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Simple Summary: In this study, we investigated and compared six different Bayesian network
algorithms from three different categories to identify hub genes critical to gene expression networks
activated in response to progesterone in the bovine uterus. We observed many common hub genes
identified between constraint-based algorithms (CBAs) and hybrid algorithms (HAs), while it ap-
peared that score-based algorithm (SBA) methods led to more accurate and relevant predictions
of core genes. The results revealed that the identification of hub genes was affected by the type
of network reconstruction and by the subsequently used topological parameters. Two identified
genes known to have roles during pregnancy are ISG15 and DGAT2. The identified hub genes are
associated with biological processes such as amino acid metabolism, hormonal signaling pathways
and the immune system. Our analysis revealed a role for miRNAs in the regulation of this system.
The biological and physiological roles (enzymatic and hormonal effects) of unannotated identified
hub genes should be functionally validated by further studies.

Abstract: Bayesian gene networks are powerful for modelling causal relationships and incorporating
prior knowledge for making inferences about relationships. We used three algorithms to construct
Bayesian gene networks around genes expressed in the bovine uterus and compared the efficacies
of the algorithms. Dataset GSE33030 from the Gene Expression Omnibus (GEO) repository was
analyzed using different algorithms for hub gene expression due to the effect of progesterone on
bovine endometrial tissue following conception. Six different algorithms (grow-shrink, max-min
parent children, tabu search, hill-climbing, max-min hill-climbing and restricted maximum) were
compared in three higher categories, including constraint-based, score-based and hybrid algorithms.
Gene network parameters were estimated using the bnlearn bundle, which is a Bayesian network
structure learning toolbox implemented in R. The results obtained indicated the tabu search algorithm
identified the highest degree between genes (390), Markov blankets (25.64), neighborhood sizes (8.76)
and branching factors (4.38). The results showed that the highest number of shared hub genes
(e.g., proline dehydrogenase 1 (PRODH), Sam-pointed domain containing Ets transcription factor
(SPDEF), monocyte-to-macrophage differentiation associated 2 (MMD2), semaphorin 3E (SEMA3E),
solute carrier family 27 member 6 (SLC27A6) and actin gamma 2 (ACTG2)) was seen between the
hybrid and the constraint-based algorithms, and these genes could be recommended as central to the
GSE33030 data series. Functional annotation of the hub genes in uterine tissue during progesterone
treatment in the pregnancy period showed that the predicted hub genes were involved in extracellular
pathways, lipid and protein metabolism, protein structure and post-translational processes. The
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identified hub genes obtained by the score-based algorithms had a role in 2-arachidonoylglycerol and
enzyme modulation. In conclusion, different algorithms and subsequent topological parameters were
used to identify hub genes to better illuminate pathways acting in response to progesterone treatment
in the bovine uterus, which should help with our understanding of gene regulatory networks in
complex trait expression.

Keywords: algorithms; Bayesian network; bovine; endometrium; implantation; DNA microarray

1. Introduction

In cattle, fetal death rates from fertilization to term can be up to 56 percent [1]. More
than 70 percent of these deaths occur during the first few months of pregnancy [2]. Interest-
ingly, most pregnancy losses occur during the first two to three weeks, when important
physiological events, including blastocyst enlongation, pregnancy establishment and em-
bryo implantation, are occurring in the endometrium [1]. Recent studies have shown that
the embryo may receive different inputs from the endometrium during its development,
including embryotrophic factors (amino acids, carbohydrates, proteins, lipids and other
substances) provided by the uterus [1]. Moreover, endometrial gene expression patterns
before and after the time of implantation (days 5–20) determine the ability of the uterine
environment to maintain pregnancy [3]. Therefore, the identification of genes responsible
for the establishment and sustenance of pregnancy in cows could provide key information
for the selection of informative genes responsible for increasing bovine fertility [2]. Most
reports have found differentially expressed genes in the first two to three weeks of preg-
nancy, including the insulin-like growth factor (IGF) system [1,2,4,5], interleukin 1 (IL1) [6],
claudin 10 (CLND10), matrix Gla protein (MGP) [7], connective tissue growth factor (CTGF),
solute carrier family 5 member 1 (SLC5A1), lactotransferrin (LTF) [3,8,9], ubiquitin-like
modifier (ISG15), complement C1 (C1), complement C4 (C4), CXC motif chemokine ligand 5
(CXCL5), alanyl aminopeptidase (ANPEP), fatty acid binding protein 3 (FABP3), lipoprotein
lipase (LPL), solute carrier family 2 member 5 (SLC2A5) [3,9], semaphorin 3E (SEMA3E),
collagen type IV alpha 1 chain (COL4A1) and phospholipase A2 (PLA2) [2]. It can be
inferred that the identification of cause–effect relationships from differentially expressed
genes in the uterus within 5 to 16 days of pregnancy may identify biomarkers and core
genes responsible for successful and sustained pregnancy.

To date, several methods have been used to extract the network structure of gene
expression data. These include linear regression, neural networks, differential equations,
Boolean networks and Bayesian networks (BNs) [10,11]. Previous studies have shown that
BNs perform better than the other methods for structural reconstruction. BNs are a class of
graphical models connecting variables (nodes) by edges (arcs) [10,11]. These networks are
examples of the application of graph theory and conditional probability rules for extracting
network structures between existing variables of a dataset. BN learning methods are classi-
fied into parameter learning and structure learning [12]. Different algorithms have already
been proposed for the structure learning of BNs, including constraint-based algorithms
(CBAs), score-based algorithms (SBAs), and hybrid algorithms (HAs) [12]. CBA methods
seek to estimate the structure of the BN using different conditional independence tests.
In CBAs, it is not possible to fully extract the causal relationships between genes; thus,
structures reconstructed this way are called partially directed acyclic graphs. CBA methods
can be classified into grow-shrink (GS) and max-min parent children (MMPC) algorithms.
GS algorithms are used for identifying a Markov blanket (MB) in a BN. MMPC algorithms
use a forward-looking selection technique for identifying neighbors in a graph [13]. On
the other hand, SBAs are a group of heuristic optimization algorithms that find the best
structure according to diverse predefined score functions. In the HA category, two types of
algorithms, called maximum-minimum hill-climbing (MMHC) and restricted maximiza-
tion (RSMAX), have been suggested to solve some limitations of the above-mentioned
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categories [12]. MMHC uses the features of an MMPC algorithm (to limit search space) and
hill-climbing (HC) to find the network with the highest rank in the restricted space [12].
RSMAX is a flexible algorithm that is able to hybridize different characteristics of both the
CBA and SBA categories [12].

Given the different characteristics of the aforementioned algorithms but the similar
goal (finding the best structure), it is acknowledged that the hub genes identified from
each algorithm may be somewhat different. Extracting the important gene networks can
help identify genes associated with complex diseases and traits, showing the associations
between genes and generalizing the relationships and processes in which genes interact [14].
Hub and regulatory genes in gene networks can be extracted using the above BN categories.
Although the best algorithm might be assumed to be the one that hits the most gene
annotations, a consensus of all the above BN categories can be taken as the most reliable. In
addition, to date, there have not been any comparisons of the effectiveness of different BN
algorithms in identifying hub genes in transcriptomic data, especially in cattle.

Therefore, the aims of the present study are to (1) identify hub genes in the bovine
uterine transcriptome using two subclasses of the three main algorithms, including CBAs
(GS and MMPC), SBAs (HC and TS), and HAs (MMHC and RSMAX); (2) detect hub genes
shared between learned structures of the mentioned algorithms; and (3) find the best struc-
tural learning BN algorithm for the GSE33030 dataset based on biological classifications
and annotations.

2. Materials and Methods
2.1. Data Used in This Study

The Gene Expression Omnibus (GEO) database under accession number GSE33030
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33030, (accessed on 2 Septem-
ber 2018) was used for this study. The data were extracted using the GEOquery package [15]
in an R environment. The GSE33030 study examined the effect of progesterone on the
pattern of bovine endometrium gene expression before and after implantation (days 5 to
16 after fertilization) [8,9]. Five percent (5%) of the genes with the highest variance were
considered differentially expressed. The objective of the original project was to ascertain
differential effects of elevated P4 concentrations following conception on endometrial gene
expression in beef heifers on days 5, 7, 13 and 16 of pregnancy, corresponding to the morula,
blastocyst, elongation and maternal recognition pregnancy stages, respectively. Tissues
were collected from beef heifers (N = 263) of various treatments on days 5, 7, 13 or 16 of
the cycle or pregnancy, and pregnancy was confirmed by the presence of an appropriately
developed embryo (conceptus). The total RNA was extracted, and the gene expression
was analyzed using bovine Affymetrix microarrays. Differentially expressed genes were
selected on the basis of an adjusted p-value of <0.01. There were no detectable differences
in gene expression in endometria from pregnant and cyclic heifers on days 5, 7 and 13 post-
estrus, but the expression of 764 genes was altered due to the presence of the conceptus
at the maternal recognition of pregnancy (day 16). Of the genes that were differentially
regulated by progesterone, the majority were unique to a specific day of the estrous cycle
(early pregnancy). In conclusion, the gene expression in endometria did not differ between
pregnant and cycling heifers until day 16 of pregnancy (i.e., the time of maternal recog-
nition of pregnancy and the production of interferon tau by conceptus trophectoderm);
however, elevating P4 in early pregnancy caused programmed changes in gene expression
in endometria that were hypothesized to impact early conceptus growth and development.
Thus, on days 5, 7 and 13, differential gene expression was affected by P4, but on day 16,
the conceptus primarily influenced gene expression in the uterine endometria of heifers.

2.2. Network Construction

The bnlearn package in an R environment [12] was used to learn the structural BN pa-
rameters, such as Markov blanket (MB), neighborhood size (NS) and branching factor (BF).
Using a bnlearn toolbox, we used the GS and MMPC algorithms from the CBA category, HC

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33030
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and TS from the SBA category, and MMHC and RSMAX from the HA category for recon-
structing the learned structures of the BN. The identification of hub genes was performed
by considering the topological degree criterion in the Network Analyzer app of Cytoscape
software version 3.6 [16]. Cytoscape is a powerful tool for the graphical visualization of
genetic interactions in large databases, as well as the estimation of network topological
parameters such as degree, betweenness, closeness and eccentricity. These topological
parameters were also estimated for the whole network reconstructed by each algorithm
using the Network Analyzer app of Cytoscape software version 3.6 [16]. Some other
topological parameters, such as cluster coefficient, shortest path, characteristic path length
and neighborhood connectivity (NC), were estimated for structures learned in different
algorithms using the igraph package in an R environment [17]. Supplementary Figure S1
shows the pipeline and procedures used in this study.

2.3. Downstream Analysis of Hub Genes

The functional annotation information relating to the regulatory hub genes was identi-
fied using DAVID [18]. Gene classification, pathway analysis and gene set enrichment anal-
yses of the identified regulatory hub genes were performed using the Panther database [19]
with the latest assembly of the Bos taurus genome [19]. The results were also examined
for gene ontology enrichment and a general comparison of BN structures learned via
the different implemented algorithms given. Genes acting as potential upstream regula-
tors of differentially expressed genes were determined using Ingenuity Pathway Analysis
(IPA) software (QIAGEN Inc. Redwood City, CA). Over-represented Reactome pathways
associated with differentially expressed genes were identified using WebGestalt (WEB-
based GEne SeT AnaLysis Toolkit) [http://www.webgestalt.org/, (accessed on 18 May
2021)], [20] with ‘Bos taurus’ as the reference genome and ‘Over-representation analysis’ as
the algorithm used.

3. Results
3.1. Bayesian Structural Network Parameter Estimation

In Table 1, the estimated BN structural parameters using three different algorithmic
groups are presented. With SBAs, the highest total numbers of connections and directed
connections (388 and 390 for HC and TS, respectively) were observed. With TS from the
SBA category, the highest numbers of connections (390), MB (25.64), NS (8.76) and BF (4.38)
were estimated. The values for the above-mentioned parameters in the CBA category were
higher than those for HAs (89, 2.63, 2 and 0.85 vs. 76, 1.84, 1.76 and 0.85 for total connection,
MB, NS and BF for GS and MMHC, respectively).

Table 1. Estimation of structural Bayesian network parameters using different algorithms.

Parameters
CBA SBA HA

GS MMPC HC TS MMHC RSMAX

No. of nodes 89 89 89 89 89 89
No. of arcs (edges) 89 77 388 390 76 70
Undirected edges 13 0 0 0 0 0

Directed arcs 76 77 388 390 76 70
MB 2.63 1.73 25.3 25.6 1.8 1.6
NS 2 1.73 8.7 8.7 1.7 1.5
BF 0.85 0 4.3 4.3 0.85 0.79

No. of Tests 43,903 55,335 43,338 43,338 55,601 23,662
Abbreviations: CBA: constraint-based algorithm; SBA: score-based algorithm; HA: hybrid algorithm; GS: grow-
shrink; MMPC: max-min parent children; HC: hill-climbing; TS: tabu search; MMHC: max-min hill-climbing;
RSMAX: restricted maximize; MB: Markov blanket; NS: neighborhood size; BF: branching factor.

3.2. Topological Parameters of Reconstructed Networks

The topological parameters of the three main BN categories are presented in Table 2.
In total, the betweenness values for all six algorithmic groups were in the range of 0.003

http://www.webgestalt.org/
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(RSMAX) to 0.04 (MMPC), whereas SBAs had the maximum rate of closeness value (0.4
for HC and TS) compared to the two other algorithm categories. The strength values
obtained from reconstructed gene networks with the tendency for obtaining separate
partitions for SBAs were in the first order, followed by CBAs (2.2 and 3.4 for GS and MMPC,
respectively) and HAs (1.7 and 1.5 for MMHC and RSMAX, respectively). Furthermore,
the NC values were also maximum for structures obtained with SBAs (9.4 and 9.5 for HC
and TS, respectively). The highest characteristic path length values (4.7 and 6 for GS and
MMPC, respectively) were observed with CBAs.

Table 2. Topological parameters of Bayesian network by different implemented algorithms.

Parameters
CBA SBA HA

GS MMPC HC TS MMHC RSMAX

Betweenness 0.008507684 0.04031794 0.009298721 0.009213601 0.001715626 0.0003272751
Eccentricity 10.95506 10.48315 3.505618 3.505618 10.48315 4.033708

Degree 1.93258427 2.674157 7.228571 7.011236 1.348315 1.191011
Closeness 0.04408607 0.02552964 0.4348416 0.4358546 0.0255294 0.01263703
Centrality 3.404494 6.438202 4470240 5490951 6.438202 3.404494
Strength 2.292135 3.460674 8.719101 8.764045 1.707865 1.573034

CC 0.005 0.019 0.047 0.048 0 0
SP 685 (8%) 1777 (22%) 4736 (60%) 4736 (60%) 256 (3%) 107 (1%)

CPL 4.749 6.023 3.322 3.319 3.636 1.748
NC 2.884684685 3.529701 9.47985 9.550446 2.318357 2.191799

Abbreviations: CBA: constraint-based algorithm; SBA: score-based algorithm; HA: hybrid algorithm; GS: grow-
shrink; MMPC: max-min parent children; HC: hill-climbing; TS: tabu search; MMHC: max-min hill-climbing;
RSMAX: restricted maximize; CC: cluster coefficient; SP: shortest path; CPL: characteristic path length; NC: neigh-
borhood connectivity.

3.3. Identification of Transcriptomic Hub Genes

In Table 3, we present the bovine uterine transcriptomic hub genes that were identified
using three sets of algorithms applied to the GSE33030 DNA microarray dataset. The degree
values (D) for each hub gene are also shown for each algorithmic group. The highest degree
values were observed in the HC and TS results (about 19). These obtained D values were
probably due to the reconstructed causal relationships between all genes in the network
learned by SBAs compared to the other two algorithmic groups. The results showed that
the first three hub genes were different in each algorithmic category, except for the SBAs. In
Table 3, the unique genes that were not common to any of the algorithms are shown in bold.
Interestingly, the CBA hub gene degree values were higher than those of HAs (6-4 and 6-5
for GS and MMPC, respectively, vs. 5-3 and 4-3 for MMHC and RSMAX, respectively).

Table 3. Hub genes identified by the various Bayesian network algorithms used in this study.

CBA SBA HA

GS D MMPC D HC D TS D MMHC D RSMAX D
LPL 6 SEMA3E 6 CSTB 19 CSTB 19 BOLA 5 ISG15 4

PRODH 5 ACTG2 6 DGKI 16 DGKI 16 SPDEF 4 PRODH 4
GNMT 5 BOLA 6 SEMA3E 16 SEMA3E 16 FOXRED2 4 MMD2 4
BOLA 4 SLC13A5 6 DAPL1 15 DAPL1 15 SEMA3E 4 SLC27A6 3

UPK1B 4 SPDEF 6 DPP4 13 LPL 13 ACTG2 4 ACTG2 3
ANPEP 4 MMD2 6 LPL 13 DKK1 13 ISG15 4 CKMT1 3
SPDEF 4 MICAL2 5 DKK1 13 LOC783399 13 SLC13A5 3 DEPDC5 3

CAMK2B 4 DGAT2 5 LOC783399 13 BoLA-
DRB3 13 CHEK1 3 BOLA 3

Abbreviations: CBA: constraint-based algorithm; SBA: score-based algorithm; HA: hybrid algorithm; GS: grow-
shrink; D: degree criterion; MMPC: max-min parent children; HC: hill-climbing; TS: tabu search; MMHC: max-min
hill-climbing; RSMAX: restricted maximum. The genes in bolded format represent unique genes among all the
algorithmic categories.
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In Figure 1, the transcriptomic hub genes identified by all three algorithmic groups are
illustrated. The highest number of common hub genes was identified between HAs–CBAs
(6) compared to HAs–SBAs (2) or SBAs–CBAs (1). Most of the identified hub genes in CBAs–
HAs were originally from the MMPC–RSMAX pair (PRODH, MMD2, SPDEF, SEMA3E,
ACTG2 and SLC13A5). Supplementary Table S1 shows that addressing hub gene detection
in the bovine genome has been the core of many studies, but none of them pinpointed hub
genes in uterus transcriptomic data.
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RSMAX—restricted maximum.

3.4. Downstream Analysis of Identified Genes
3.4.1. Functional Annotation

The results of the functional annotation of identified hub genes from each set of
algorithms are presented in Table 4. Only significant pathways (p < 0.05) are presented.
CBA algorithms highlighted ‘extracellular space’ and ‘alternative splicing’ functions. Genes
identified by SBA methods were associated with ‘extracellular space’, ‘secreted proteins’,
‘glycerolipid metabolism’, ‘protease binding’ and ‘disulfide bonds’. The HA algorithms
identified hub genes with a role in ‘isopeptide bonds’, ‘alternative splicing’ and ‘arginine
and proline metabolism’.
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Table 4. Functional annotation of identified hub genes.

Term Count p-Value FE Bonferroni Benjamini FDR

CBA
Extracellular space 4 0.04 3.2 0.8 0.8 48
Alternative splicing 8 0.009 1.9 0.3 0.3 8

SBA
Extracellular space 4 0.01 7.7 0.22 0.2 5

Secreted 4 0.01 5.9 0.50 0.5 12
Glycerolipid
metabolism 2 0.03 47.6 0.28 0.2 18

Protease binding 2 0.04 47.7 0.68 0.6 26
Disulfide bond 4 0.04 3.9 0.77 0.7 32

HA
Isopeptide bond 3 0.05 6.8 0.93 0.9 40

Alternative splicing 7 0.02 1.7 0.97 0.8 51
Arginine and proline

metabolism 2 0.0 1.7 0.1 0.1 9

Abbreviations: FE—fold enrichment; FDR—false discovery rate; CBA—constraint-based algorithm; SBA—score-
based algorithm; HA—hybrid algorithm.

3.4.2. Biological Process

The classifications of biological processes associated with the hub genes identified
by CBAs, SBAs and HAs are presented in Figure 2. As shown, in CBAs, cellular process
(GO:0009987) (28%) was the most frequent biological process, followed by metabolic process
(GO:0008152) (19%) and immune system process (19%) (GO:0002376). Whereas in SBAs,
cellular process (20%), response to stimulus (GO:0050896) (17%) and metabolic process
(17%) were the first three, ordered respectively. With HAs, similarly to CBAs, cellular
process (23%), metabolic process (16%) and immune system process (13%) were the most
frequent biological processes associated with the identified hub genes.
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3.4.3. Molecular Function

The classifications of molecular functions associated with the hub genes identified
by CBAs, SBAs and HAs are presented in Figure 3. Here, all three algorithms produced
genes involved in binding (GO:0005488) with a frequency of 46%, 50% and 42% for CBAs,
SBAs and HAs, respectively, followed by catalytic activity (GO:0003824), which had the
highest frequency in the SBA analysis (40%), followed by the HA (28%) and CBA (26%)
analyses, respectively.
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3.4.4. Cellular Components

The cellular components associated with the hub genes are illustrated in Figure 4.
Interestingly, with SBAs, a different cell component class (extracellular region (GO:0005576)
with a frequency of 66%) was observed compared to the cell part (GO:0044464) with
frequencies of 44% and 42% from the CBA and HA categories, respectively.
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3.4.5. Pathways

The classification of pathways related to hub genes is shown in Figure 5. With CBAs,
Huntington’s disease (P00029) (13%) and inflammation mediated by the chemokine and
cytokine signaling pathway (P00031) (13%) were the most common pathways shared
between the hub genes in this class. A similar phenomenon was observed with HA-derived
genes, in which the aforementioned pathways were present with frequencies of 16% and
11%. However, with the SBA analysis, all the identified hub genes were involved in the
2-arachidonoylglycerol biosynthesis (P05726) pathway. Our results suggested that most
of the hub genes from the SBA analysis are involved in the synthesis of hormones with
steroidal structure (progesterone).
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3.4.6. Protein Class

Supplementary Figure S2 shows the classification of the identified hub genes based
on their protein class. The results of protein classification showed that, with CBAs, 17% of
the hub genes were described as hydrolases (PC00121), followed by cytoskeletal proteins
(PC00085) with a frequency of 17%. On the other hand, in the SBA analysis, enzyme
modulator (PC00095) and hydrolase (PC00121) were the most significant protein classes,
with frequencies of 38% and 15%, respectively. In the analysis using the HA algorithms, four
protein classes were represented by a frequency of 15% of all identified hub genes. These
protein classes were nucleic acid binding (PC00171), transferase (PC00220), cytoskeletal
protein (PC00085) and signaling molecule (PC00207).

3.5. Over-Representation Analysis

Differentially expressed genes were analyzed for enriched annotation terms using the
WebGestalt suite (http://www.webgestalt.org/, (accessed on 18 May 2021)) [20]. Several
Reactome pathways were highlighted. These are shown in Table 5 and include ‘striated
muscle contraction’, ‘adipogenesis’, ‘pancreatic secretion’ and ‘white fat cell differentiation’
as being significant (FDR < 0.05).

Table 5. Over-represented Reactome pathways.

Gene Set Description Size Expect Ratio p Value FDR

WP216 Striated muscle contraction 45 1.33 12.782 3.22 × 10−15 1.63 × 10−12

WP447 Adipogenesis genes 134 3.9604 4.2924 3.84 × 10−7 9.7015 × 10−5

mmu04972 Pancreatic secretion 103 3.0442 3.6134 0.00022 0.037012
WP2872 White fat cell differentiation 32 0.94578 6.344 0.000299 0.037763

WP4344 Sphingolipid metabolism
(general overview) 25 0.73889 6.7669 0.000711 0.059801

WP512 Id signaling pathway 51 1.5073 4.644 0.000693 0.059801

WP4690 Sphingolipid metabolism
(integrated pathway) 26 0.76845 6.5066 0.000859 0.061947

mmu00600 Sphingolipid metabolism 48 1.4187 4.2293 0.002729 0.17224

WP2084 SREBF and miR33 in cholesterol
and lipid homeostasis 11 0.32511 9.2276 0.003533 0.19822

WP1596 Iron homeostasis 15 0.44333 6.7669 0.008926 0.38976

http://www.webgestalt.org/
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3.6. Ingenuity Pathway Analysis (IPA)

For a more in-depth analysis of the pathways associated with significant network genes,
Ingenuity Pathway Analysis software was used (https://www.qiagenbioinformatics.com/
products/ingenuitypathway-analysis, (accessed on 20 May 2021).). The top pathways most
significantly associated with differentially expressed genes are shown in Figure 6. These
included pathways connected with pregnancy hormones (e.g., pregnenolone biosynthesis,
estrogen signaling), amino acid transport and metabolism (e.g., g-glutamyl cycle, histidine
degradation and serine biosynthesis) and the immune system (e.g., interferon signaling).
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An examination was also made of molecules that were likely regulators of identified
hub genes. Table 6 shows the most significant molecules that were potential regulators of
gene expression within this dataset. These were seen to include progesterone, beta-estradiol,
estrogen and 2-methoxyestradiol. Several micro-RNAs were also indicated to potentially
play a significant role. These included mir-96, mir-183, miR-182-5p, mi0052-199a-5p and
mir-15. mir-199a-5p inhibits the proliferation, movement and angiogenesis of ectopic
endometrial mesenchymal stem cells and is known to alleviate endometriosis, while mir-96,
mir-182 and mir-183 all help promote cell proliferation, migration and invasion [21,22], and
mir-15 is a known tumor suppressor [23].

Table 6. Predicted upstream regulators of differentially expressed genes in this study.

Upstream Regulator Molecule Type p-Value of Overlap Target Molecules in Dataset

progesterone chemical—endogenous mammalian 8.44 × 10−10

ADAMDEC1, CFTR, CYP26A1, DKK1,
DPP4, EDN3, GNMT, IGFBP1, LPL,

LTF, NPL, PDZK1IP1, PRSS35, PTGS2,
SFRP4, STAT5A

JAK group 6.32 × 10−9 FBXO32, IFIT1, ISG15, PTGS2,
RSAD2, STAT5A

STAT3 transcription regulator 2.38 × 10−8

CHEK1, CYP26A1, DKK1, DPP4,
HLA-DQA1, IFIT1, IGFBP1, ISG15,

LTF, MAP2, PTGS2, RSAD2,
TFF3, TRPM3

ACOX1 enzyme 2.95 × 10−8 CSTB, CYP26A1, DPP4, GNMT,
HLA-DQA1, IGFBP1, LPL, UCP2

mir-96 microRNA 0.000000319 IFIT1, IGFBP1, ISG15, RSAD2, SAMD9

dexamethasone chemical drug 0.000000765

ACTG2, ANPEP, CHEK1, CHGA,
CYP26A1, DGAT2, EDN3, FBXO32,
GGT1, IFIT1, IGFBP1, ISG15, ITGB5,

LOC102724788/PRODH, LPL, MAP2,
MSTN, OR51E1, PTGS2, RSAD2,

STAT5A, TOP2A, UCP2
mir-183 microRNA 0.000000841 IFIT1, IGFBP1, ISG15, RSAD2, SAMD9

miR-182-5p (and other miRNAs
w/seed UUGGCAA) mature microRNA 0.00000239 IFIT1, IGFBP1, ISG15, RSAD2, SAMD9

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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Table 6. Cont.

Upstream Regulator Molecule Type p-Value of Overlap Target Molecules in Dataset

beta-estradiol chemical—endogenous mammalian 0.0000033

ADAMDEC1, ANPEP, BLOC1S6,
CFTR, CHEK1, CHGA, CSTB, DKK1,
HLA-DQA1, IGFBP1, ISG15, LPL, LTF,
MEDAG, PDZK1IP1, PRSS35, PTGS2,

SFRP4, SLC6A20, SPDEF, STAT5A,
TFF3, TOP2A

miR-199a-5p (and other miRNAs
w/seed CCAGUGU) mature microRNA 0.00000526 ACTG2, CSTB, ISG15, PTGS2, RSAD2

estrogen chemical drug 0.00000567 CFTR, CRABP1, IGFBP1, LPL, LTF,
PTGS2, STAT5A, TOP2A

mir-15 microRNA 0.00000867 CHEK1, IFIT1, ISG15, PTGS2, UCP2

ciprofibrate chemical drug 0.00000957 CSTB, CYP26A1, DPP4, GNMT,
IGFBP1, LPL

GALNT6 Enzyme 0.0000127 ANPEP, DPP4, TFF3

2-methoxyestradiol chemical—endogenous mammalian 0.0000155 ITGB5, LOC102724788/PRODH,
LTF, PTGS2

4. Discussion

Using a uterine transcriptomic dataset that examined the effects of progesterone during
pregnancy in cattle, we used different modelling algorithms to identify core genes playing
significant roles in gene expression networks. In order to create the relevant Bayesian
networks (BNs), constraint-based algorithms (CBAs), score-based algorithms (SBAs) and
hybrid algorithms (HAs) were all investigated. The SBAs identified the most network
connections. The highest total number of connections and directed connections observed
with SBAs was probably due to the complete reconstruction of the network structure and
the determination of causal relationships between genes identified with these algorithms.
Due to their inherent theory, the other two algorithms were not fully capable of determining
the causal relationships between all the genes. Theoretically, the concept of the Markov
Blanket (MB) refers to the parents, children and spouse of a gene [13]. Extraction of an
MB for small-scale networks was one of the network modeling parameters. The aim of
the network extraction process by CBAs was to initially identify the MB. Another concept
underlying BNs is that of the neighborhood size (NS), which refers to the adjacent genes
of a particular gene, plus edges connecting these adjacent nodes, and is very useful in
identifying modules in the network. The MB and NS are likely to indicate, in part, the
different clusters and nodes in the studied gene expression series. Given the low estimated
values for the tabu search (TS) and CBA factors, the probability of the formation of clusters
in the GSE33030 dataset was very low. The branching factor (BF), representing the number
of genes that can be affected by a specific gene, was one of the factors that created clusters in
networks [13]. The RSMAX algorithm from the HAs used a smaller number of conditional
independence tests for structural reconstruction compared to the other algorithms.

One of the ways to compare different reconstructed networks is to use their global
topological parameters, such as betweenness, eccentricity and degree [14]. Network topol-
ogy often shows information about the biological importance of a network. Topological
parameters help to better recognize the consequences of the hub genes in a network. The
degree of connectedness of a gene in a directed graph refers to the number of incoming
and outgoing arcs, namely, in-degree and out-degree, respectively. The degrees of genes
indicate one of the major topological properties used to identify hub nodes in a graph. We
adopted the definition of hub genes as genes with high correlation in the candidate module
and high connectivity, as well as required to meet the absolute values of gene module
membership (>0.80) and gene trait significance (>0.20) [24]. Interestingly, the reconstructed
network obtained by the SBAs showed the highest degree values (7.2 and 7.0 for HC and
TS, respectively) compared to the other two algorithms.

The clustering coefficient is a criterion for measuring the tendency of a graph to form
consecutive clusters and shows a subset of genes that contains many connections to these
genes. The closer the clustering value is to 1, the greater the probability of cluster formation
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in the gene network [14]. Remarkably, the SBA methods reported the highest clustering
coefficient values, showing a relatively high number of co-expressed genes in the network.
On the whole among the six different methods, low values of cluster coefficients showed a
stochastic structure, as previous studies have shown that biological networks do not show
strong tendency to shape clusters [14]. The lowest eccentricity values were obtained in
graphs reconstructed by SBAs (3.5 and 3.5 for HC and TS, respectively), indicating high
connectivity among genes in the reconstructed gene network. In fact, eccentricity shows
the greatest distance between a particular node (‘gene’ in our context) and any other nodes
in the graph [14].

The higher number of commonly identified hub genes compared to the other two
groups was probably due to common and identical reconstructions by the three main
BN algorithmic groups. We recommend using other topological parameters as criteria to
identify transcriptomic hub genes. Additionally, the SEMA3E hub gene was shared among
all three algorithmic groups (HAs, CBAs and SBAs). Research has shown that ISG15 is a
candidate gene for pregnancy recognition or return to the estrus cycle in cows [9]. ISG15 is
also known as a candidate gene for embryo implantation in the uterus. Diacylglycerol O-
acyltransferase 2 (DGAT2) is another hub gene identified with a biological role in pregnancy.
It has eight exons, is found on chromosome 15 and is involved in lipid biosynthesis [25].
This gene encodes one of two enzymes responsible for the catalytic reaction of the final
step in triglyceride synthesis in which diacylglycerol attaches to long-chain fatty acyl-
CoAs with a covalent bond. It has been shown through previous studies that the protein
encoded by this gene is an enzyme involved in the synthesis of milk fat [26] and is known
as a marker and candidate gene in determining the fat content of milk [25]. It was also
reported that triglyceride is another potential energy source for the bovine blastocyst,
and the DGAT2 catalyst is the final stage in its synthesis [27]. Progesterone appears to
stimulate the expression of DGAT2 in the endometrium [7], and defects of intrauterine
growth retardation due to DGAT2 deficiency were observed, indicating that the presence of
this enzyme is necessary for the development of uterine embryos [28]. By regulating the
expression of DGAT2, progesterone stimulates blastocyst growth in the pre-implantation
stage in the uterus [29]. Progesterone injection into the uterus increased the expression of
DGAT2, which in turn triggered triglyceride synthesis reactions and the transfer of glucose
in the uterus [3]. Increasing the expression of DGAT2 through progesterone led to the
secretion of histotroph via the endometrium. DGAT2 was recognized as a hub gene in our
CBA analysis. However, other identified hub genes with no clear biological roles may be
involved in metabolic or immune processes. The results in Table 3 show that identification
of hub genes by each algorithmic category was partly affected by the reconstructed graph,
as well as by the implemented topological parameters.

A useful tool for investigating reproductive problems in livestock could be to examine
the expression of these core network genes in different tissues. In this way, general hubs
and tissue-specific hubs can be identified. In order to find general hub genes ranked high
in a set of tissues, the rank product method could be used [30]. We believe that MB can be
used to mine the whole network for ranked genes by the number of neighbors in the gene
network. A gene’s rank product is the product of its ranks from each network. For locating
hubs specific to a group of tissues, rank product could be used to rank hubs in both the
target group of tissues and all other tissues, separately.

The hub genes derived from CBA methodology were involved in extracellular and
alternative splicing pathways, with the annotation of hub genes from SBA analysis showing
genes involved in extracellular pathways, secretion, glycerolipid metabolism and the
formation of disulfide bonds [31]. The annotation of the hub genes derived from the HA
analysis also included genes involved in extracellular pathways, alternative splicing and
the metabolism of arginine and proline [31]. Based on the original GSE33030 dataset, high
concentrations of progesterone secretion during the period of 7 to 16 days of pregnancy
were conducive for embryo implantation in the uterus, indicating that during this stage, the
pathways and genes relating to the production of hormones, enzymes and molecules related
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to the preservation and continuation of pregnancy were heavily activated. The production
of growth hormones, binding molecules, chemokines and cytokines ensures the uterus
is ready for embryo implantation [32,33]. The results of the hub gene annotation in this
study also indicated that alternative splicing and extracellular pathways are important. The
highest numbers of identified hub genes (7 to 8) that were identified by all the algorithms
were in these pathways. Therefore, the pathways for the synthesis of hormones and
enzymes were essential for preparing the uterus for implantation during days 5 to 13 of
pregnancy. In cell biology, the extracellular space refers to gene products that exit from
the plasmid membrane and flow through the intercellular fluids. Extracellular compounds
include metabolites, ions, proteins and products such as RNA, DNA, lipids and microbial
products, which affect endometrium function. Alternative splicing also plays an important
role in the diversity of proteins derived from a particular transcript.

In the SBA analysis, the pathways for protease binding, disulfide bonds and glyc-
erolipid metabolism were also significant. Isopeptide bonds also play a role in the binding
of two amino acids forming polypeptides. Disulfide bonds interconnect between polypep-
tide units in proteins and form the tertiary structure of proteins, whereas the “protease
bonds” category of genes are involved in protein decomposition. The metabolism of glycol-
ipids is also essential for the synthesis of progesterone steroid hormones and other genes
(DGAT2) in preparing the uterus for implantation (days 5 to 13). The hub gene annotation
results showed that genes identified using SBAs and HAs were enriched for binding path-
ways (disulfide bands, isopeptide and protease), the production of enzymes and protein
products (extracellular space and alternative splicing) and the synthesis of progesterone
steroid hormone (glycerolipid metabolism). Therefore, considering the hub gene annotation
results led to a more accurate and relevant prediction of the genes involved in the pathways
of enzyme synthesis, the binding of polypeptide units and the synthesis of progesterone-
related hormone during pregnancy establishment. In comparison to CBAs and HAs, the
SBA methods found genes more related to the experimental treatment (in this case, the
progesterone effect from days 5 to 16 of pregnancy in the GSE33030 microarray study).
However, it is important to investigate the relevant biological and physiological functions
of genes identified by all three algorithmic groups. These results classified hub genes
based on their biological processes, molecular functions, cellular components, pathways
and protein classes for further investigation. It was shown that models of gene regulation
differed depending on the biological state of dairy cattle. Therefore, the importance of hub
genes should be determined within the relevant biological context.

Cellular processes involve complicated cascades of biochemical reactions and signaling
pathways. For correct cell function, these processes are required to be tightly controlled.
Dysregulation of any element of these pathways can lead to a vast array of pathologies. By
elevating progesterone during days 7 to 12 of estrus or pregnancy, a series of processes to
synthesize and secrete progesterone for embryo implantation are activated, leading to the
enriched gene expression of metabolic processes. During preimplantation, endometrial
gene expression is regulated by the secretion of progesterone and interferon tau, and
patterns of endometrium gene expression may be regulated only by progesterone and
interferon, or by both [34]. Embryo implantation is also seen as an inflammatory immune
response [6]. Interferon tau is a type I interferon that plays an antiviral, anticoagulant and
immune-stimulating role. Interferon tau induces the expression of a number of genes in
the endometrium that are essential for the transfer of food to the embryo or increase the
expression of genes necessary to prepare the endometrium for implantation and continued
pregnancy. Most of the hub genes identified from the CBA and HA analyses participated in
immune system processes.

The results of this study were based on the use of bovine Affymetrix microarrays. The
biological validation of the identified genes may be influenced by data type with respect to
using microarrays versus RNA-Seq [6]. Although a limitation of this study was the lack
of another independent dataset in the database for validation of the hub genes, the goal
of comparing three common algorithms for the detection of hub genes shared between
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learned structures of the algorithms was achieved. RNA-Seq allows full sequencing of
the whole transcriptome, while microarrays only profile predefined transcripts and genes
through hybridization. The ability of RNA-Seq to identify more differentially modulated
transcripts of biological relevance, splice variants and non-coding transcripts, such as
microRNAs, long non-coding RNAs and pseudogenes, makes it superior to microarrays.
This difference has additional implications for mechanistic investigations or biomarker
discovery [6] making RNA-Seq data more useful with higher predictive power [6].

5. Conclusions

In this study, we compared the ability of six different BN algorithms from three
different categories (CBAs, SBAs and HAs) to identify hub genes critical to gene expression
networks activated in response to progesterone in the bovine uterus. We observed many
common hub genes identified between the CBAs and HAs, while it appeared that SBA
methods led to more accurate and relevant predictions of core genes. The results of this
study revealed that the identification of hub genes was affected by the type of network
reconstruction and by the subsequently used topological parameters. ISG15 and DGAT2 are
two identified genes known to have roles during pregnancy. Other hub genes are associated
with biological processes such as amino acid metabolism, hormonal signaling pathways
and the immune system. Our analysis revealed a role for miRNAs in the regulation of
this system. The biological and physiological roles (enzymatic and hormonal effects) of
unannotated identified hub genes should be functionally validated by further studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani12101305/s1, Figure S1: Flow diagram of the proposed method. GEO—gene expression
omnibus; CBA—constraint-based algorithms; SBA—score-based algorithms; HA—hybrid algorithms;
GS—grow shrink; MMPC—Max-Min parent children; HC—hill climbing; TS—Tabu search; MMHC—
Max-Min hill climbing; RSMAX—restricted maximum., Figure S2: Protein class of identified hub
genes from (a) CBA, (b) SBA and (c) HA algorithms. CBA—constraint-based algorithms; SBA—score-
based algorithms; HA—hybrid algorithms., Table S1: A literature review on bovine transcriptomic
modeling using other methodologies.
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