ◦C for 20 s and 57 ◦C for 60 s (decreasing −0.6 ◦C per cycle) followed by
25 additional cycles of 20 s at 94 ◦C and 60 s at 55 ◦C. Following PCR, the plate was cooled
to 30 ◦C, and fluorescence was read using a single quantification cycle for 1 s.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://www.ensembl.org/Ovisaries/Tools/VEP?db=core
http://www.ensembl.org/Ovisaries/Tools/VEP?db=core
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The assay designed to genotype the NPY gene failed. Therefore, the two synonymous
SNPs located in exon 2 of the NPY gene (OAR4: g.71593018G > T, and rs594346709) were
genotyped by Sanger sequencing (as described above in Section 2.6.1).

2.6.3. SNP Association Studies

Haploview software v4.2 [43] was used to calculate the Hardy–Weinberg equilibrium
exact test, the observed and expected heterozygosities and the minor allele frequency
(MAF) for each SNP. Statistical association studies between the SNPs and reproductive
seasonality traits (TDA, P4CM, and OCM) were performed by fitting a linear model using
the Rcmdr package of R software (http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/;
accessed on 19 April 2021) [44], including the genotype of the SNPs (S) and age (mature,
young and ewe lambs) (A) as fixed effects. The LW and (CS were fitted as covariates. The
least square means (LSMs) for each pairwise comparison were calculated to test differences
between genotypes. The Bonferroni correction was used to consider multiple tests. The
CD226 and NPY SNPs were independently analysed with the same statistical model.

2.6.4. Haplotype Association Studies

Haploview software v4.2 was used to define blocks of LD based on the 4-gamete
rule [43]. D’ and r2 within the CD226 and NPY were estimated. SNPs were phased
using the expectation-maximization (E–M) algorithm to assign individual haplotypes with
PLINK1.9 [45]. Diplotypes with a posterior probability lower than 0.7 were discarded.
Haplotype association studies were performed using the Rcmdr package by fitting a similar
lineal model to that used for the SNP association studies but included the haplotype (H)
effect instead of the S effect. The number of copies of each haplotype were codified as 0, 1,
or 2 copies. Haplotypes with <1% frequency were not included in the analysis. The LSMs
for each pairwise comparison were calculated to test differences between haplotypes. The
Bonferroni correction was used to consider multiple tests.

3. Results
3.1. GWAS Results

After the QC was performed on the imputed genotypes, 205 ewes with genotypes
for 583882 SNPs distributed on the 27 ovine chromosomes were retained for subsequent
analyses. In the MDS analysis, 188633 autosomal SNPs were used to calculate the pairwise
IBS distance after SNP pruning. MDS analysis revealed a substructure within the total
dataset and identified 4 principal clusters in the analysed population (Figure S1). These
clusters were taken into account for subsequent association analysis. The GWAS results
obtained through MLMA and LOCO were very similar. The genomic inflation factors
for each trait were less than 1 (TDA: 0.96; P4CM: 0.97; OCM: 0.95), and then no more
adjustment was needed.

Only one significant SNP (rs404991855) for P4CM was found at the genome-wise
significance level after Bonferroni correction (Table S1). In the same way, a trend was
observed for the same SNP and TDA trait (p = 0.07). Figure S2 presents the Manhattan
and Q-Q plots for the three traits. Furthermore, 2, 7, and 4 SNPs were significantly
associated at the chromosome-wise level (FDR p < 0.10) with TDA, P4CM, and OCM traits,
respectively (Figure 1 and Table 2). Two SNPs (rs404991855 and rs418191944) located
on chromosome 23 were found to be significantly associated with the three traits at the
chromosome level (Figure 1 and Table 2). The seven SNPs associated with P4CM variability
were located on chromosomes 4 (rs424340754, rs410373132), 6 (rs409834034), 7 (rs428238419
and rs405959180), and 23 (rs404991855 and rs418191944) (Figure 1c). Finally, four SNPs on
chromosome 23 (rs405024177, rs404991855, rs418191944 and rs410842314) were associated
with OCM (Figure 1b). The genes located 250 kb upstream and downstream of the most
significant SNPs for each seasonality trait are shown in Table 2. Two genes were of interest
because they may be related to reproductive seasonality trait variation. The NPY gene, and
CD226 gene that is also known as DNAM-1 (DNAX Accessory Molecule-1). The significant

http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/
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SNPs for P4CM in chromosome 4 were located 35 (rs424340754) and 47 kb (rs410373132)
from NPY and were completely linked. The SNPs rs404991855 and rs418191944 were
located in intron 2 of CD226.

3.2. Validation Studies

We sequenced the entire coding region of the NPY gene and four exons of the CD226
gene to search for polymorphisms that could be involved in the phenotypes studied. No
deleterious mutations were detected. For the NPY gene, we found two synonymous SNPs
in exon 2. One of these mutations was not previously described (OAR4:g.71593018 G > T)
(Table 3). These SNPs showed low MAFs, ranging between 0.025 (g.71593018 G > T) and
0.082 (rs594346709) (Table S2). Although these mutations were synonymous, they were
genotyped in the whole population, since they might be in linkage disequilibrium with
putative causative mutations.

For the CD226 gene, three SNPs were detected in exon 2 (rs427511555, rs403900117
and rs588529642), and one SNP was detected in exon 3 (rs404360094). Two of these SNPs
(rs588529642 and rs404360094) were nonsynonymous substitutions and were selected to be
genotyped in the whole population. These SNPs were predicted in silico to be tolerated
by VEP and benign by PolyPhen-2, showing that the SNP located in exon 2 (rs588529642)
had a lower SIFT value (0.1) (Table 3). This SNP produces a change of methionine to valine
(Met60Val), both of which belong to hydrophobic groups (nonpolar). Conversely, the
SNP located in exon 3 (rs404360094) produces an amino acid substitution from asparagine
(uncharged polar) to aspartic acid (acidic) at position 243.

To determine the extent of LD among these markers, we estimated the parameters D’
and r2 between the pairwise combination of the SNPs in the same chromosome. Very low
LD was found. LD indices for SNPs located in the CD226 gene were 0.06 and 0 for D’ and
r2, respectively. For SNPs located in the NPY gene, 1 and 0.002 were observed for D’ and
r2, respectively. One haplotype block was predicted for SNPs located in exon 2 of the NPY
gene.

3.3. SNP Association Studies

Association analyses included 265 ewes. Table 4 shows results after Bonferroni correc-
tion. Only the SNP located in exon 3 of the CD226 gene was significantly associated with
the three reproductive seasonality traits (see Table S3 for further details). In fact, significant
differences were observed among alternative genotypes. Ewes with the AA genotypes
had higher TDA values than ewes with AG (50.80 ± 12.76; p < 0.01) or GG (42.52 ± 12.81;
p < 0.05) genotypes. Similarly, ewes with the AA genotype showed fewer oestrous records
than those with AG (−0.17 ± 0.05; p < 0.01) or GG (−0.13 ± 0.05). Similar results were
observed for the P4CM trait.
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Figure 1. Manhattan plots of chromosome-wise association studies of (a) total days of anoestrous (TDA), (b) oestrous cycling month (OCM) and (c) progesterone cycling month (P4CM)
traits. Only chromosomes with significant SNPs are shown. The horizontal green line in Manhattan plots corresponds to the average threshold value for an FDR of 10% evaluated at the
chromosomal level.
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Table 2. Significant SNPs at the chromosome-wise level associated with each seasonality trait. The SNPs are ordered
according to their positions in the Oar 3.1 genome version (Ensembl release 81). Minor allele frequency (MAF) is also
indicated. Putative causal genes located in the 250 kb region on both sides of the significant SNPs are indicated.

Trait SNP dbSNP Chr Position MAF p-Value Genes within 250 kb on either Side

TDA oar3_OAR23_7427625 rs404991855 23 7427625 0.40 1.22 ×10−7 RTTN -CD226-DOK6
oar3_OAR23_7428353 rs418191944 23 7428353 0.39 2.77 ×10−6 RTTN -CD226-DOK6

P4CM

oar3_OAR4_71540823 rs424340754 4 71540823 0.22 7.12 ×10−6 NPY
oar3_OAR4_71552651 rs410373132 4 71552651 0.22 7.12 ×10−6 NPY

oar3_OAR6_114690755 rs409834034 6 114690755 0.21 3.01 ×10−7

ENSOARG00000011847-
ENSOARG00000013314-LRPAP1-

ENSOARG00000013472-
ENSOARG00000013494

-ENSOARG00000013502- RGS12
oar3_OAR7_57807908 rs428238419 7 57807908 0.04 8.59 ×10−6 DTWD1- ENSOARG00000020999- FGF7-

GALK2
oar3_OAR7_87670575 rs405959180 7 87670575 0.12 1.22 ×10−5 ENSOARG00000002769
oar3_OAR23_7427625 rs404991855 23 7427625 0.40 6.07 ×10−8 RTTN -CD226-DOK6
oar3_OAR23_7428353 rs418191944 23 7428353 0.39 3.83 ×10−6 RTTN -CD226-DOK6

OCM

oar3_OAR23_6962033 rs405024177 23 6962033 0.08 2.30 ×10−5 SOCS6- RTTN
oar3_OAR23_7427625 rs404991855 23 7427625 0.40 3.63 ×10−7 RTTN -CD226-DOK6
oar3_OAR23_7428353 rs418191944 23 7428353 0.39 4.86 ×10−6 RTTN -CD226-DOK6
oar3_OAR23_48239663 rs410842314 23 48239663 0.21 4.09 ×10−6 ZBTB7C-CTIF

Table 3. Information regarding the location and amino acid substitution effect of the identified SNPs according to the
Variant Effect Predictor and PolyPhen-2 software in the NPY and CD226 genes. Scores are indicated in brackets. The SNPs
are ordered according to their positions in the Oar3.1 genome version (Oar3.1: GenBank acc. Numbers NC_019461 and
NC_019480 for NPY and CD226, respectively).

Gene dbSNP Location Position in
OAR Version 3.1

Nucleotide
Change

Amino Acid
Change

VEP
(SIFT Score)

Polyphen-2
(Score)

NPY - Exon 2 OAR4:g.71593018 G > T Leu21 = 1 - -
- rs594346709 Exon 2 OAR4:g.71593068 G > A Ser18 = - -

CD226 rs427511555 Exon 2 OAR23:g.7375331 G > A Thr25 = - -
- rs403900117 Exon 2 OAR23:g.7375377 T > C Leu41 = - -

- rs588529642 Exon 2 OAR23:g.7375434 A > G Met60Val Tolerated
(0.1)

Benign
(0.03)

- rs404360094 Exon 3 OAR23:g.7432390 A > G Asn243Asp Tolerated
(1)

Benign
(0.008)

1 No amino acid change.

Table 4. Type III test for the SNP located at exon 3 of the CD226 gene on seasonal traits (total days of
anoestrous (TDA), oestrous cycling month (OCM) and progesterone cycling month (P4CM)) of Rasa
Aragonesa ewes. The least square means (LSMs) and standard errors of alternative genotypes are
also shown. Only significant SNPs after Bonferroni correction are shown. Different letters indicate
significant differences: a, b: p < 0.05.

Trait p-Value SNP
SNP LSMs

AA AG GG

TDA 0.0003 120.7 ± 12.21 a 69.9 ± 4.88 b 78.1 ± 4.94 b
P4CM 0.0006 0.64 ± 0.04 a 0.83 ± 0.01 b 0.79 ± 0.01 b
OCM 0.001 0.29 ± 0.05 a 0.50 ± 0.02 b 0.46 ± 0.02 b

3.4. Haplotype Association Studies

Haplotype association studies were performed, considering block 1, which was pre-
dicted with Haploview (the two SNPs in exon 2 of the NPY gene), and a second block
containing the two nonsynonymous SNPs of the CD226 gene (block 2). Three haplotypes
were identified for each block (Table S4). Only diplotypes with a posterior probability
higher than 0.7 and haplotype frequency > 1% were considered. The results of haplotype
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analysis are presented in detail in Tables S5 and S6 for blocks 1 and 2, respectively. After
Bonferroni correction, only haplotypes H1 and H2 of block 2 were associated with the
three reproductive seasonality traits, thereby confirming the previous association found
in SNP analysis (Table 5). In this sense, ewes with one or 2 copies of haplotype H1 (AG)
had lower TDA and more oestrous records than those without copies (in bold the SNP
allele associated with the trait). This haplotype contains the G allele of the SNP located in
exon 2 (rs418191944), which is associated with lower TDA and higher P4MC and OCM
values. Conversely, ewes with 2 copies of haplotype H2 (AA) had more TDA and fewer
oestrous records.

Table 5. Type III test for the haplotype effects for block 2 of the CD226 gene using seasonal phenotypic
data from Rasa Aragonesa ewes (total days of anoestrous (TDA), oestrous cycling month (OCM) and
progesterone cycling month (P4CM)). The least square means (LSMs) and standard errors for the
haplotype effect are also shown. Only significant haplotypes after Bonferroni correction are shown.
Different letters indicate significant differences: a, b: p < 0.05.

Trait Haplotype 1 Frequency p-Value Haplotype
Haplotype LSMs 2

0 copies 1 copy 2 copies

TDA H1(AG) 0.70 0.002 110.3 ± 11.17 a 70.7 ± 4.83 b 79 ± 5.08 b
P4CM - - 0.002 0.67 ± 0.04 a 0.82 ± 0.01 b 0.79 ± 0.01 b
OCM - - 0.004 0.32 ± 0.04 a 0.49 ± 0.02 b 0.46 ± 0.02 b
TDA H2(AA) 0.25 0.0007 77.5 ± 4.88 a 71.1 ± 4.94 a 122.1 ± 12.69 b

P4CM - - 0.0005 0.79 ± 0.01 a 0.83 ± 0.01 a 0.63 ± 0.04 b
OCM - - 0.003 0.46 ± 0.02 a 0.49 ± 0.02 a 0.29 ± 0.05 b

1 Block 2 rs588529642–rs404360094. 2 0 copy: LSMs and SE for 0 copies of the haplotype; 1 copy: LSMs and SE for
1 copy of the haplotype; and 2 copies: LSMs and SE for 2 copies of the haplotype.

4. Discussion

Nine potential SNPs reaching the chromosome-wise level of significance were identi-
fied to be associated with the TDA, P4CM, and OCM reproductive seasonality traits. Only
one SNP (rs404991855) associated with P4CM overcame the genome-wide significance
level. The SNPs rs404991855 and rs418191944 on chromosome 23 appeared to be associated
with the three traits and were located in intron 2 of the CD226 gene. This gene has been
related to such reproductive diseases as cystic ovarian teratoma and mature teratoma of
the ovary in humans [46,47]. On the other hand, SNPs (rs424340754 and rs410373132)
in chromosome 4 were significantly associated with P4CM. These SNPs are located in
an intergenic region approximately 34 kb from the NPY gene, which influences many
physiological processes, including circadian rhythms, anorexia, and weight loss [48]. Three
other SNPs (rs409834034, rs428238419, and rs405959180) in chromosomes 6 and 7 were also
significantly associated with this trait. However, none of the genes annotated in the 250 kb
region around the significant SNPs was related to reproductive traits. Finally, four SNPs
located in chromosome 23 were associated with the OCM trait: two in intron 2 of the CD226
gene (rs404991855 and rs418191944), one in an intergenic region approximately 412 kb from
the CD226 gene (rs405024177), and one in a different intergenic region in chromosome 23
(rs410842314).

The NPY and CD226 genes have been reported in other studies to be potentially
associated with reproductive processes. NPY plays a role in the regulation of the secretion
of gonadotropin releasing hormone (GnRH) in rats [49], rabbits [50], monkeys [51], and
sheep [52,53]. It has been shown that NPY-containing neurons in the hypothalamus hold
oestrogen receptors in rats [54]. In the same way, Skinner and Herbison [55] indicated that
changes in photoperiod may regulate oestrogen receptor expression within the preoptic
area. These authors suggested that hypothalamic NPY and β-endorphin neurons are in-
volved in the seasonal regulation of ewe reproductive activity. Barker-Gibb and Clarke [56]
reported a reduction in the number of NPY cells detectable by immunohistochemistry in
the nonbreeding season compared to the breeding season in ovariectomized ewes either
treated or not treated with oestrogen. Williams et al. [57] noted that NPY and other uniden-
tified neurons in the hypothalamus interact with leptin, which is an important mediator of
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energy homeostasis and reproductive status in sheep. In pigs, NPY modulates hypothala-
mic neuronal activity (LH secretion) and serves as a putative link between the metabolic
state and the reproductive axis [58]. Clarke et al. [48] determined that NPY stimulates feed
consumption and inhibits reproduction in sheep. However, Miner [59] showed that NPY is
a potent orexigenic agent in sheep, as in other species, and a seasonal change in the expres-
sion of this peptide may be related to stimulation of feed intake, rather than seasonality. On
the other hand, the CD226 gene encodes the glycoprotein CD226, also known as DNAM-1
(DNAX Accessory Molecule-1), which is expressed on the surface of natural killer (NK)
cells and is involved in T cell-mediated cytotoxicity against certain tumours [60]. NK cells
express a repertoire of activating and inhibitory receptors that control NK cell cytotoxicity
and interferon-γ (IFNG) production to ensure self-tolerance while allowing efficacy against
such insults as viral infection and tumour development [61,62]. NK cells are also known
to play an important role in human reproduction. These cells can be categorized into two
main populations based on the relative expression of the surface markers CD16 and CD56:
CD56bright/CD16– functioning to primarily produce cytokines in the circulating blood, and
CD56dim/CD16+ performing cytotoxicity in the tissues [63,64]. Lukassen et al. [65] have
shown that the proportion of CD56dim/CD16+ NK cells in follicular fluid (FF) in women
suffering from idiopathic infertility is significantly higher than that in FF from patients un-
dergoing in vitro fertilization (IVF) for tubal or male factor infertility. Furthermore, Křížan
et al. [66] reported that the FF of patients with successful IVF outcomes was enriched
with CD56bright/CD16– NK cells. Additionally, Fainaru et al. [67] indicated that CD56bright

CD16– NK cells are abundant in maturing ovarian follicles and that their presence correlates
with the ovarian response to gonadotropins. These cells have been shown to be proan-
giogenic through the secretion of such cytokines as vascular endothelial growth factor
and placental growth factor [68]. In patients with a good response to ovarian stimulation,
CD56bright NK cells migrate into the ovarian follicle, supporting follicular angiogenesis
and oocyte development [67]. Recent research conducted by Stannard et al. [46] described
a new CD56dim NK cell subset characterized by a lack of expression of DNAM-1. These
researchers reported that CD56dimDNAM-1neg NK cells displayed reduced motility, poor
proliferation, lower production of interferon-γ, and limited killing capacities compared
with CD56bright and CD56dimDNAM-1pos NK cell subsets.

According to the aforementioned findings, it can be inferred that mutations in CD226
could lead to glycoprotein alteration and could therefore affect follicle development. Ad-
ditionally, mutations in the NPY gene would explain one of the neuroendocrine and
physiological mechanisms that link nutrition and reproduction. Accordingly, the NPY
and CD226 genes were selected for validation studies for their possible involvement in
seasonal reproduction in sheep. Using 18 ewes with extreme values of TDA, we detected
2 and 4 SNPs in NPY and CD226, respectively (Table 3). This design could increase the
power to detect polymorphic SNPs associated with the trait but minimize the probability
of detecting other polymorphic SNPs.

In this study, no association was found with the NPY gene. These SNPs show a low
MAF (0.025 and 0.08 for OAR4: g.71593018 G > T and rs594346709, respectively). Notably,
we did not sequence regulatory regions, such as the promoter or 5’ and 3’ UTR regions.
Therefore, we could have missed the responsible mutation, as it was not in LD with the
detected mutations. Similarly, no association was found with the SNP located in exon
2 of the CD226 gene. Importantly, no homozygous animals were found for the G allele,
and a low MAF was found for this SNP (0.042). However, the analysis demonstrated
that the SNP located in exon 3 of CD226 (rs404360094) was associated with the three
reproductive seasonality traits. Notably, this SNP is close and in LD with the significant
SNPs found in intron 2 in the GWAS analysis (4 and 4.7 kb from SNPs rs418191944 and
rs404991855, respectively). In this sense, the GWAS analysis could have detected the effect
found in exon 3 of CD226. Heterozygous and homozygous ewes for the G allele had
less TDA and showed more oestrous events than those with the AA genotype (Table 4),
which were observed at low frequency (4.7%) in our sample (Table S2). These results
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were confirmed by haplotype analysis such that animals carrying 1 or 2 copies of the
H1 haplotype (containing the G allele) showed less TDA and higher P4CM and OCM
values. Similarly, animals with two copies of the H2 haplotype (containing the A allele)
showed higher TDA and lower P4CM and OCM values. This SNP produces an amino
acid substitution from asparagine (uncharged polar) to aspartic acid (acidic) at position
243 at the end of the second immunoglobulin V-like domain in the extracellular region
of the protein and close to the transmembrane motif [69]. However, the real effect of this
variant is not clear because it has been predicted in silico to be a tolerant nonsynonymous
substitution. It should be noted that we did not sequence the complete coding or regulatory
regions of the CD226 gene; thus, the observed relationship could indicate that the SNP
should be in LD with the true causative mutation.

In summary, GWAS results were confirmed using a candidate gene approach. First,
two SNPs located in intron 2 of the CD226 gene reached the chromosome-wise significance
threshold on chromosome 23 using the GWAS approach. As noted above, because this
gene could be related to follicular angiogenesis and oocyte development in humans, we
decided to confirm the GWAS results using a candidate gene approach, determining that
the SNP rs404360094 located in exon 3 of the CD226 gene was associated with reproductive
seasonality traits in Rasa Aragonesa ewes. Therefore, this SNP could be utilized as a genetic
marker for assisted selection to reduce seasonality. These results should be confirmed in
more animals and in other breeds.

5. Conclusions

This study employed a GWAS approach to identify genomic regions associated with
traits involved in reproductive seasonality in sheep. We demonstrated that the G allele
of the SNP rs404360094 located in exon 3 of the CD226 gene is associated with lower
TDA and higher P4CM, which are both traits related to ovarian function based on blood
progesterone levels. This allele was also associated with higher OCM scores, which is an
indicator of oestrous behaviour. These findings enabled us to validate the GWAS results
and demonstrated the involvement of the genomic region where the CD226 gene is located.
This SNP could be utilized as a genetic marker along with other SNPs already characterized
in Rasa Aragonesa as being associated with traits related to reproductive efficiency, such as
prolificacy or reproductive seasonality.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani11041171/s1, Figure S1: Multidimensional scaling (MDS) analysis performed with 188,633
SNPs after pruning in 205 ewes. The analysis showed the 4 clusters of animals included in analysis.,
Figure S2: Manhattan and Q-Q plots from GWAS analysis for a) TDA, b) P4CM and c) OCM traits in
Rasa Aragonesa sheep breed. Chromosomes 1–26 and X (27) are shown. Horizontal green line in
the Manhattan plot corresponds to the average threshold value for a FDR of 10% evaluated at the
chromosomal level, Table S1: Genome-wide Complex Trait Analysis (GCTA) results for significant
Single Nucleotide Polymorphisms (SNPs) at the genome (Bonferroni correction), and chromosome
(FDR 0.10) levels for the reproductive seasonality traits studied. Threshold for chromosome level
(FDR 0.10) was indicated (pval_FDR10), Table S2: Genotypic and allelic frequencies of the genotyped
SNPs for the validation studies, Table S3: Type III test for the body condition score (BCS), live weight
(LW), the age (A), and SNP effects for the CD226 and NPY polymorphisms using the seasonality
phenotype data from Rasa Aragonesa ewes. The least square means (LSMs) and standard errors
are also shown. Different letters indicate significant differences: a, b: p < 0.05 after Bonferroni
correction, Table S4: Haplotypes combination and frequency block 1 (OAR4:g.71593018- rs594346709)
and for block 2 (rs588529642–rs404360094). Only haplotypes with a frequency higher than 1% are
shown, Table S5: Block 1 Type III test for the body condition (BC), live weight (LW), the age (A),
and Haplotype (H) for the NPY polymorphisms using the seasonality phenotype data from Rasa
Aragonesa ewes. The least square means (LSMs) and standard are also shown. Different letters
indicate significant differences: a, b: p < 0.05 after Bonferroni correction, Table S6: Block 2 Type III
test for the body condition (BC), live weight (LW), the age (A), and Haplotype (H) for the CD226
polymorphisms using the seasonality phenotype data from Rasa Aragonesa ewes. The least square
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means (LSMs) and standard are also shown. Different letters indicate significant differences: a, b:
p < 0.05 after Bonferroni correction.
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