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Simple Summary: Biodiversity monitoring is one of the primary means of ecological research. With
the development of convolutional neural networks (CNNs) in the field of instance segmentation,
CNNs are also used for species recognition. Almost all species recognition models apply pixel-based
instance segmentation to recognize animal species. However, pixel-based instance segmentation
models require a large number of annotations and labels, which makes them time-consuming and
unsuitable for small datasets. Therefore, in this paper, we propose a contour-based wild animal
instance segmentation model that can reach a balance between accuracy and real-time performance.

Abstract: Camera traps are widely used in wildlife research, conservation, and management, and
abundant images are acquired every day. Efficient real-time instance segmentation networks can
help ecologists label and study wild animals. However, existing deep convolutional neural networks
require a large number of annotations and labels, which makes them unsuitable for small datasets.
In this paper, we propose a two-stage method for the instance segmentation of wildlife, including
object detection and contour approximation. In the object detection stage, we use FSOD (few-shot
object detection) to recognize animal species and detect the initial bounding boxes of animals. In
the case of a small wildlife dataset, this method may improve the generalization ability of the wild
animal species recognition and even identify new species that only have a small number of training
samples. In the second stage, deep snake is used as the contour approximation model for the instance
segmentation of wild mammals. The initial bounding boxes generated in the first stage are input
to deep snake to approximate the contours of the animal bodies. The model fuses the advantages
of detecting new species and real-time instance segmentation. The experimental results show that
the proposed method is more suitable for wild animal instance segmentation, in comparison with
pixel-wise segmentation methods. In particular, the proposed method shows a better performance
when facing challenging images.

Keywords: wild animal instance segmentation; few-shot object detection; contour approximation;
deep learning

1. Introduction

The diversity monitoring of wildlife is important in the research, conservation, and
management of wildlife. Most natural reserves are equipped with camera traps to monitor
wildlife species and their behaviors. The images obtained include a wealth of significant
information regarding wildlife, such as species composition, individual behaviors, and
population dynamics. However, these data mainly depend on manual screening, which
cannot keep up with the speed of image accumulation. As a result, the use of data in
research, conservation, and management is seriously restricted.

Masking animal objects from a large number of wildlife images can not only make
it possible to study the species composition of an ecosystem but is also the foundation
of wildlife re-identification and behavior tracking. With the help of supervised machine
learning, early work [1,2] has reduced time and labor costs to some extent and improved
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the efficiency of screening and identification, but these methods still have two flaws. First,
they need to be specially customized for specific problems. Worse still, the customization
might result in an exclusive model for a certain dataset. Second, the limited amount of
training data and lack of computing power weaken the generalization capacity of these
models.

There exist many deep-learning-based object detection methods, and they have been
applied in many fields, such as autonomous driving [3], facial recognition [4], defect
detection [5,6], and medical imaging [7,8]; the historical champion network ResNet from the
ImageNet LSVRC (Large-Scale Visual Recognition Challenge) competition outperformed
the human recognition level [9]. Models based on CNNs have shown good accuracy and
robustness for recognition of certain species. These models are used to help ecologists with
labeling and detecting animals. Some researchers directly apply object detection networks,
such as ResNet18 [10], GoogLeNet [11], Faster R-CNN [12–14], YOLO series [15–17], and
AlexNet [18], for species recognition. To achieve better performance, a few researchers
have tried to improve the networks or fused several networks. For example, Emmanuel
et al. (2016) [19] shrank the number of neurons in both fully connected layers and the last
inception layer, thus modifying the AlexNet and GoogLeNet architectures. Sara Beery et al.
(2020) [20] incorporated an attention mechanism into the context R-CNN for detecting
species in images captured by camera traps.

Traditional image segmentation methods, such as thresholding [21] and edge detec-
tion [22], can only detect objects whose visual features have great differences from their
backgrounds. The principle of the thresholding method is to divide pixels into several
regions by the threshold. However, its application scenarios are limited, thus making it
suitable only for images with obvious gray differences. Edge-based segmentation methods
are used to find the pixels at the boundary, and then connect them to segment the targets.
These methods are simple and only require a little calculation, but when they face wild
animal images with unclear grey features, complex backgrounds, and camouflaged envi-
ronments, they cannot be used for the segmentation task. To avoid the above problems,
researchers have applied CNNs in the field of instance segmentation. Among the previous
research, the more classic Mask R-CNN [23] predicted the binary mask to achieve pixel-level
segmentation. PANet [24] improved the feature hierarchies of networks and information
flows between frameworks. YOLCAT [25] used ResNet and FPN as the backbone; addi-
tionally, they added a mask coefficient branch for generating instance masks. Shu Liu et al.
(2017) [26] proposed a sequential grouping network (SGN). In [26], semantic segmentation
was used to identify foreground pixels for instance segmentation. PolarMask [27] trans-
formed the instance segmentation problem into the instance center classification. Hao Chen
et al. (2020) [28] presented a one-stage dense instance segmentation method based on the
detection model FCOS [29], which reduced the amount of computation.

Since much effort has been made, with respect to CNNs, the networks have been
constantly applied in species detection tasks. In fact, only a few valid and useful wild
animal pictures are taken by camera traps because the cameras are triggered irregularly.
However, the above-mentioned deep convolutional neural networks need a large number
of annotations and labels, thus making them unsuitable for small datasets.

Transfer learning can be used to solve the problems of small datasets and has been
proven to be an effective strategy. However, transfer learning first identifies the training
data, then generalizes it to the test data. Therefore, transfer learning methods can recognize
small sample objects that are similar to the objects in training sets, and their categories are
included in the training sets, as shown in Figure 1a.

Unlike transfer learning methods, the few-shot object detection method (FSOD) based
on CNNs [30] was first proposed to recognize novel objects by only training a small number
of labeled samples in the training set. Some strategies were also presented to improve the
performance of FSOD [31–33]. Few-shot learning involves the application of meta-learning
in the field of supervised learning. As shown in Figure 1b, few-shot learning methods
train the models (update the model parameters) on multiple subtasks, in order to make
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the models ‘learn to learn’. Furthermore, it can be seen from Figure 1 that the content of
the testing and training tasks can be completely different. Therefore, few-shot learning
methods can recognize new categories that are not included in the training sets of base
classes. Conversely, transfer learning methods often recognize the categories that are
included in training sets. After learning a large amount of data from a certain category,
few-shot learning can quickly learn new categories with only a small number of samples.
Because wild animal images are difficult to capture, especially for rare animals, we used the
few-shot object detection method [34] to recognize a novel species without a large number
of image samples for that species.
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Figure 1. Transfer learning and few-shot learning. The transfer learning method is shown as (a), and
the few-shot learning method is shown as (b). Transfer learning methods recognize small sample
objects that are similar to the objects in training sets, and their categories are included in training sets.
Few-shot learning methods train the models (update the model parameters) on multiple subtasks,
in order to make the models ‘learn to learn’; the content of the testing and training tasks can be
completely different.

In this paper, we propose a two-stage method, for instance, the segmentation of
wildlife, including object detection and contour approximation. In the object detection
stage, FSOD [34] is not only used as the detector to generate the initial bounding boxes
of animals, but it is also used to identify wild animal species. In the case of a small
wildlife dataset, this method may improve the generalization ability, with respect to wild
animal species recognition, and even identify new species that only have a small number
of samples in the training set. In the second stage, the initial wildlife bounding box is
regarded as an initial rectangle contour and is input to deep snake [35] to approximate the
final contour of the animal shape. The contributions of this paper are threefold:

• We explore a novel two-stage model for instance segmentation of wild animals, which
uses FSOD for animal species recognition and as the initial contour detector, and
deep snake as a contour approximation model for the instance segmentation of wild
mammals. The model combines the advantages of detecting new species and real-time
instance segmentation.

• We fine-tune the FSOD convolutional neural network to recognize both the wildlife
species in small datasets and new species that only have a small number of samples
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in the training set, which can solve the problems of imbalanced datasets and small
datasets caused by the drawbacks of camera traps.

• We propose a contour-based wildlife instance segmentation strategy by selecting the
optimal detector for the deep snake submodule, which can correct the error between
the initial bounding box and actual localization of the wild animal by exploiting the
cycle-graph structure of a contour. Due to the unnecessary classification of each pixel,
the method is more suitable for real-time segmentation of wild animals.

2. Materials and Methods

In this section, we first introduce the customized dataset made for wild mammal
research. This dataset can also be used to study mammalian species composition and for
analysis. Then, we provide the pipeline of the proposed animal instance segmentation
network. After that, we describe the species identification detector and animal contour
approximation method.

2.1. Materials
2.1.1. Configurations

All of our experiments were performed on a personal computer with a 1060Ti GPU
and the Ubuntu 20.04 operating system. Additionally, CUDA v10.1 was applied to train the
model, which accelerated the processing speed, and Python version 3.8.12 was used. Other
required libraries we used were numpy (v1.21.2), Pytorch (v1.6.0), pycocotools, cython,
matplotlib, and opencv.

For the detector submodule, we divided the 12 categories in the dataset into base
classes and novel classes at a ratio of 3:1, in order to verify the generalization ability of this
method without being unfair. Considering the computing power of our personal computer,
we set the batch size to 2 and trained the model using SGD. The following parameters
were used to train the submodule of the initial bounding box of an animal image, based
on the few-shot method [34]. Thus, we adopted the same parameter settings as [34]. The
momentum was 0.9, and the weight decay was 0.0001. A smaller learning rate should be
set for small datasets. Due to the different numbers of samples of animal species in the
dataset, the learning rate of the base classes and fine-tuning novel classes were different;
these were 0.02 and 0.001, respectively.

For the contour approximation submodule, we sampled 40 points on the diamond
contour for more context information. During the octagon contour deformation stage, N
points were uniformly sampled on the octagon contour; correspondingly, N offsets were
output. We took N as 128. It should be noted that, for points far away from the ground
truth or for large offsets, regression is challenging, and we solved this problem by applying
multiple iterations. The number of iterations was set to 3.

2.1.2. Dataset

Existing public datasets commonly used for object detection include a limited number
of animal images, especially with respect to wild animal species. For example, the PASCAL
VOC dataset only contains 3 kinds of livestock (cows, horses, and sheep), and the COCO
dataset includes limited mammals (elephants, bears, zebras, giraffes, etc.).

In order to facilitate analysis and research, in relation to more wild mammal species,
we collected images of six species of wild mammals from the public datasets COCO
and PASCAL VOC (https://cocodataset.org, http://host.robots.ox.ac.uk/pascal/VOC/,
accessed on 4 July 2022), and the images of another six species were obtained from wildlife
documentaries. Finally, a balanced dataset, named MammData, was constructed. The
dataset MammData includes 12 common wild mammal species, with a total of 4884 images,
around 400 per species. All the images in the dataset are two-dimensional RGB color
images with a single resolution of 1280 × 720. Some examples from the dataset are shown
in Figure 2. This specific dataset contains various postures of mammals, as well as close-up

https://cocodataset.org
http://host.robots.ox.ac.uk/pascal/VOC/
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animal pictures, for better robustness of species identification. We allocated the training
and evaluation set at a ratio of 0.85, and the details of our dataset are shown in Table 1.
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Figure 2. Examples of the dataset. The first two rows display one example of each mammal species
in the dataset. The third row shows incomplete body parts, such as an elephant’s trunk, zebra stripes,
cheetah leg, and so on.

Table 1. Composition of the dataset MammData.

Class Name Number of Images Number of Training Instances Number of Validation Instances

Bear 415 543 101
Cow 351 456 88

Cheetah 471 452 79
Deer 404 454 81

Elephant 404 595 100
Giraffe 438 520 79
Horse 400 482 82

Kangaroo 367 510 60
Koala 438 383 80
Lion 397 497 92
Tiger 399 413 72
Zebra 400 578 80

Total 4884 5883 994

2.2. Network Structure

The pipeline of the wild mammal instance segmentation network is shown in Figure 3.
The network is mainly composed of a detector submodule and contour approximation
submodule. FSOD is adopted as the detector submodule, which is used for species identifi-
cation and generation of the initial rectangular box used for contour approximation. Then,
the rectangular box is processed as the input of the first deep snake block, which generates
the octagon contour. Then, through multiple iterations of the second deep snake block, the
box is gradually approximated, until the contour tightly outlines the animal shape.
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Figure 3. Overall illustration of the proposed two-stage wildlife instance segmentation method. The
detector submodule contains the backbone ResNet101, followed by the region proposal network
(RPN), and fully connected (FC) layers propose object categories and bounding box localization. The
contour approximation submodule consists of two deep snake blocks. The first deep snake block
turns the rectangular box generated by the detector submodule into the octagon contour, and the
second deep snake block takes the octagon contour as the input to approximate the contour of the
animal shape.

2.2.1. Detector Submodule

We applied the FSOD method [34] as a detector submodule. As shown in Figure 3,
the detector submodule consists of ResNet101 as the backbone, region proposal network
(RPN), and fully connected (FC) network after the ROI pooling. The box predictor is made
up of a box classifier and box regressor, which are used to predict category and bounding
box localization, respectively.

As shown in Figure 4, the training strategy is divided into two stages, called base
training and fine-tuning. In the base training stage, FSOD randomly selects C categories
and K samples of each category in the training set. A total of C ∗ K animal images comprise
the base classes; that is, the base classes contain abundant animal images that are used to
train the parameters of the model. However, in the fine-tuning stage, we only pick a small
number of images from both base classes and novel classes, where no samples are included
in the training set of base classes. At this stage, if each class in the training set of small
datasets contains n animal images; it is named n-shot. The few-shot concept is embodied
from here.

It is thought that the backbone and RPN are provided for feature extraction, and they
are, in other words, irrelevant to the classification. Therefore, the feature maps, parameters,
and weights learned by these parts can be transplanted directly into novel classes without
fine-tuning. Explicitly, all we need to do at the second stage is fine-tune the weights of
the box predictor. We feed the network with abundant images in base classes at the first
stage of training, in order to obtain features and weights that can then be used for novel
classes. Afterwards, we create a balanced small subset, including both base and novel
classes, for the fine-tuning stage. We start by assigning randomly initialized weights to the
box predictor for novel classes and fine-tune it with a fixed feature extractor. That is, we
train the ability of feature extraction using abundant animal images and use the learning
ability to extract features of animal images in small sample classes or new classes (called
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few-shot). After that, we fine-tune the parameters of classification layers in the proposed
model to realize few-shot animal image recognition. Therefore, this mechanism enables
the model to learn the common parts of base classes, such as how to extract important
features and compare the similarity of samples; thus, it can also be generalized to small
sample classes.
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Figure 4. The proposed two-stage FSOD training strategy. In the base training stage, we apply
abundant images to train the detector, including the feature extractor, box classifier, and box regressor.
In the fine-tuning stage, the feature extractor is fixed, and we only select a few images to fine-tune
the box classifier and box regressor.

2.2.2. Contour Approximation Submodule

The detector submodule only obtains the rectangular box of wild animals; inevitably,
there is a discrepancy between the bounding box and actual localization of the wild
animal. To solve this problem, we introduced the contour approximation submodule deep
snake [35], in order to gradually deform the rectangular box into an animal shape.

The deep Snake block [35–38] is a learning-based snake algorithm that was inspired
by traditional snake algorithms, and it is a contour-based segmentation method. The deep
snake algorithm regards the contour as a set of variables and optimizes these variables. It
can approximate the contour to the object boundary by setting appropriate parameters.
Considering that the contour is a cycle graph, deep snake applies circular convolution to
learn the features on the contour and realize approximation.

The detailed contour approximation submodule is shown in Figure 5. We set both
the box information and corresponding image as input. First of all, we transform the
rectangular box into a diamond contour by connecting the midpoints of the four lines
of the box. The deep snake block [35] takes this diamond contour as input and then
predicts four extreme points surrounding to the top, leftmost, bottom, and rightmost of the
animal body. Inspired by [36–38], extreme points on the object can provide more contextual
information than bounding boxes and improve the efficiency of segmentation. We create
the octagon contour based on these four extreme points. We extend 1/4 of the length of
the corresponding edge, without exceeding the box boundary. The eight endpoints created
are then regarded as eight vertices of the octagon contour. The second deep snake block
processes this octagon by evenly sampling N points on it and outputs a much closer contour
to the animal body. The octagon will gradually approach the shape of the animal body
after multiple iterations. Using this kind of multiple deforming box (or contour) method
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to approximate the shape of an animal body can also correct the error that occurs at the
former detector submodule to some extent.
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Figure 5. Detailed structure of contour approximation sub-module. We first import the diamond
contour formed from the rectangular box into the deep snake block, which outputs the offsets to
extreme points. Then, we adjust these extreme points to adapt the contour approximation and put
them into the deep snake block again. After multiple iterations, the box finally surrounds the object
shape tightly.

3. Results

In this section, we describe using our dataset, MammData, to evaluate the performance
of the proposed network. First, we conducted fine-tuning experiments on the training
sets of the different novel classes containing different numbers of animal images and
selected the optimal number of animal images for the training. Then, we tested the species
recognition ability for some challenging images, including incomplete bodies, overlapped
multiple animals, small animals, and camouflaged animals. Finally, we compared the
performance of the proposed detector submodule with that of the state-of-the-art object
classification networks.

In all experiments, we used AP (average precision) (https://cocodataset.org/#detection-
eval, accessed on 4 July 2022) as the evaluation metric of the model. AP means the average
precision over all categories. Generally, the higher the AP score, the better the classification
model. AP50 and AP75 mean that the matching threshold IoU (intersection over union)
values are 0.5 and 0.75, respectively. The higher the threshold is set, the greater the challenge
to the model. IoU is defined as the area of overlap between the detected animal region
and ground truth divided by the area of union between the detected animal region and
ground truth.

IoU =
groundTruth ∩ prediction
groundTruth ∪ prediction

(1)

3.1. Detecting New Species

In the fine-tuning stage, if the training set of each class contains n animal images, it
is named n-shot. For instance, 5-shot means 5 images of each class in the sample classes.
Therefore, we evaluated the performance of detecting the animal species in small sample
training sets. We conducted fine-tuning experiments for 1-shot, 2-shot, 3-shot, 5-shot,
10-shot, and 30-shot. The total loss for n-shot fine-tuning is shown in Figure 6. As shown
in Figure 4, the fine-tuning can converge quickly during the training iterations. The
performance of fine-tuning is a little worse with the decrease in the number of samples in
the base training set, which proves the feasibility of this method.

https://cocodataset.org/#detection-eval
https://cocodataset.org/#detection-eval


Animals 2022, 12, 1980 9 of 15Animals 2022, 12, x FOR PEER REVIEW 9 of 15 
 

 
Figure 6. The total loss of 𝑛-shot fine-tuning. 

The comparison results of average precision (AP), AP50, and AP75 between novel 
classes of fine-tuning and base training are shown in Figure 7. As can be seen in the figure, 
the proposed method performs well when training on both the base and novel classes, 
which shows that the features trained on the base classes are effectively transferred to the 
novel classes.  

 
Figure 7. Comparison of AP, AP50, and AP75 between 𝑛-shot fine-tuning and base classes of train-
ing. 

We also tested the fine-tuning model for all shots, and the test results are shown in 
Figure 8. In general, the 10- and 30-shot models have higher accuracy, and the 30-shot 
model has the best prediction results for novel classes, including category prediction and 
box regression. The 1- and 2-shot models can only correctly detect a small number of novel 
classes, due to too few training samples, while the 3- and 5-shot models can detect most 
of the novel classes; however, the accuracy of classification is low, and the accuracy of box 
regression is less than for the 10- and 30-shot models. Therefore, the proposed detector 
submodule can detect new species that are not included in the training set of the base 
classes. 
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The comparison results of average precision (AP), AP50, and AP75 between novel
classes of fine-tuning and base training are shown in Figure 7. As can be seen in the figure,
the proposed method performs well when training on both the base and novel classes,
which shows that the features trained on the base classes are effectively transferred to the
novel classes.
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Figure 7. Comparison of AP, AP50, and AP75 between n-shot fine-tuning and base classes of training.

We also tested the fine-tuning model for all shots, and the test results are shown in
Figure 8. In general, the 10- and 30-shot models have higher accuracy, and the 30-shot
model has the best prediction results for novel classes, including category prediction and
box regression. The 1- and 2-shot models can only correctly detect a small number of
novel classes, due to too few training samples, while the 3- and 5-shot models can detect
most of the novel classes; however, the accuracy of classification is low, and the accuracy
of box regression is less than for the 10- and 30-shot models. Therefore, the proposed
detector submodule can detect new species that are not included in the training set of the
base classes.
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Figure 8. Results for the fine-tuning model of novel classes. In general, the 10- and 30-shot models
perform best on both box regression and classification. The 1- and 2-shot models can only detect a
few novel classes, because the training samples are too few to train a good model.

3.2. Recognizing Multiple Species

We also tested the performance of the proposed method in recognizing multiple species
based on the metrics AP, AP50, and AP75. Twelve wild mammal species in the dataset
MammData were used for the comparison of the proposed method and other state-of-the-
art methods. As shown in Table 2, the proposed method significantly outperforms YOLOv4
and FCOS. The AP value is slightly lower, and the metric values AP50 and AP75 of the
proposed method are higher than Sparse R-CNN. The dataset MammData contains many
challenging images, as shown in Figure 9. The challenging images include multiple small
targets, occluded or overlapped animal bodies, camouflaged backgrounds, and incomplete
bodies, which increases the difficulty of species identification. Traditional object detection
models based on CNNs, such as YOLOv4, FCOS, and CenterNet, cannot accurately detect
animal objects in challenging images; thus, as seen in Table 2, the three models have lower
values of AP, AP50, and AP75.

Table 2. Comparison of AP, AP50, and AP75 results for the MammData dataset.

Methods Backbone AP AP50 AP75

Sparse R-CNN [39] ResNet-50 58.7 78.3 64.6
YOLOv4 [40] DarkNet-53 19.8 32.4 21.9

FCOS [29] ResNet-50 34.9 56.1 37.1
CenterNet [41] ResNet-101 40.1 63.4 42.4

Ours ResNet-101 57.6 85.1 65.0

In particular, the proposed method and Sparse R-CNN are capable of species identifi-
cation for challenging images; however, as shown in Figure 7, the Sparser R-CNN method
cannot detect the small animals in an image containing multiple animals. Sparse R-CNN
also has higher errors in marking the rectangle box than the proposed method when animal
objects are in complex backgrounds (occluded, camouflaged, overlapped) or only a part of
the animal body appears in an image.



Animals 2022, 12, 1980 11 of 15Animals 2022, 12, x FOR PEER REVIEW 11 of 15 
 

 
Figure 9. Challenging example image results for the proposed method and Sparse R-CNN method. 
First column: multiple animals; second column: occluded or overlapped; third column: camou-
flaged; fourth column: incomplete body. 

3.3. Segmenting Animal Objects 
To evaluate the performance of the contour approximation model, we adopted state-

of-the-art instance segmentation models for our comparison. The comparison results for 
the animal instance segmentation networks are shown in Table 3. As shown in Table 3, 
our model and PANet achieved higher AP and AP50. This is because SGN [26] and Mask-
RCNN [23] sometimes miss small objects in animal images and incorrectly segment one 
animal into two parts. In contrast to the pixel-based representation networks PANet [24] 
and SGN [26], our contour-based animal instance segmentation network is not limited 
within a bounding box and has fewer parameters. Therefore, our model is the fastest 
among these methods, and is almost five times faster than PANet. 

In the deep snake network [35], CenterNet is used as the detector of initial rectangu-
lar boxes. Thus, we evaluated the performance of the proposed method with deep snake 
[35] and CenterNet with deep snake [35]. The comparison results are shown in Figure 8. 
For multiple animals or overlapped objects, the box provided by the proposed method is 
more accurate and complete; thus, the result of its contour approximation is almost close 
to the ground truth. However, the CenterNet box appears to mark two elephants together, 
and the box regression position is inaccurate. Because only half of the body is shown in 
this image, CenterNet cannot predict this box. After being processed by the deep snake 
block, these results are not ideal. As shown in Figure 10, CenterNet has regressed two 
very similar boxes for the same horse, and the results of contour approximation almost 
overlap. This will have an impact on the subsequent data processing, such as species 
quantity prediction, behavior recognition, etc. In addition, the FSOD method detected two 

Figure 9. Challenging example image results for the proposed method and Sparse R-CNN method.
First column: multiple animals; second column: occluded or overlapped; third column: camouflaged;
fourth column: incomplete body.

3.3. Segmenting Animal Objects

To evaluate the performance of the contour approximation model, we adopted state-
of-the-art instance segmentation models for our comparison. The comparison results for
the animal instance segmentation networks are shown in Table 3. As shown in Table 3,
our model and PANet achieved higher AP and AP50. This is because SGN [26] and Mask-
RCNN [23] sometimes miss small objects in animal images and incorrectly segment one
animal into two parts. In contrast to the pixel-based representation networks PANet [24]
and SGN [26], our contour-based animal instance segmentation network is not limited
within a bounding box and has fewer parameters. Therefore, our model is the fastest among
these methods, and is almost five times faster than PANet.

Table 3. Comparison of fps, AP, and AP50 results of animal segmentation.

Methods fps AP AP50

SGN [41] 1.2 27.3 46.8
Mask R-CNN [21] 2.8 29.6 52.7

PANet [22] <1 35.8 58.1

Deep Snake [28] 5.3 36.2 59.2

In the deep snake network [35], CenterNet is used as the detector of initial rectangular
boxes. Thus, we evaluated the performance of the proposed method with deep snake [35]
and CenterNet with deep snake [35]. The comparison results are shown in Figure 8. For
multiple animals or overlapped objects, the box provided by the proposed method is more
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accurate and complete; thus, the result of its contour approximation is almost close to the
ground truth. However, the CenterNet box appears to mark two elephants together, and
the box regression position is inaccurate. Because only half of the body is shown in this
image, CenterNet cannot predict this box. After being processed by the deep snake block,
these results are not ideal. As shown in Figure 10, CenterNet has regressed two very similar
boxes for the same horse, and the results of contour approximation almost overlap. This
will have an impact on the subsequent data processing, such as species quantity prediction,
behavior recognition, etc. In addition, the FSOD method detected two cheetahs; because
the cheetahs are in a camouflaged environment, CenterNet only returned one box for the
two cheetahs, which led to errors in contour approximation. The results were similar for
the cow. Many comparison results prove that the regression accuracy of the box directly
affects the contour approximation accuracy of the deep snake block, while the box output
by the proposed method has higher accuracy, so the contour approximation results are
more ideal.
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Figure 10. Contour approximation comparison between the proposed method and the CenterNet
method. First row: multiple animals; second row: occluded or overlapped; third row: camouflaged;
fourth row: incomplete body. For the above challenging images, the proposed model can detect
animal contours correctly. However, CenterNet encountered some problems, such as missing the
animals, regressing two animals into a contour, or dividing an animal into two parts.

4. Conclusions

In this paper, we proposed a two-stage method for the instance segmentation of
wildlife, including object detection and contour approximation. We replaced the detector
CenterNet in the deep snake convolutional network with FSOD to detect wildlife species
and segment animal instances more accurately. The proposed method can also detect rare
species with few samples. The proposed model combines the advantages of detecting new
species and real-time instance segmentation. We first constructed the mammal dataset
MammData and labeled images for species recognition. The experimental results show that
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the regression accuracy of the box directly affects the contour approximation accuracy of
the deep snake block, while the box output by the proposed method has a higher accuracy,
meaning that the contour approximation results are more ideal.

Although we successfully combined the FSOD and deep snake methods and our
method can detect rare animals from few examples, there are still some improvements
that can be made. In the future, we will collect more images of different kinds of wild
mammals to expand our dataset. We found that the box regression results for novel classes
are good, but the classification accuracy for novel classes is not as good as the box regression
results. Therefore, we will focus on the network structure of FSOD to solve this problem. In
addition, this method can only detect static images; it is not applicable to videos. We will
try to apply novel video object tracking models to the instance segmentation of wildlife
animal videos.
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