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Simple Summary: The interest in wildlife research has increased in the last decades as more scientists
work within a One Health framework that regards human, livestock and wildlife health as connected
entities. To minimise the impact of research on wildlife, collecting samples with as little disturbance
of the animals as possible is important. In our review, we assess the use of so-called non-invasive
sampling and summarise which samples can be used successfully when carrying out research on
wildlife diseases and health status. Our results show that interest in minimally invasive sampling has
steadily increased since the 2010s. Topics able to employ these methods include disease research, but
also stress and other hormone assessments, pollution studies, and dietary studies. At the moment,
such methods are mainly used to collect samples from land mammals, however, they can also be
used in a wide range of other animals. Ever more capable analytical methods will allow for an even
wider use of such “animal-friendly” sampling methods.

Abstract: In the last decades, wildlife diseases and the health status of animal populations have
gained increasing attention from the scientific community as part of a One Health framework.
Furthermore, the need for non-invasive sampling methods with a minimal impact on wildlife has
become paramount in complying with modern ethical standards and regulations, and to collect
high-quality and unbiased data. We analysed the publication trends on non-invasive sampling in
wildlife health and disease research and offer a comprehensive review on the different samples
that can be collected non-invasively. We retrieved 272 articles spanning from 1998 to 2021, with a
rapid increase in number from 2010. Thirty-nine percent of the papers were focussed on diseases,
58% on other health-related topics, and 3% on both. Stress and other physiological parameters
were the most addressed research topics, followed by viruses, helminths, and bacterial infections.
Terrestrial mammals accounted for 75% of all publications, and faeces were the most widely used
sample. Our review of the sampling materials and collection methods highlights that, although
the use of some types of samples for specific applications is now consolidated, others are perhaps
still underutilised and new technologies may offer future opportunities for an even wider use of
non-invasively collected samples.

Keywords: non-invasive methods; wildlife species; wildlife pathogens; 3Rs; animal health; field
sampling

1. Introduction

In the last decades, awareness of the importance of studying and monitoring disease
in wild animal populations has steadily grown. The need for a One Health approach
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that integrates wildlife, human, and domestic animal health into a single framework is
now widely recognised [1] and has gained further attention due to the recent SARS-CoV-2
pandemic [2]. In addition to their relevance as a source of pathogens that may spill over to
humans and domestic animals, many wild species are currently threatened by emerging
diseases (e.g., white-nose syndrome in bats [3], chytridiomycosis in amphibians [4], or
Chlamydia infection in koalas [5]), making wildlife disease research paramount from a
conservation perspective [6,7]. Additionally, the need for a more complete understanding
of disease circulation in natural populations has sparked the interest of many researchers
who are now investigating those intrinsic factors affecting host–pathogen dynamics such
as the host physiological and immunological status [8–11].

In parallel to the growing interest in wildlife disease, attention towards animal welfare
in research has been growing since the ’60s, when Russell and Burch [12] proposed the
3Rs principle. It aims to replace animal use in research whenever possible, reduce the
numbers of animals employed, and to refine the methods to limit their pain and distress.
This principle has been incorporated in several legislations (e.g., [13]) and is now widely
applied to laboratory animals. Ethical advances in wildlife research have been comparably
slower, but the need for the development of non-invasive methods to safeguard animal
welfare and avoid taking valuable animals from vulnerable populations is being advocated
by several authors [14–16].

Wildlife disease and health surveys often rely on the opportunistic sampling of
carcasses, and this is certainly an important resource for passive disease surveillance
(e.g., [17–20] in the present Special Issue), but it can introduce relevant biases into epi-
demiological studies [21]. Random sampling of living individuals should therefore be
preferred whenever researchers are interested in studying disease circulation in natural
populations [22]. However, sampling living, free-ranging animals is a challenging endeav-
our, and biologists and veterinarians need to cope with several issues particular to the field
that are not encountered when working with domestic or laboratory animals [23]. First
and foremost, relevant constraints are related to logistics, as field work is often carried out
in inaccessible locations, far away from laboratory facilities, making sample storage and
transport a major concern. Another issue is related to capture and handling: capturing
wild animals is normally work-demanding and indeed represents a source of distress for
the animal, possibly altering physiological parameters [11] and posing ethical problems.

Hence, a sampling method for wildlife should ideally be non-invasive, possibly require
no trapping and/or handling to limit distress (although for some species this might be
unavoidable) and be feasible in field conditions. Thanks to the growing interest in both
wildlife diseases and health, the number of studies proposing alternative approaches
aimed at making wildlife sampling easier and less invasive has increased. Such new
approaches either focus on alternative methods to collect and use traditional samples,
or on the validation of new sample materials that may represent a reliable alternative to
traditional samples that would mostly require invasive collection (e.g., blood). Developing
non-invasive methods for wildlife studies is likely to always be a multiple-step process
in which samples are initially collected post-mortem or during direct contact with the
animal to be able to establish whether a certain parameter or pathogen can be detected
reliably. It then needs to be established how a sufficient amount of material can be collected
from a live animal without direct interference and causing as little distress as possible.
Finally, a further step may be necessary to prove that the results from the samples collected
post-mortem and in live animals are actually comparable.

Our aim was to (i) analyse the publication trends on non-invasive sampling methods in
wildlife health research and (ii) offer a review on the different samples that can be collected
from wildlife non-invasively, what they are useful for and how they can be collected
to survey for different pathogens or to investigate the physiological and immunological
parameters in wild animals. Our intent in this review was to mimic a wildlife researcher,
not necessarily a veterinarian, and possibly new to sampling for disease and/or physiology,
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starting to plan a new project involving field sampling, or are interested in using banked
samples they have gained access to.

2. Materials and Methods

We searched for published literature on the Web of Science, Scopus, and Google
Scholar platforms up until December 2021. Specifically, we used the following search string:
(non-invasive OR noninvasive) AND (method* OR technique* OR tool* OR sampling) AND
(wildlife OR “wild animals”) AND (disease OR pathogen* OR parasite* OR health). All
search results were screened and those not relevant to the present synthesis were excluded.
Additionally, we also used publications cited in the articles we found. Studies including
post-mortem sampling were retained only when aimed at developing or validating non-
invasive methods to be later applied on living individuals. Each paper was classified based
on the parameters reported in Table 1.

Table 1. The categories used to classify articles included in the present review.

Topic Type of Article Host’s Taxon Material Collected Collection Method 1 Detection Method 2

Disease Research 5 Amphibia Faeces Collection from
habitat Analytical chemistry

Bacteria Method 6 Aves Hair-feathers-skin Hair trapping Coprological method

Disease Review Fish Imaging and
remote sensing New device Coprological method

combined 11

Ectoparasites Mammalia Invertebrates 8 Other animals 9 Imaging

Endoparasites Marine
mammal

Saliva and other body
fluids Post-mortem 10 Immunoassay

Fungi Reptilia Urine Trapping and
handling Molecular method

Helminths Several 7 Several 7 Visual Molecular method
combined 12

Protozoa Several 7 Other 3

Virus Several 7

Other 3

Non-disease
Diet
Immunity
Physiology 4

Pollutants
Reproductive
condition
Stress
Other 3

Both
1 Method used to collect the sample; 2 Method applied on the sample for pathogen detection and/or health
parameters assessment; 3 Topic not included in any of the above categories (e.g., prion diseases); 4 Hormones
other than stress steroids, metabolism, body temperature, and other physiological parameters; 5 Research articles
applying non-invasive sampling methods; 6 Research articles defining, testing, or validating new non-invasive
methods; 7 Two or more of the above categories included; 8 Blood-sucking invertebrates used to collect blood
from target species; 9 for example, blood-sucking invertebrates, sniffer dogs; 10 roadkill, found carcasses, or
hunted animals used for non-invasive method validation; 11 Coprological method combined with immunoassay,
molecular method or observation; 12 Molecular method combined with microscopy or culture.

To assess the independence between some of the categories used to classify papers
(Table 1), we performed a Pearson’s chi squared independence test. We used Monte
Carlo simulation to obtain p-values without assuming asymptotically normal behaviour
from small cell count (degrees of freedom do not go into the equation at any stage of the
computation, so there is no reason to report them). Specifically, we tested the independence
between “Biological material collected” and “Host’s taxon”, “Biological material collected”
and “Topic”, “Detection method” and “Host’s taxon”. For these analyses, we excluded
papers that were classified as “Reviews” and records with NAs.

3. Results

Our search returned a total of 340 publications. After screening, we retained 272 papers
spanning from 1998–2021 (median = 2016, Figure 1) and discarded the ones that were not
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relevant to this review. Thirty-nine percent of the papers were focussed on diseases, 58% on
other topics, and 3% on both (see Figure 1a for a breakdown of the number of papers per
year). We also classified papers based on their type: research articles (38%), methodological
articles (51%), and reviews (11%) (Figure 1b).
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Regarding the topic, “stress” was the one with the highest number of papers published
(n = 67), followed by “physiology” (n = 42) and “virus” (n = 29). The other topics accounted
for less than 10% each (Figure 2; Supplementary Materials Table S1).

The animal taxon most widely investigated was terrestrial mammals (Mammalia),
accounting for 75% of all papers. The other taxa have been less studied: Aves 9%, Amphibia
6%, marine mammals 6%, Reptilia 3%, fish 1%, several taxa together <1%. Sixteen papers
were classified as NA if the paper was a general review or methodological without a target
species or taxon and were not included in the calculation of the percentage. Fifteen percent
of the papers had captive wildlife as the host, mostly terrestrial mammals.

Faeces were used as the biological sample in 50% of both the disease and non-disease
papers. The second most used biological material was saliva and other body fluids (14%)
(Figure 3; Table S2).
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The methods mostly used to collect biological materials were “Collection from the
habitat” (39%) and “Trapping and handling” (36%) (Figure S1, Table S3). Finally, the
detection methods mostly used were “Immunoassay” (39%), “Molecular method” (23%)
and “Analytical chemistry” (13%) (Figure S2, Table S4).

Our analysis showed that “Biological material collected” was not independent from
“Host’s taxon” (χ2 = 147.04, p < 0.001). In fact, there was a positive association between
“Saliva and other body fluids” and “Amphibia”: this contributed 38% to the total Chi-
square score, accounting for most of the difference between the expected and observed
values (Table S5). “Biological material collected” was also not independent from “Topic”
(χ2 = 249.08, p < 0.001): the test showed that “hair-feathers-skin” and “pollutants” were
positively associated (22% contribution to the total Chi-square score; (Table S6). We found
independence between “Host’s taxon” and “Detection method” (χ2 = 58.77, p = 0.136).
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4. Discussion

We reviewed the scientific literature published in the last 25 years aimed at imple-
menting non-invasive methods in wildlife disease research. Our analysis of the retrieved
publications showed that the number of published articles regarding non-invasive sam-
pling methods has been steadily rising since 2010. This suggests an increased ethical
awareness of researchers and a growing need to comply with the more advanced ethical
standards requested by society. Most of the publications were methodological articles
aimed at describing new methods for the non-invasive collection of samples, but many of
these were later applied in research studies. Several reviews were also retrieved, further
testifying that the interest in non-invasive methods is nowadays consolidated.

The growing interest in non-invasive methods might also be partially related to the
mounting evidence on the impact of acute stress on the physiological parameters and the
immune response. Avoiding trapping and handling becomes in some cases a data quality
requirement on top of the ethical necessity. This is further reflected by our analysis of
the publication topic: stress was by far the most studied topic among those using non-
invasive methods, followed by other physiological parameters (e.g., other hormones, body
temperature, etc.) and viral diseases. Despite this, a considerable number of articles still
relied on captures for sample collection, but this is, in our opinion, hardly avoidable when
dealing with certain animal species or sample types or when the identity of the sampled
individual is relevant to the research question. However, we believe that nowadays,
capture protocols, can —and must— be defined to be as minimally invasive as possible.
Additionally, concerning wild birds, many countries have continuous ringing programs
in place that may represent an optimal opportunity for sampling, without resorting to
additional captures specific for the research aim.

Regarding the type of samples, faeces were by far the most frequently sampled ma-
terial, followed by saliva and other body fluids and by hairs, feathers, or skin. This is at
least partly due to the sheer number of articles on stress evaluation, as faeces are usually
the material of choice when studying chronic stress in mammals, but it is also likely to be a
consequence of the versatility of this biological material, which can be used for several pur-
poses (see below). Likewise, immunoassays are usually employed to quantify hormones,
or their metabolites and they were indeed the most frequent technique applied on samples
in the retrieved papers. These were followed by molecular methods, which nowadays
are a fundamental tool in pathogen detection, especially viruses and bacteria. Finally, the
vast majority of the publications regarded terrestrial mammals, which is unsurprising,
considering that such taxonomic bias is well-recognised and common to several fields of
wildlife biology [24–27], disease ecology included [28,29].

Below, we will present an overview of the reviewed techniques and methods for
collecting samples non-invasively from wildlife, both for disease and health or physiology
surveys.

4.1. Faeces

Thanks to their versatility and ease of sampling, faeces are undoubtedly the most
widely used material for the non-invasive monitoring of diseases and health in wildlife.
This was confirmed by our analysis on the published literature where 126 articles using
faecal samples were retrieved.

Regarding their use, faecal samples are of course essential for endoparasite inves-
tigations on living animals as they can be used to detect helminth eggs or larvae and
coccidian oocysts that are shed with faeces. This is still mostly conducted through tradi-
tional copromicroscopy and morphological identification of the isolated specimens [30–33];
molecular approaches can also be applied to identify endoparasite life stages at the species
level, since this cannot always be achieved through morphology alone. The extraction,
amplification, and sequencing of parasite DNA using species-specific or group-specific
primers can be carried out directly from faecal material (e.g., Echinococcus multilocularis in
coyotes Canis latrans [34]), but most often faeces are first processed to allow for the isolation
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of helminth eggs and larvae [35–37], or oocysts [38,39] to achieve better results. Moreover,
constant advances in genomics and a greater affordability of high-throughput sequencing
make metabarcoding a promising tool for the simultaneous screening of all parasitic DNA
present in a faecal sample (reviewed in [40]).

These same molecular methods can also be employed to detect viral nucleic acids
from faeces, avoiding invasive blood sampling. Faecal samples were used to screen for a
wide variety of viruses belonging to several families (e.g., [41–43]), sometimes of zoonotic
(e.g., Lassa virus in rodents [44]) or conservation relevance (e.g., peste des petits ruminantes
in wild ungulates [45]). Specific molecular analyses (i.e., protein misfolding cyclic amplifi-
cation, PMCA) on faeces have also been used successfully to detect prion diseases such as
chronic wasting disease, CWD, in ungulates [46]. Faeces are also routinely used to screen
for pathogenic bacteria by standard microbiological techniques or molecular identification
(Clostridium perfringens [47]; Rickettsia felis [48]; Salmonella enterica serovar. Enteritidis [49]
and Typhimurium [50]; Mycobacterium bovis [51]), and nowadays, high-throughput metage-
nomic techniques allow us to characterise the whole gut microbial community composition
at once including the pathogenic bacteria from a single faecal sample [52,53]. Of course,
in a One Health context, faeces from wildlife can also be used to investigate antimicrobial
resistance (AMR), either by screening for AMR genes through molecular methods, or by
culture and phenotypical methods (e.g., [54] on Staphilococcus aureus in lemurs).

Other than for pathogen detection, faecal samples represent a source of data on the gen-
eral health status of wildlife, as they can be used to assess several physiological parameters,
the presence of pollutants, and the diet. The metabolites of steroid and thyroid hormones
are excreted with faeces, allowing for their non-invasive quantification through specific
immunoassays (reviewed in [55–57]) or, less frequently, through mass spectrometry [58].
It is important to note that the species-specific validation of hormonal immunoassays is
crucial to obtain reliable results since hormone metabolism and excretion may greatly vary,
even within the same genus [59]. However, glucocorticoid metabolites have already been
used as a measure of chronic stress and assessed from faeces in a variety of mammalian
species [60–67], birds [68–70] as well as reptiles [71]. Likewise, immunoassays on faeces
allow for the quantification of the faecal metabolites of sexual steroids [72–75] and can
be used, for instance, to monitor the reproductive cycles and pregnancy in endangered
species (wombats species [76]; southern white rhinoceros Ceratotherium simum simum [77];
collared peccary Pecari tajacu [78]; tigers Panthera tigris [79]). Finally, faeces can also be
used to study the diet of vertebrates (either by traditional microscopy or metagenomic
techniques: [80–83]) and to screen for the presence of pollutants or toxic compounds by
analytical chemistry [84,85].

For studies at the population-level or disease surveillance, fresh faeces can be col-
lected directly from the habitat (e.g., from pastures, dwellings, latrines, or under nesting
sites, depending on the species) without any direct contact with the animal (wild cats
Felis silvestris silvestris [86]; badgers Meles meles [87]; Gentoo penguins Pygoscelis papua [88];
several Carnivora and Artiodactyla species in Brazil [89]; Amur leopards Panthera pardus
orientalis [90]; wolverines Gulo gulo [42]). In the case of large mammals, GPS-telemetry
might be useful to monitor animal movements and locate areas where faeces are most likely
to be found, as it was conducted by Van der Goot and colleagues [77] on southern white
rhinoceros or by Di Francesco and colleagues [91] on wolf (Canis lupus) packs. For flying or
arboreal species (e.g., the lesser horseshoe bat Rhinolophus hipposideros [92]), plastic sheets
can be placed under nests or roosting sites to facilitate sample collection.

However, when information at the individual-level is needed, researchers may need
to resort to observation from a distance to collect fresh faeces as soon as an individual defe-
cates (Upland geese Chloephaga picta leucoptera [69]; Barbary macaques Macaca sylvanus [93];
red deer Cervus elaphus [94]; North Pacific grey whales Eschrichtius robustus [75]) or to
captures, especially in the case of small birds and mammals (southern pied babblers Tur-
doides bicolor [95]; Muridae and Tupaide in Borneo [96]; Namaqua rock mice Micaelamys
namaquensis [65]; desert gerbils [66]). Serres-Corral and colleagues [67] applied an interest-
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ing technique to individually mark faeces from lions (Panthera leo) held in captivity, making
use of non-toxic coloured waxes administered with feed. However, applying this method
on free-living individuals might prove more challenging.

Once collected, faecal samples may be generally kept safely at room temperature for a
limited amount of time, but will then need to be stored appropriately, depending on the
specific aim of the study. For example, when carrying out standard copromicroscopy to
identify helminth eggs or larvae, to preserve their morphology, faeces are best stored dry
at 4 ◦C and processed within a few days, while freezing is not recommended [97]. On the
other hand, storage at −20 ◦C is needed in the case of genetic analyses or immunoassays
on hormones [98]. Additionally, a certain sterility of the sample is sometimes required, for
instance, Knutie and Gotanda [52] developed a cheap and easy-to-build device to collect
faeces from birds in sterile conditions for microbiome studies. It is also best to avoid
contamination with urine when analysing faeces for hormone metabolites because metabo-
lites are also excreted with urine (see below), potentially leading to an overestimation of
hormone levels [55,57,59]. Finally, it is worth mentioning that the extraction of nucleic
acids from faeces can be challenging compared to other samples due to the presence of
inhibiting substances; as a consequence for molecular analyses, specific extraction protocols
are required [99,100]. Moreover, when using molecular tools to survey for parasite life
stages, additional sample processing steps aimed at breaking egg walls or larvae such
as magnetic beads or sonication are needed in order to be able to efficiently extract and
amplify DNA (e.g., [101]).

4.2. Urine

Urine was used as the sample material in 19 publications included in this review, 14 of
these were studies on primates. Beyond the standard clinical dipstick, urine can be used
in the detection of pathogens and to assess the physiological parameters associated with
stress, reproductive status, inflammation, and metabolic status.

Urine has been used to detect helminths, for example, the eggs of the nematode
Stephanurus dentatus that parasitize the urinary tract of wild boars (Sus scrofa, [102]) and
the antigens of Taenia serialis in the urine of gelada monkeys (Theropitecus gelada, [103]).
Bacterial pathogens with a tropism for kidneys such as zoonotic Leptospira spp. have been
successfully detected in urine as part of the monitoring and surveillance efforts [104]. The
detection of some viruses (e.g., paramyxoviruses in African fruit bats) or antiviral antibodies
against simian T-lymphotrophic virus type 1 (STLV-1) in chimpanzees (Pan troglodytes) is
also possible [105–107]. Urine can also be used for hormonal assessment. For example,
stress steroids and their metabolites excreted with urine have been successfully quantified
through immunoassays in several mammalian and amphibian species [108–114]. Sexual
steroid hormone levels (or their metabolites) can also be assessed from the urine and
have thus been used to investigate the reproductive status in mammals (giant pandas
Ailuropoda melanoleuca [115]; chimpanzees [116]) as well as amphibians (reviewed in [112]).
Other hormones that can be isolated from urine are oxytocin [117] and thyroid hormones
(reviewed in [56]). The cell-mediated immune response has been also monitored from urine
in a range of primates by the quantification of neopterin, a biomarker that increases when
an acute inflammation is present [114,118–123]. Metabolic state has also been assessed
by measuring urine triiodothyronine in macaques [114], by determining C-peptide and
ketone bodies in orangutans [124], and by assessing the nitrogen:creatinine ratio in wild
moose [125,126].

In arboreal mammals, urine can often be collected from the ground or leaves imme-
diately after spontaneous urination or by spreading plastic sheets under known roost or
sleeping sites [103,105–108,114–121,123,124]. In cold climates, it may be possible to collect
naturally frozen urine samples from the snow, however, the dilution effect of the snow
needs to be taken into account for analysis [125,126]. If mammals are anaesthetised for
other procedures, it is likely that they will urinate during recovery, so sample collection
can be attempted in this phase [123]. In amphibians or small mammals, collection during
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handling is often possible, either by stimulating urination by massaging the belly or by
using small suction devices employing capillary forces, which are applied to the cloaca
or end of the urethra [104,109,110,112,113]. After collection, the two main ways of storing
urine samples are either immediate freezing, and afterwards limiting the freeze–thaw cycles
to a minimum, or the use of filter papers. If fresh urine for neopterin analysis is to be kept
for longer periods of time at room temperature, biocidal preservatives can be added to
reduce its deterioration [118].

Similarly to faeces, for surveillance efforts in a population, the identification of indi-
viduals may not be that relevant; however, it remains important to be aware if there is a
risk of contamination of the samples with urine from other cohabitating species than the
target one [107]. Finally, the volume of urine samples is often limited and contamination
with faeces and soil or exposure to sunlight can have an impact on the analytical results,
depending on the component assessed [114,117–119].

4.3. Saliva and Other Body Fluids

The use of saliva and other body fluids (exhaled breath condensate (blow), breath,
lacrimal fluid, skin mucus) was described in 34 papers included in this review. This sample
category was widely used on amphibians (in 15 out of the 22 publications retrieved for the
taxon), where skin mucus represents an important resource for the non-invasive monitoring
of diseases and physiological parameters.

The potential uses of saliva are manifold and include stress monitoring, pathogen
detection, and antibody detection. Stress monitoring is possible both by cortisol mea-
surement [127,128] and by detecting a suppression in secretory Immunoglobulin A, an
indicator of chronic stress [129], given that baseline values are established for the species
and population under investigation. Both bacterial pathogens excreted orally such as
Mycobacterium bovis in Australian brushtail possums and oral microbiomes can be assessed
by extracting bacterial DNA and RNA from saliva [130,131]. A wide range of viruses can
be isolated from saliva including economically relevant viruses such as foot-and-mouth
disease virus [132,133], and classical and African swine fever [134,135] as well as viruses of
conservation concern such as the elephant endotheliotropic herpesvirus [136]. All exam-
ples of virus isolation from saliva that we found in this review were conducted in mam-
mals [132–139]. Antibody detection in saliva has, for example, been attempted for M. bovis
antibodies in wild boar [140]. The collection of saliva samples can be carried out directly
by rolling a cotton swab over the oral mucosa of a restrained animal [127,128,131,136,137],
or indirectly by using artificial baited objects or natural objects from the animals’ environ-
ment that they routinely interact with. An artificial object that can be attractive to a range
of inquisitive mammalian species including, for example, suids and primates, are ropes
covered in bait [133–135,137,140]. Baited salt licks [132], interactive enrichment toys [139],
and WaxTags®[130] are other objects that encourage animals to lick them and leave saliva
behind for collection. Natural objects include all items that a specific species tends to chew
and discharge, for example, leaves in some primates [138]. When choosing between direct
and indirect collection, it needs to be considered that while direct collection allows us to
assign a sample to an individual with great certainty, it also requires this animal to be
physically or chemically restrained or long-term habituated and trained for sampling [128].
Indirect sampling removes the need to handle an animal, but requires observation (camera
or direct) of the collection object [138], or additional DNA assessment to establish the indi-
vidual that a sample came from. Choosing a safe and effective object for saliva collection
for a species requires detailed knowledge of its behaviour and preferences. To optimise
sampling, pre-trials with different objects are often necessary. The risk of interactions of
non-target species with the object, objects becoming unretrievable or being swallowed also
need to be managed [130,135,137]. Some objects such as cotton ropes may contain natural
PCR inhibitors that need to be considered when samples are processed [135,137]. Generally,
in saliva samples, it needs to be considered that the oral microflora can be sensitive to
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external conditions [131] and that low pathogen excretion can occur, potentially reducing
the sensitivity of surveillance efforts using saliva [134].

Blow collection has been described for a range of marine mammals including, for ex-
ample, humpback whales (Megaptera novaeangeliae), harbour porpoises (Phocoena phocoena),
and belugas (Delphinapterus leucas) [141–143]. It has been used for bacterial detection [144],
respiratory microbiome analysis [145], and viral detection [142] as well as volatile organic
compound analysis [146] and cortisol and the detection of other steroid hormones [141,143].
Blow can be collected in a variety of vials, bags, and dishes, either held in the hand if it is
possible to get close to the animal or mounted on a pole to be able to work from a greater
distance [141,142,146]. Petri dishes tend to allow for the collection of the largest volumes of
fluid and can be readily covered in materials and membranes to enhance sampling based
on the individual research question [141,143]. A factor to consider when planning to use
blow samples is that the sample volume and dilution cannot be controlled, and that the
confirmation of the presence of sufficient organic material for analysis may need to be
included in any experimental design [141,143].

Breath collection in mammals has been trialled for use in indirect pathogen detection,
as the presence of certain pathogens such as M. bovis, MAP or Brucella spp. can lead to
characteristic changes in the composition of volatile organic compounds in breath [147]. As
the collection is currently only possible using a complex mask that needs to be tightly fitted
to the animal’s nose, it can only be used in habituated and fixated individuals [147], which
will limit its applicability to wildlife.

Lacrimal fluids have been assessed as a low impact sample to detect cortisol in harbour
seals [148]. Animals need to be restrained for sampling and a cotton swab inserted into
the conjunctival sac for 15 s. The cortisol concentration in lacrimal fluid did show good
correlation with values measured in blood in the same animals, but the measurement
range for this new sample type would need to be established for each species it is to be
used on [148].

Skin mucus has been collected from amphibians [111,149–155] and fish [156–158].
In amphibians, the main focus of studies utilising skin mucus has been the detection of
the fungal pathogen Batrachochytrium dendrobatis [111,150,151,153–155]; however, wider
investigations of the skin microbiome [149] and cortisol detection [152] are further uses for
this material. The sensitivity of pathogen detection in skin mucus may be limited when the
intensity of infection is low [151]. In fish, skin mucus is mainly used for stress assessments,
both by isolating cortisol and its metabolites [157] and by assessing the oxidative stress
using F2-isoprostanes [156,158]. Mucus collection has only been described during direct
handling, either by swabbing or scraping of the skin [151,152,156,158]. This may in itself
alter the cortisol excretion, both systemically and locally in the skin [152]. A further method
for the minimally invasive assessment of steroid hormones in amphibians and fish is the
immersion of caught individuals in a clean tank of water for a predetermined period
of time, after which the animal is moved and excreted hormones can be extracted from
the water [159–162]. These assays can also be used on environmental water samples;
however, ambient cortisol and metabolites as well as steroid hormones may persist in the
environment to varying degrees and limit the information that can be gathered about an
individual in, for example, a pond [162].

Overall, saliva and other body-associated fluids have great potential both in health and
welfare surveillance (microbiome studies, stress assessment) and in pathogen monitoring.
However, being able to collect samples that can clearly be assigned to an individual animal
without handling it remains a challenge as well as the standardisation of the volume and
dilution of samples collected with more hand-off methods.

4.4. Hair, Feathers, and Skin

The collection and analysis of hair, feather, or skin samples were mentioned in
25 papers included in this review. These sample materials are the preferred media for
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investigating contaminants; indeed, out of the 16 retrieved publications aimed at detecting
pollutants or medicine residuals, 11 relied on either hair or feathers.

Hair samples are used for pollutant and mineral detection in a wide range of mam-
mals, from bats to polar bears [163–168]. Similarly, hair can be used to detect medicine
residuals [169]. Further uses are the determination of cortisol concentrations for stress
monitoring [167,170–176] and the assessment of steroid hormone concentrations [177].
Some pathogens, for example, adenovirus and squirrelpox virus in Eurasian red squir-
rels (Sciurus vulgaris) [178] and protozoa Leishmania infantum can be isolated from hair
samples [179,180]. A final use linked to wildlife health is the assessment of nitrogen,
carbon, and sulphur composition in the hair to gain insights into the animals’ diet in-
cluding periods of negative energy balance [181,182]. Hair is therefore a very versa-
tile and valuable source of information, however, while a collection is possible with-
out direct contact with the animal, for example, by using hair traps, barbed wire, or
collection from known rubbing trees [164,181], most studies included in this review
gathered their samples either during direct handling of the physically or chemically re-
strained animal [168,170,171,177,178,181,182] or from carcasses during post-mortem exami-
nation [163–167,169,172,176,178–182]. This implies that further research into low-impact
collection methods from live, free-roaming animals is necessary to use this sample type
to its full potential. Once the sample is collected, analytical and diagnostic methods for
minerals, pollutants, residuals, diet, and pathogens are usually well-established. It does
need to be established for each species, though, whether the correlation between the blood
levels and levels in hair is reliable, as it may be poor in some species [168]. With regard to
pathogens, the location a pathogen takes after infection needs to be taken into consideration
to determine whether an animal is infected with a certain pathogen or if the pathogen may
just be present on its fur as a contaminant. To use hair samples for cortisol determination, it
needs to be considered that in some species, age, pregnancy, colour, body region, sex, and
season influence cortisol levels [170,174,175], and that local cortisol production in the hair
follicle may occur, in which case the hair cortisol concentration may not offer information
on the HPA-axis activity [170]. A final factor to consider when designing studies using
hair samples is the number of hairs needed to produce reliable results, as too small a
sample may result in false negatives, while too large a sample may cause inhibition during
analysis [178].

For feathers, our search only flagged up publications using them for the detection of
heavy metal pollution (As Cd, Cu, Hg, Ni, Pb, Se, Zn) or mercury alone (Hg) [183–187].
However, based on the experience with hair, it may eventually be possible to use feathers
for the detection of other contaminants such as medicine residuals. While one study relied
on feathers collected post-mortem [183], others have used the plucking of feathers during
physical restraint and handling [184,187]. It has, however, been shown that meaningful
results can also be achieved by collecting clean, freshly shed feathers from nest boxes, still
allowing a certain level of information of which animal a feather came from, or at least
narrowing the pool down to the breeding pair and their offspring [186]. Disturbance to the
nest needs to be weighed against handling stress to determine which of the two collection
methods actually has less impact on the species under investigation in each study.

Skin samples of marine mammals can be used for trace element detection (Al, V, Cr, Mn,
Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Pb), but only if a full biopsy is collected, which, depending
on size, can actually be an invasive procedure [188]. Truly minimally invasive samples
of dead superficial skin cells collected with combs can be used for ectoparasite detection,
for example, Antarctophthirus microchir in American sea lions (Otaria flavescens) [189]. Skin
scrapings are commonly used on several species for Sarcoptes scabiei detection. However,
depending on the handler experience and technique used, they may reach a depth where
they draw blood and are no longer truly minimally invasive. Fraser and colleagues [190]
compared the efficacy of PCR on skin scrapings and on less-invasive skin swabs for S. scabiei
detection in wombats (Vombatus ursinus). Although they showed that PCR has a higher
sensitivity than standard microscopy for ectoparasite detection, they concluded that PCR
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on swabs is less accurate [190]. For reptiles, the detection of mercury in skin scutes has
been described [191]. It would be of interest to assess whether the shed skins of reptiles
could be used with similarly reliable results.

4.5. Imaging and Remote Sensing

This sample material class included 22 articles that mostly studied the physiological
parameters of wild mammals (terrestrial and marine), birds, or reptiles. However, a few
studies have also used imaging, observation, and remote sensing to investigate the parasites
and health conditions.

One of the tools used in most of the studies was infrared thermography (IRT). Thanks
to the development of new and lower cost portable systems, IRT has become a non-invasive
technique that allows for the precise measurement of infrared radiation, and hence spatial
variation in body surface temperature, it can be used at less than one metre to investigate
specific body regions, or from a distance up to hundreds of meters when just the detection
of an animal in the wild is desired. The physiological parameter mostly recorded with
IRT clearly was the body temperature of wildlife in the wild and in captivity. While some
studies have focused on the study of thermoregulation mechanisms (e.g., [192–194]), others
have used body temperature as a proxy for health, body condition, and the metabolic state
of an animal (e.g., [195–197]). For example, Burns, McCafferty, and Kennedy [192] studied
the nesting thermal biology of wild leatherback turtles (Dermochelys coriacea), avoiding
any interference or stress in this reproductive phase thanks to the use of thermal imaging.
Researchers were able to study the spatial and temporal variation in the body surface
temperature through all phases of nesting behaviour, and to estimate the relationships
between body temperatures and the environmental conditions of the beach. It is important
to highlight that those studies using IRT need to consider some important parameters to
record accurate temperatures and avoid errors (e.g., variation in emissivity, evaporative
cooling, radiative heating of the coat) [198]. This was also highlighted by Horton and
colleagues [193], who paired the technology of IRT with that of unoccupied aerial systems
(drones) to document the blowhole and dorsal fin skin temperature, respiration rate, and
heart rate of adult and calf humpback whales (Megaptera novaeangliae). Few attempts
have been made to use IRT in the detection of disease in wild mammals [mange [199];
rabies [200]; foot-and-mouth disease [201]]. However, the latter two studies were carried
out in a controlled environment in captivity. Arenas and colleagues [199] tested IRT to
diagnose inflamed skin infected by sarcoptic mange (Sarcoptes scabiei) in wild Spanish ibex
(Capra pyrenaica). Unfortunately, visual observation resulted in being more effective than
IRT due to the low accuracy of the thermal image at distances greater than 100 m.

Since S. scabiei results in visible hair loss and affects a broad host range, another tool
that has been successfully used to detect mange in wild canids are camera traps [202,203].
However, the distance at which the animal is detected by the camera, hence the resolution
of the image, could be a limitation if this tool is to be used for early diagnosis to prevent
epidemics of mange that could otherwise have high morbidity and mortality rates. Camera
traps can be used to detect any health condition that affects the look of an animal in the
wild. For example, Lacroux and colleagues [204] successfully investigated the occurrence
of facial dysplasia in wild forest olive baboons (Papio anubis) in Uganda as a suspected
alteration of embryonic development due to the use of pesticides in crops at the border of
their habitat.

A more recent paper showed the use of a common survey tool for bats as a surveillance
method for white-nose syndrome (WNS) [205]. Thanks to the collection of bat echolocation
sound, the authors developed site-specific prediction models for bat activity accounting for
seasonal and annual temperature variation prior to the known occurrence of WNS. These
models were then used to monitor changes in bat activity that may signal the potential
presence of WNS. While this seems to be an effective method to detect WNS, the authors
highlight the need to collect baseline (pre-WNS) data across several years and sites and
then look for bat activity in excess of the predicted range during winter months, followed
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by bat activity below the predicted range during the following spring and summer. As a
consequence, this approach cannot be applied to populations that might already be infected
and is simple to apply only if passive autonomous recording units are deployed.

4.6. Other

A few papers have used other animals as either a detection or collection tool. This is
the case of the sample class “Invertebrates”, where researchers have used blood sucking
invertebrates to collect and then analyse the blood of the target wildlife species (six papers).
It must be noted, however, that although these studies considered collecting blood samples
through invertebrates as non-invasive, this method is lethal to the invertebrates used. Two
studies used leeches to collect blood from mammals. Kvapil and colleagues [206] used
medicinal leeches (Hirudo medicinalis) as an alternative to more complex and invasive
methods for blood sampling for preventive medicine and epidemiological studies in zoo
animals looking for antibodies to tick-borne encephalitic virus. Alfano and colleagues [207]
collected leech-derived iDNA (terrestrial leeches: Haemadipsa picta, H. zeylanica) in the
forests of the Malaysian Borneo to detect and identify known and novel mammalian
viruses. In this study, iDNA was also paired with eDNA from waterholes to study wildlife
viral diversity and to detect novel potentially zoonotic viruses prior to their emergence.
Thomsen, Voigh, and colleagues [208,209] tested the use of kissing bugs (Reduviidae;
Triatominae; Heteroptera) as a gentler system to collect blood to detect rabbit haemorrhagic
disease virus in domestic rabbits [209] and in captive primates [208]. Hoffmann and
colleagues [210] assessed the feasibility of the fly-based surveillance of wildlife infectious
diseases, specifically for adenoviruses (family Adenoviridae), in wild-living vertebrates
in a tropical rainforest in Côte d’Ivoire. They concluded that this method could probably
be used to detect the genetic material of wildlife infectious agents causing wildlife mass
mortality in pristine areas. However, they also highlighted that characterising the genetic
diversity of wildlife infectious agents through fly-based monitoring may not be cost-
efficient. Other invertebrates such as engorged ticks collected from wild hosts may be used
to indirectly screen for pathogens, as was carried out, for instance, by Zechmeisterova and
colleagues [211], who used engorged ticks to detect parasitic protozoa in the Iberian lizard
(Lacerta schreiberi).

The detection of viral infections can also be conducted collecting samples from the
environment where the targeted wildlife live. The study previously mentioned by Alfano
and colleagues [207] paired the iDNA analyses with those of the eDNA collected from
waterholes in Tanzania and Mongolia. The indirect transmission of beak and feather disease
virus, which is of global concern and can cause lethal infections, was tested by Martens and
colleagues [212] using nest swabs. They provided novel insights into the potential role of
nest cavities and other fomites in the indirect transmission of this virus and possibly other
pathogens, and offered a non-invasive method for the surveillance of pathogens in wild
bird populations.

The use of odour-detection dogs was evaluated as the methodology to locate faecal
samples that were then analysed to detect parasite infections. Detection dogs resulted
in being more efficient than humans in detecting scat samples [213] and allowed for the
collection of more than 600 cervid scats in the study by Teixeira and colleagues [39] in Brazil
with the aim of detecting and genetically characterising the infections by Cryptosporidium in
brockets (Mazama gouazoubira). Curry and colleagues [214] tested, for the first time, the use
of sniffer dogs in the medical diagnoses of wildlife species. They investigated the reliability
of a trained dog for pregnancy detection in polar bears Ursus maritimus. The dog had a
reduced sensitivity in testing versus training and the authors discussed the possible causes.
Moreover, the authors suggest that it is likely that many unique cases of condition are
required to sufficiently train an odour-detection dog, which may be prohibitive in wildlife
studies when sample sizes are liable to be limited.
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4.7. Additional Considerations

We designed our search to mimic a wildlife researcher, possibly new to sampling
for disease and/or physiology, starting to plan a new project involving field sampling or
interested in using banked samples they have gained access to. In particular, minimally
invasive samples are often collected from wildlife without a specific goal in mind and
stored until it is possible to acquire funding or connect to colleagues with the right skills
and equipment to analyse them further. This approach may seem alien to researchers used
to working in laboratory-based settings; however, it is extremely important in wildlife
research due to the often challenging field conditions that make every sampling occasion an
opportunity to be seized. Therefore, we designed our search in the broadest way we could
think of, attempting to capture as many publications presenting or discussing minimally
invasive methods as possible. However, we soon realised that our search missed several
publications that might have been of interest. For instance, even some of our own papers
using non-invasive methods were not retrieved (e.g., [215,216]). Other articles deserving of
attention were pointed out to us by peer-reviewers such as a study using ticks to survey for
pathogens in wombats [217], another one describing the use of a cytology cell sampler to
collect samples from lesions in marine mammals [218], or yet another describing the use of
drones to collect blow from them [219]. We were also made aware of the opportunity to
detect viruses and cortisol from bird feathers [220,221] or to use pellets from birds of prey or
owls for microbiological studies [222,223]. This led us to reflect on why all of those articles
had been missed and we concluded that in most cases, neither we nor our colleagues had
made it sufficiently explicit that the research employed non-invasive methods (i.e., we
had not included the term in the title, keywords or the abstract, and sometimes not even
in the full text). This may reduce the opportunities to inform future projects and may
slow down the process of employing minimally invasive methods to their full potential.
We would therefore like to use this final paragraph to encourage the research community
using non-invasive methods on wildlife to tag this clearly and make the information easily
accessible to all those interested.

5. Conclusions

Our review of the literature addressing non-invasive methods for the disease and
health monitoring of wildlife has highlighted the growing interest of the research commu-
nity in sampling free-ranging animals non-invasively, with as little interference as possible.
However, we believe that there is still much room for improvement, for instance, saliva and
urine have been proven to be effective methods for the detection of some pathogens, but
still appear underutilised, perhaps because collection can be more challenging compared to
other mediums. However, our review highlighted that some specific methods and novel
devices for their sampling have already been developed. Additionally, new opportunities
for the development and implementation of non-invasive sampling may arise in the future
following advances in rapidly evolving fields such as molecular biology or imaging and
remote sensing technologies. Finally, we would like to stress again that, although trap-
ping and handling might be still unavoidable in some cases, researchers should always
employ rigorous protocols aimed at minimising distress for the animal. A responsible use
of wildlife in research, in line with biodiversity conservation efforts, must make the further
development of non-invasive sampling methods and a comprehensive use of all samples
available for as many types of analyses as possible a priority. We sincerely hope that the
trends for the increased use of non-invasive methods as identified in this review continues.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ani12131719/s1. Table S1. Number and percentage of papers published
per topic. Table S2. Number and percentage of papers published per biological material collected
(21 NA removed). Figure S1. Percentage of published articles classified based on method used to
collect the samples. Table S3. Number and percentage of papers published per biological material
collection method (26 NA removed). Figure S2. Percentage of published articles classified based
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on the detection method. Table S4. Number and percentage of papers published per detection
method (18 NA removed). Table S5. Percentage contribution to the Chi-squared independence test
biological material sample collected—Host’s taxon. Table S6. Percentage contribution to Chi-squared
independence test Topic—Biological material sample collected.
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