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Simple Summary: The use of cross-sectional imaging techniques to examine the cause of death
and health status of deceased animals is increasing in both veterinary and wildlife conservation
programs, including species of whales and dolphins. Lung disease is common in harbor porpoises
(Phocoena phocoena), a small whale species that regularly washes up on the coast in North Sea-
bordering countries. This study aimed to describe lung changes visible in computed tomographic
(CT) images of recently deceased harbor porpoises before pathological dissection was performed,
including comparison of these two examination methods. Despite frequently visible signs of body
decomposition, several lung abnormalities (collapsed lung, fluid in the airways, lung mineralization)
were more often seen on the CT images. In general, lung changes could be described in more detail
compared to gross dissection. CT images of lungs of recently deceased harbor porpoises can therefore
be used to guide gross dissection, leading to more specific findings and potentially a more complete
understanding of the circumstances leading to the death of the porpoise, assessment of the population,
and ultimately, ecosystem health.

Abstract: The application of whole-body post-mortem computed tomography (PMCT) in veterinary
and wildlife post-mortem research programs is advancing. A high incidence of pulmonary pathology
is reported in the harbor porpoise (Phocoena phocoena). In this study, the value of PMCT focused on
pulmonary assessment is evaluated. The objectives of this study were to describe pulmonary changes
as well as autolytic features detected by PMCT examination and to compare those findings with
conventional necropsy. Retrospective evaluation of whole-body PMCT images of 46 relatively fresh
harbor porpoises and corresponding conventional necropsy reports was carried out, with a special
focus on the respiratory tract. Common pulmonary PMCT findings included: moderate (24/46) to
severe (19/46) increased pulmonary soft tissue attenuation, severe parasite burden (17/46), bronchial
wall thickening (30/46), and mild autolysis (26/46). Compared to conventional necropsy, PMCT
more frequently identified pneumothorax (5/46 vs. none), tracheal content (26/46 vs. 7/46), and
macroscopic pulmonary mineralization (23/46 vs. 11/46), and provided more information of the
distribution of pulmonary changes. These results indicate that PMCT adds information on pulmonary
assessment and is a promising complementary technique for necropsy, despite the frequent presence
of mild autolytic features.

Keywords: cetacean; virtopsy; necropsy; pulmonary pathology; decomposition

1. Introduction

Wildlife mortality events represent important opportunities in species and ecosystem
health assessment; therefore, cetaceans are considered sentinel in monitoring and conser-
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vation of the marine ecosystem [1–4]. A high stranding frequency of harbor porpoises
(Phocoena phocoena) is documented in countries bordering the North Sea, with hundreds
of harbor porpoises washing up on the Dutch coast every year [5,6]. Stranding networks
including post-mortem evaluation programs are developed to investigate mortality causes,
general health status, and to identify and evaluate the impact of emerging (anthropogenic)
threats on the porpoise population and ecosystem health [2,3,7].

As access to imaging facilities increases, application of whole-body cross-sectional
imaging techniques in veterinary and wildlife post-mortem programs, otherwise referred
to as virtopsy, is advancing [4,8–12]. Therefore, specialized knowledge to interpret these
imaging studies arises [4,8,13,14].

Documented advantages of post-mortem cross-sectional imaging techniques in both
human and veterinary literature include the non-invasive collection of volumetric datasets of
post-mortem findings, with two- and three-dimensional reconstruction possibilities, providing
patho-anatomic information with excellent spatial and contrast resolution [15,16]. Addition-
ally, increased operating ease with data exchange for third opinion-seeking purposes
and reproducibility, zoonotic risk reduction, and specific guidance during the following
conventional necropsy are some of the listed advantages [8,17]. In the field of human
forensics, virtopsy in the form of post-mortem computed tomography (PMCT) has proven
especially valuable in trauma cases as a fast-imaging tool for identifying and document-
ing the presence and exact locations of foreign material, gaseous changes, and skeletal
alterations [16,17].

PMCT evaluation has successfully been used in the detailed description of anatomical
skeletal features of the harbor porpoise vertebral column and skeletal and ear pathology
in several cases [18–20]. However, pulmonary changes have not been systematically eval-
uated. Multiple studies report a high incidence of pulmonary pathology in the harbor
porpoise [21–26]. Literature on cetacean pulmonary PMCT is limited to case reports,
with population studies currently lacking [4,11,12,27]. The aim of this study was to com-
pare pulmonary changes detected retrospectively by PMCT in harbor porpoises with the
complementary necropsy reports, including comparing the degree and effect of carcass
decomposition. It was hypothesized that the effects of carcass decomposition will be visible
on PMCT images but will only partially influence pulmonary evaluation, and therefore can
become a complementary technique for necropsy.

2. Materials and Methods
2.1. Data Collection

Carcasses of stranded harbor porpoises in The Netherlands were retrieved between
November 2016 and August 2018, in collaboration with the National Stranding Net-
work, and submitted for post-mortem examination conducted at the Faculty of Veterinary
Medicine of Utrecht University. Only relatively fresh (decomposition carcass condition
(DCC) score 1–3) and complete carcasses were considered eligible and submitted for whole-
body CT examination. Pulmonary PMCT findings were not specifically communicated
with the pathologist prior to the necropsy, enabling a blinded protocol. Subsequently, con-
ventional necropsy was performed, including histopathological sampling and assessment
following international standardized procedures [28].

A whole-body PMCT scan of each porpoise was performed in ventral recumbency
by a 64-slice gliding gantry CT scanner (Somatom Definition AS, Siemens AG, München,
Germany). Acquisition parameters included: 0.6 mm detector width, 120 kVp, reference
370 mAs, 0.5 s rotation speed, 0.9 pitch, and matrix size 512 × 512. The field of view (FOV)
varied in correspondence with the size of the harbor porpoise. Reconstruction parameters
included 3 mm slice thickness, 1.5 mm increment, and the soft tissue algorithm (B30f medium
smooth) with a window width/window level of 300/50. Additionally, a reconstruction
using a bone algorithm (B60F, 1 mm slice thickness, 0.7 mm increment) was performed, that
was viewed in two windows to maximize the evaluation of skeletal (window width/level
3000/600) and pulmonary (window width/level 1250/–500) structures.
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Macroscopic evaluation of the airways on necropsy was routinely performed in the
following order: Position of the diaphragm (assessment of presence of pneumothorax) after
opening the peritoneal cavity prior to opening the thoracic cavity. Location and evaluation
of tracheal content after opening of the thoracic cavity. Assessment of the pleural cavity
(adhesions, fluid) whilst removing heart and lungs. Ex vivo, the lungs were evaluated for
asymmetry in size, color, and texture. The presence and severity of parasite burden was
graded as previously established by ten Doeschate et al. [26]. Lung lesions were evaluated
on the following aspects: size, location, color, texture, shape, margin, and demarcation.

Histopathological sampling of a minimum of two pieces of each lung, one from the
hilus (including part of a major bronchial tree) and one near the surface, including pleura,
was performed.

2.2. Data Evaluation

All PMCT studies were retrospectively evaluated by a veterinary radiology (European
College of Veterinary Diagnostic Imaging, ECVDI) resident (N.K.) under the supervision
and agreement of a board-certified (ECVDI) diplomate (S.V.). A Digital Imaging and Com-
munication in Medicine (DICOM) format was used to review the images in the previously
mentioned window levels, including the use of the multiple planar reconstruction (MPR)
tool in the viewer of the Picture Archiving and Communication System (PACS, Enterprise
Imaging, Diagnostic Desktop 8.1.2, Agfa Healthcare, Mortsel, Belgium). PMCT images of
the lungs were evaluated and scored on the parameters, as described in Table 1.

Table 1. PMCT pulmonary evaluation.

PMCT Parameter Score

PMCT autolysis score 0 absent, 1 mild, 2 moderate, 3 severe
Pneumothorax 0 absent, 1 present
Tracheobronchial
Intraluminal tracheobronchial tubular structures 0 none, 1 mild, 2 moderate, 3 severe
Bronchial wall thickening 0 absent, 1 present
Tracheobronchial fluid 0 absent, 1 present
Pulmonary attenuation
Severity of pulmonary soft tissue attenuation 0 absent, 1 mild, 2 moderate, 3 severe
Dorsoventral distribution pulmonary soft tissue attenuation 0 diffuse, 1 dorsal, 2 ventral
Left/right distribution pulmonary soft tissue attenuation 0 bilateral, 1 left, 2 right
Pulmonary parenchymal nodules 0 absent, 1 present
Pulmonary mineralization 0 absent, 1 present
Pulmonary air entrapment 0 absent, 1 present

2.3. Carcass Condition

A PMCT scoring system for evaluation of the degree of carcass decomposition associ-
ated with lung autolysis was developed with a score ranging from 0 to 3 (Figure 1). This
grading was based on several features, including the amount of soft tissue attenuation
present in the pulmonary parenchyma, with less than 25% classified as mild, 25–75% as
moderate, and over 75% as severe. Presence of retraction of the lung margins with presence
of gas in the pleural space in the absence of thoracic wall trauma was considered a feature
of moderate autolysis. Gas attenuation present in the vertebral canal and other visible
vascular and soft tissues structures was considered a feature of severe autolysis. Presence
of pneumothorax was also separately scored as absent or present.
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Figure 1. Examples of autolysis score on PMCT. From left to right: (A) mild: PSTA (pulmonary soft 
tissue attenuation) present in less than 25% of the lung parenchyma, (B) moderate: retraction of the 
lung margins with presence of gas in the pleural space and 25–70% of PSTA noted, and (C) severe: 
gas attenuation presence in vascular structures and other visible soft tissue structures, over 75% of 
PSTA present. 

2.4. Tracheobronchial Changes 
PMCT evaluation of the presence and degree of tracheobronchial intraluminal tubu-

lar structures, assessed as an overall average reflecting left- and right-sided lungs, was 
scored as: none, mild: few parasites present, filling less than 25% of the bronchial lumen, 
moderate: multiple parasites present, filling 50–75% of the bronchial lumen, and severe: 
parasites present up to the level of the trachea, almost complete occlusion of bronchial 
lumen (Figure 2). Presence of tracheobronchial fluid was noted as absent or present. Bron-
chial wall thickening was scored as absent or present 

 
Figure 2. Intraluminal tracheobronchial tubular structures’ severity score on PMCT. (A) Absent, (B) 
mild: few parasites present, filling less than 25% of the bronchial lumen, (C) moderate: filling 50–
75% of the bronchial lumen, and (D) severe: parasites present up to the level of the trachea, almost 
complete occlusion of bronchial lumen. 

Figure 1. Examples of autolysis score on PMCT. From left to right: (A) mild: PSTA (pulmonary soft
tissue attenuation) present in less than 25% of the lung parenchyma, (B) moderate: retraction of the
lung margins with presence of gas in the pleural space and 25–70% of PSTA noted, and (C) severe:
gas attenuation presence in vascular structures and other visible soft tissue structures, over 75% of
PSTA present.

2.4. Tracheobronchial Changes

PMCT evaluation of the presence and degree of tracheobronchial intraluminal tubular
structures, assessed as an overall average reflecting left- and right-sided lungs, was scored
as: none, mild: few parasites present, filling less than 25% of the bronchial lumen, moderate:
multiple parasites present, filling 50–75% of the bronchial lumen, and severe: parasites
present up to the level of the trachea, almost complete occlusion of bronchial lumen
(Figure 2). Presence of tracheobronchial fluid was noted as absent or present. Bronchial
wall thickening was scored as absent or present.
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Figure 2. Intraluminal tracheobronchial tubular structures’ severity score on PMCT. (A) Absent,
(B) mild: few parasites present, filling less than 25% of the bronchial lumen, (C) moderate: filling
50–75% of the bronchial lumen, and (D) severe: parasites present up to the level of the trachea, almost
complete occlusion of bronchial lumen.
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2.5. Pulmonary Parenchymal Attenuation Changes

Severity categorization of pulmonary soft tissue attenuation (PSTA), assessed as an
average reflecting both lungs, was scored as: absence of increased PSTA, mild: minimal
focal, heterogeneous PSTA affecting <25% of the lungs, moderate: diffuse, heterogeneous,
patchy PSTA, including focal homogeneous PSTA affecting 25–75% of the lung parenchyma,
and severe: diffuse, homogeneous PSTA, affecting >75% of the lung parenchyma (Figure 3).
Thereafter, distribution of PSTA changes of dorsal–ventral and left–right were noted. Pres-
ence of pulmonary parenchymal nodules, mineralization, and air entrapment was evaluated
and scored as absent or present.
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Figure 3. Pulmonary soft tissue attenuation score on PMCT. Clockwise presentation of: (A) mild:
minimal focal, heterogeneous PSTA affecting <30% of the lungs, (B,C) moderate: diffuse, heteroge-
neous PSTA, including focal homogeneous PSTA affecting 30–75% of the lung parenchyma, and (D)
severe: diffuse, homogeneous PSTA, affecting >75% of the lung parenchyma.

The necropsy reports were retrospectively assessed and divided into the following
parameters presented in Table 2.
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Table 2. Conventional necropsy report evaluation.

Parameter Score

Decomposition carcass condition (DCC) 1–3
Pleural space content 0 absent, 1 present

Tracheobronchial
Tracheal content 0 absent, 1 edema, 2 foam
Tracheobronchial helminths 0 none, 1 mild, 2 moderate, 3 severe

Pulmonary parenchyma
Pulmonary edema 0 absent, 1 present
Asymmetry lung volume 0 absent, 1 present

Distribution pattern pulmonary lesions 0 not mentioned, 1 diffuse, 2 cranioventral,
3 mid-dorsal

Pulmonary nodules 0 absent, 1 present
Pulmonary mineralization macroscopically 0 absent, 1 present
Pulmonary mineralization microscopically 0 absent, 1 present
Histologic tissue reactions 0 none mentioned, 1 fibrosis, 2 emphysema

3. Results
3.1. Subjects

A total of 51 harbor porpoises underwent PMCT and conventional necropsy, 5 of
which were too autolyzed on histologic evaluation of the lungs to include in the study,
leaving 46 cases to analyze. Of these 46 animals, 20 were female and 26 were male, and
they were of mixed age (juvenile and adult, no neonates).

3.2. Carcass Condition

On PMCT evaluation, all carcasses were considered to have signs of autolysis, with
overrepresentation of a mild degree of autolysis (26/46), followed by of a moderate amount
of autolysis (16/46). Only 9 out of 46 carcasses were considered to have signs of severe
autolysis. Decomposition carcass condition scored during conventional necropsy revealed
the majority of the carcasses (24/46) to be within the DCC 2 category, followed by 16/46 in
the DCC 1 category and 6/46 in DCC 3.

Pneumothorax was identified in 5 carcasses with PMCT, presenting as uni- or bi-lateral
gas attenuation in the pleural cavity and variable lung margin retraction with associated
volume loss of the lung lobes. Pneumothorax was, however, not noted upon gross post-
mortem assessment.

3.3. Tracheobronchial Changes

Tracheal fluid was commonly identified in 26/46 porpoises on PMCT images. Tracheal
edema (2/46) and foam (5/46) was less frequently described in necropsy reports.

Tracheobronchial presence of parasites was often visible on PMCT (32/46) and re-
ported during pathologic examination (36/46). Overrepresentation (17/46) of severe
parasite burden was noted on PMCT, and a moderate degree most commonly (18/46)
observed during necropsy. A mild parasite burden was the least commonly reported in
both PMCT (4/46) and gross post-mortem examination (4/46).

Bronchial wall thickening was found on PMCT evaluation in 30/46 animals. All
30 animals presented with tracheobronchial parasites on PMCT, with 17/30 in the severe
and 11/30 in the moderate group of PMCT parasite burden. Bronchial wall thickening was
not evaluated during gross necropsy examination.

3.4. Pulmonary Parenchymal Attenuation Changes

A moderate increase in pulmonary soft tissue attenuation was the most common
visible pattern (24/46) on PMCT, followed by a severe PSTA increase (19/46). A mild
increase in PSTA was incidentally noted in 3/46 cases. A completely normal presentation
of the pulmonary parenchyma was not identified.
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Different patterns of increased PSTA distribution were recognized in the moderate and
severe groups on PMCT evaluation (Figure 3). This included a pattern of diffuse and sym-
metrically distributed, inhomogeneous patchy, ill-defined, rounded peribronchiolar areas
of ground glass attenuation (Figure 3B). A second pattern recognized could be described
as asymmetrically distributed, medium- to large-sized, amorphously shaped, homoge-
neous soft tissue attenuating areas throughout the pulmonary parenchyma (Figure 3C). A
third pattern seen within the severe group was symmetric and homogeneous PSTA of the
complete pulmonary parenchyma (Figure 3C).

During PMCT evaluation, PSTA was perceived as asymmetric in 20/46 of the cases,
with equal numbers of predominantly left- (10/46) or right-sided (10/46) distribution. Inci-
dentally (2/46), a mainly ventral distribution of increased attenuation was noted, though
a primarily dorsal distribution was never seen. In some cases, asymmetric distribution
was clearly related to previous positioning of the animal, with flattening of the associated
thoracic wall (Figure 4).
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Figure 4. Example of an asymmetric gradient of pulmonary soft tissue attenuation found on PMCT,
with signs of associated thoracic wall flattening on the left side of the image, likely consistent with
positional-dependent hypostatic edema.

In reviewed pathology reports, asymmetry of lung size was infrequently mentioned
in 6/46 of the cases. Distribution of lung changes was often not mentioned (30/46), though
in 16/46 cases it was described as either bilateral or diffusely present. Pulmonary edema
was frequently mentioned (38/46) in either gross necropsy or histology reports.

Nodular pulmonary changes were found in 22/46 animals on PMCT evaluation
and mentioned in 11/46 necropsy reports. Pulmonary mineralization was identified in
23/46 animals on PMCT images. Different patterns of mineralization were recognized on
PMCT (Figure 5), including singular medium to large (5–15 mm) irregular shaped mineral
attenuating areas, often associated with (nodular) consolidated regions (Figure 5A). More
often, multifocal distributed pinpoint (±1–5 mm) mineral attenuating foci were visible
throughout the lung parenchyma (Figure 5B). During macroscopic assessment, pulmonary
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mineralization was detected in 11/46 animals. During histologic examination of the lung
tissue, mineral deposits, mostly noted in the bronchial walls, were reported in 28/46 of
the cases.
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Figure 5. Two PMCT patterns of pulmonary mineralization. (A) Singular medium to large irregular
shaped mineral attenuating areas, associated with a (nodular) consolidated region. (B) Multifocal
distributed pinpoint mineral attenuating foci throughout the lung parenchyma.

PMCT evaluation commonly (33/46) showed pulmonary air entrapment (Figure 6),
mostly seen in the periphery of the lung field. Presentation varied from medium to large,
thin-walled, peripheral bullous lesions, often with signs of bronchiectasis and bronchial
wall thickening (Figure 6A). A second pattern with diffusely distributed small, rounded
gas attenuations throughout the pulmonary parenchyma, including intravascular gas
attenuation (Figure 6B) commonly in combination with bronchial changes, was identified.
Thirdly, a more mosaic pattern with peripheral, varying in size, relatively well-defined
areas of decreased pulmonary parenchymal attenuation was observed (Figure 6C).
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Mild 3/46 (7)  - 

Figure 6. Patterns of pulmonary air entrapment on PMCT. From left to right: (A) Peripheral bullous
bronchiectasis, (B) diffusely distributed small, rounded gas attenuations throughout the pulmonary
parenchyma, including the vasculature, and (C) mosaic pattern with peripheral areas of decreased
parenchymal attenuation.

In 12/46 of the cases, fibrosis was reported, and in 13/46, emphysema, on histologic
evaluation of lung tissue.

A summary of the results of PMCT image evaluation and conventional necropsy scores
is reported in Table 3.
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Table 3. PMCT and conventional necropsy evaluation score results.

PMCT Number (%) Conventional Necropsy Number (%)

Autolysis Score DCC
None 0/46 (0) -
Mild 26/46 (57) 1 16/46 (35)
Moderate 16/46 (35) 2 24/46 (52)
Severe 4/46 (9) 3 6/46 (13)
Pneumothorax 5/46 (11) Pleural content 0/46 (0)

Tracheobronchial changes
Tracheobronchial tubular structures Helminthiasis
Absent 14/46 (30) Absent 10/46 (22)
Mild 4/46 (9) Mild 4/46 (9)
Moderate 11/46 (24) Moderate 18/46 (40)
Severe 17/46 (37) Severe 14/46 (30)
Bronchial wall thickening 30/46 (65) -
Tracheobronchial content Tracheal content
None 20/46 (43) None 39/46 (85)
Fluid 26/46 (57) Edema 2/46(4)

Foam 5/46 (11)

Pulmonary parenchyma
PSTA severity Pulmonary edema 38/46 (83)
None 0/46 (0) -
Mild 3/46 (7) -
Moderate 24/46 (52) -
Severe 19/46 (41) -

Asymmetry lung volume 6/46 (13)

Distribution lung changes
Dorsal 0/46 (0) -
Ventral 2/46 (4) -
Left 10/46 (22) -
Right 10/46 (22) -
Bilateral 26/46 (56) Bilateral 16/46 (35)
Parenchymal nodules 22/46 (48) Parenchymal nodules 11/46 (24)
Mineralization 23/46 (50) Gross mineralization 11/46 (24)
Pulmonary air entrapment 33/46 (72) - -

Histology
- Histologic mineralization 28/46 (61)
- Histologic emphysema 13/46 (28)
- Histologic fibrosis 12/46 (26)

4. Discussion

PMCT presents a valid method for thoracic virtopsy in harbor porpoises. As hypoth-
esized, increased pulmonary soft tissue attenuation and features of decomposition were
often visible on PMCT. Despite the presence of these changes, different patterns could still
be identified and described. In comparison with conventional necropsy findings, this study
indicated the complementary capability of PMCT, in particular to spatially describe and
document pulmonary changes, and detect pulmonary mineralization, pneumothorax, and
tracheal content.

Thus far, this is the first study to describe PMCT pulmonary findings in retrospect,
including PMCT carcass decomposing features, in a larger number of harbor porpoises.
Despite commonly reported pulmonary disease [22–26,29], only few studies have described
PMCT cetacean pulmonary imaging features [4,11,12,27], which are mainly singular case
reports of different delphinid species.

Both carcass condition scores revealed grossly similar subcategorization of carcass
condition with overrepresentation of the group with mild signs of autolysis on PMCT
(26/46) and the relatively fresh condition (DCC2) on gross pathology evaluation (24/46).



Animals 2022, 12, 1454 10 of 14

Considering the mild decomposition scores and the presence of increased lung attenuation
in all cases, it is likely that internal pulmonary livores (hemoconcentration and congestion
in position-dependent lung vasculature and parenchyma) is also one of the first post-
mortem changes to develop in the harbor porpoise, as stated by Levy et al. [30] in human
PMCT studies. This statement is further supported by the frequently identified presence
(22/46) of a gradient distribution of increased pulmonary attenuation on PMCT evaluation,
sometimes clearly related to the (previous) position of the carcass, as revealed by unilateral
flattening of the thoracic wall (Figure 4). It needs to be kept in mind that stranded harbor
porpoises are mostly found in lateral recumbency, and therefore a lateralized left or right
distribution is more commonly found than a dorsal or ventral distribution.

A varying degree of pneumothorax was identified on PMCT evaluation in 5/46 car-
casses, that was not reported on conventional necropsy, likely due to the escape of gas the
moment the thoracic cavity is opened. This proposes PMCT examination to be superior
to conventional necropsy in detecting pneumothorax as has been documented in human
literature by Thali et al. [17].

A more frequent identification of tracheal content was seen on PMCT evaluation in
26/46 animals, compared to 7/46 animals in conventional necropsy, and could potentially
add more information in the process of post-mortem examination. The increased detection
rate of tracheal content on PMCT could be explained by gradual dissolvement and efflux
of tracheal foam and fluid, partly due to change of position and with time passing between
the PMCT and necropsy. These would be interesting parameters to include in a future
study design. Tracheobronchial fluid has often been documented in human literature in
non-drowning cases and is thought to be formed in the process of decomposition [31].
However, inconsistent reporting of tracheobronchial foam and fluid aspiration as a sign
of underwater entrapment and drowning can be found in both human and veterinary
forensic literature [32,33]. As in cetacean species, a so-called ‘dry’ asphyxia-induced way
of drowning (with vagal-induced laryngospasm, cardiac arrest, and ultimately, cerebral
hypoxia leading to death) is reported [29,34–36], and the tracheal fluid or foam content
may be present secondary to pulmonary edema.

Bronchial wall thickening (30/46) was one of the most reported findings on PMCT
evaluation in the current study and was always seen in combination with pulmonary
helminthiasis. Tracheobronchial helminths would likely act as an irritant on the respiratory
epithelium, initiating an inflammatory reaction and mineralization of the wall tissue layers
in a chronic phase, resulting in the visualized thickening of the walls. As bronchial wall
thickness is more difficult to assess on conventional necropsy, this represents an important,
potentially more quantitative evaluation of the lungs on PMCT imaging. Another potential
sign of bronchial disease in this study was thought to be represented by the high presence
of pulmonary air entrapment on PMCT images (33/46). These hypoattenuating pulmonary
changes represented in different patterns (Figure 6), with medium to large, mainly periph-
erally located, thin-walled bullous-like lesions in the direction of the bronchi (Figure 6A),
likely representing what has been described as saccular bronchiectasis [37]. In theory,
pulmonary air entrapment, including intravascular gas attenuations, could also represent
putrefaction gases [16,30,38], bullous emphysematous changes (also called honeycombing
pattern), secondary chronic obstructive and/or fibrotic pulmonary disease [37,39], subpleu-
ral emphysema, or decompression of supersaturated tissues secondary to the process of
drowning/asphyxia at depth [27,32,36].

In this study, all subjects showed pulmonary changes on PMCT imaging, with the most
common findings being a moderately (24/46) and severely (19/46) increased PSTA. Main
CT differentials of increased PSTA include bronchopneumonia, contusion/hemorrhage,
atelectasis, edema, and in case of PMCT imaging, also post-mortem hypostasis leading
into edema [30,37,40,41]. Pulmonary edema was one of the most reported findings on
conventional necropsy (38/46). Differentiating lung pathology with PMCT by means of
pulmonary patterns has not been described in harbor porpoises and only infrequently
in other cetacean species [4,27]. Several studies in the field of human forensic imaging
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identified distinct PMCT pulmonary patterns and have tried to correlate these to specific
pulmonary pathology confirmed with conventional autopsy [16,17,38,40–46]. These studies
repeatedly reported autopsy-confirmed PMCT ‘drowning’ lung changes represented by
a mosaic pattern of centrolobular distributed, patchy to nodular ground glass opacities,
although no consistent correlation between PMCT lung patterns and autopsy-confirmed
drowning could be made. In the current study, a similar centrolobular patchy PSTA pattern
has been identified in several harbor porpoises (Figure 3B) and could be a potential addi-
tional criterium in an equivalent diagnosis of drowning or bycaught [29,32,36]. Nonetheless,
as no consistent relation is established in the literature, evaluation of the complete constella-
tion of features using both conventional necropsy and PMCT remains important to lead to
an ultimate diagnosis. The main challenge in pulmonary PMCT imaging interpretation is
to differentiate non-specific post-mortem hypostasis (known as internal livores) and distin-
guish these from specific signs that may represent pathological changes [16,38,41]. Future
prospective design studies could be helpful in attempting to establish a more consistent
relation between specific PMCT lung patterns and ultimate diagnosis on pathology.

Pulmonary nodular changes were more commonly reported on PMCT evaluation
(22/46), compared to necropsy (11/46), as well as an increased visualization of pulmonary
mineralization on PMCT (23/46), compared to macroscopic evaluation during necropsy
(11/46). This is likely related to the increased spatial evaluating abilities of PMCT of the
lungs in situ, resulting in a more specific lesion distribution description, which then can be
followed by guided sampling methods during necropsy. However, PMCT evaluation of
pulmonary nodular changes in the current study was sometimes found to be hampered in
cases with a severe, diffuse increase in pulmonary attenuation, and represents a pitfall of
PMCT pulmonary evaluation of severely affected or decomposed lungs (Figure 3D). PMCT
scanning with an endotracheal tube in place and maintaining a constant positive-pressure
ventilation during acquisition could potentially partially overcome this problem in more
fresh cadavers [4].

5. Conclusions

In conclusion, this paper described the advantages of pulmonary PMCT in 46 harbor
porpoises. Due to its cross-sectional nature and reconstruction possibilities, an overall
higher detection rate of pneumothorax, tracheal fluid, macroscopic pulmonary mineral-
ization, severity of helminth infestation, and characterization of bronchial changes was
found on PMCT evaluation. Based on these findings, application of PMCT in harbor
porpoises is considered a valuable asset, complementary to necropsy. Incorporation into a
standardized post-mortem examination protocol is recommended. The small size and low
bodyweight of the harbor porpoise in particular makes PMCT a relatively uncomplicated
and accessible post-mortem examination method to perform, compared to other larger
and heavier cetacean species. Despite the overall high degree of pulmonary soft tissue
attenuating changes and decomposing features present, several imaging lung patterns
were found, similar to pulmonary patterns described in human forensic cross-sectional
imaging literature. It is important to emphasize that, in line with previous literature, none
of these described patterns were found pathognomic for certain pathology. Potential further
improvement of pulmonary evaluation on PMCT could be reached by positive-pressure
ventilation during image acquisition, with further quantification of parameters such as
bronchial wall thickness. Imaging relatively fresh cadavers would be highly recommended
as results in this study showed mild to moderate signs of autolysis in an early phase,
despite mild external decomposition features (low DCC scores). Access to an onsite CT
scanner would be optimal to prevent development of early signs of autolysis. Lungs of
frozen/thawed specimens would therefore likely display too many autolytic artefacts on
PMCT to appropriately evaluate the pulmonary parenchyma. As the current study had a
retrospective design, prospective studies using pulmonary positive-pressure ventilation
PMCT in combination with conventional necropsy and (guided) tissue sampling are needed
to further characterize lung changes in the harbor porpoise species.
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