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Simple Summary: Automated animal activity recognition has achieved great success due to the
recent advances in deep learning, allowing staff to identify variations in the animal behavioural
repertoire in real-time. The high performance of deep learning largely relies on the availability of
big data, which inevitably brings data privacy issues when collecting a centralised dataset from
different farms. Federated learning provides a promising solution to train a shared model by
coordinating multiple farms (clients) without sharing their private data, in which a global server
periodically aggregates local (client) gradients to update the global model. The study develops a
novel federated learning framework called FedAAR to achieve automated animal activity recognition
using decentralised sensor data and to address, in particular, two major challenges resulting from
data heterogeneity when applying federated learning in this task. The experiments demonstrate
the performance advantages of FedAAR compared to the state-of-the-art, proving the promising
capability of our framework for enhancing animal activity recognition performance. This research
opens new opportunities for developing animal monitoring systems using decentralised data from
multiple farms without privacy leakage.

Abstract: Deep learning dominates automated animal activity recognition (AAR) tasks due to high
performance on large-scale datasets. However, constructing centralised data across diverse farms
raises data privacy issues. Federated learning (FL) provides a distributed learning solution to train a
shared model by coordinating multiple farms (clients) without sharing their private data, whereas
directly applying FL to AAR tasks often faces two challenges: client-drift during local training and
local gradient conflicts during global aggregation. In this study, we develop a novel FL framework
called FedAAR to achieve AAR with wearable sensors. Specifically, we devise a prototype-guided
local update module to alleviate the client-drift issue, which introduces a global prototype as shared
knowledge to force clients to learn consistent features. To reduce gradient conflicts between clients, we
design a gradient-refinement-based aggregation module to eliminate conflicting components between
local gradients during global aggregation, thereby improving agreement between clients. Experiments
are conducted on a public dataset to verify FedAAR’s effectiveness, which consists of 87,621 two-
second accelerometer and gyroscope data. The results demonstrate that FedAAR outperforms the
state-of-the-art, on precision (75.23%), recall (75.17%), F1-score (74.70%), and accuracy (88.88%),
respectively. The ablation experiments show FedAAR’s robustness against various factors (i.e., data
sizes, communication frequency, and client numbers).

Keywords: data privacy; animal behaviour; deep learning; distributed learning; client-drift; local
gradient conflicts

1. Introduction

Monitoring and assessing animal activities provide rich insights into their physical
status and circumstances, as activity is one of the most critical indicators of animal health
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and welfare [1]. Traditionally, animal activity monitoring largely relies on direct visual
and behavioural observation, which is time-consuming and labour-intensive [2]. Over the
past decade, automated animal activity recognition (AAR) with wearable sensors, which
allows staff to identify variations in the animal behavioural repertoire in real-time, has
attracted increasing attention and achieved great success. In the sensor-based AAR systems,
wearable sensors are attached to a certain part of the animal body (e.g., ear, neck, halter,
back, and leg) to collect motion data (e.g., acceleration and angular velocity), which are
then used for classifying animal activities (e.g., feeding, drinking, and resting) with suitable
classification algorithms.

In recent years, deep learning has dominated the tasks in AAR due to the high
performance achievable with the help of large-scale training datasets [3,4]. For instance,
convolutional neural networks (CNNs) are widely used to automatically classify various
animal activities, such as the walking and ruminating of cattle [4], the trotting and cantering
of equines [2], and the eating and petting of canines [5]. However, collecting a large
corpus of centralised datasets from different sources (e.g., farms) often raises data privacy
issues. Federated learning (FL) has recently emerged as a distributed learning paradigm,
providing an attractive solution to this problem [6–8]. A standard FL system iterates
two steps periodically, i.e., local training in farms (clients) and global aggregation in a
trustworthy centre (server), to train a global model. Specifically, during local training, each
client downloads the parameters of the global model from the server-side to initialise its
local model and then exploits local data to calculate local (client) gradients, which are
sent to the server in turn. The server collects these local gradients and aggregates them to
update the global model. Such a training mechanism enables data owners to build a shared
model collaboratively without exchanging their private data, effectively promoting privacy
preservation between clients [9–11].

Despite remarkable benefits provided by FL, directly applying FL to AAR tasks often
faces two major challenges: client-drift during local training and local gradient conflicts
during global aggregation, which easily increase the difficulty in model convergence
and cause extreme degradation of performance [12]. First, the movement patterns of
individual animals are often drawn from distinct distributions, which inevitably results
in data heterogeneity between clients. Such data heterogeneity enlarges the inconsistency
of learned features across clients, easily raising drift concerns between client updates
since each client model is optimised towards its local objective instead of global optima
during local training [13–15]. To address this issue, some existing methods [14–17] impose
constraints on the local optimisation by exploiting a model-level regularisation term, which
aims to facilitate all local models to approach consistent views. For instance, FedProx
restricted local model parameters to be close to global parameters by adding a proximal
term in the local training [16]. SCAFFOLD corrected for client-drift by using control
variates to overcome gradient dissimilarity in local training [15]. Both FedLSD and FedCAD
regarded the distributed global model as a teacher and distilled its predictions on local data
to guide local optimisation [13,17]. However, these methods only emphasised constraints
on local models instead of directly forcing clients to learn consistent features, consequently
yielding sub-optimal performance.

Second, gradients among clients often possess inconsistent directions and even have
conflicting components due to the inconsistency between local optimisation objectives
in the context of data heterogeneity. Directly aggregating all local gradients in standard
FL methods easily leads to mutual interferences among clients’ knowledge, further ham-
pering the process of model convergence and exacerbating the risk of model divergence.
To alleviate this problem, most existing works [18–21] attempted to modify the global
aggregation mechanism by dynamically adjusting aggregation weights to local gradients
under different criteria. For example, IDA assigned each client weight based on the inverse
distance of its gradient to the averaged gradient across all clients [21]. Precision-weighted
FL aggregated local gradients by averaging gradients by the inverse of their estimated
variance [19]. ABAVG combined gradients over clients by the accuracies of local models on
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the validation set at the server-side [18]. However, aggregating local gradients merely by
changing their weights still cannot drastically remove conflicting components in gradients
and may even lose important information in gradients.

In this study, we propose a novel FL framework, namely FedAAR, to achieve auto-
mated AAR by uniting decentralised data while tackling the abovementioned issues. To
alleviate the client-drift issue, we design a prototype-guided local update (PLU) module, in
which we introduce a globally shared prototype (classwise feature representation) as shared
knowledge to constrain local optimisation. To reduce conflicts between local gradients, we
devise a new gradient-refinement-based aggregation (GRA) module to constantly recali-
brate local gradients throughout the training process. The proposed FedAAR is trained
based on a public dataset [22], and its generalisation performance is compared with that of
the state-of-the-art FL strategies and with the centralised learning algorithm. In summary,
the main contributions of this study are as follows:

• We propose a novel FL framework called FedAAR to automatically recognise animal
activities based on distributed data. This gives it the considerable potential that
multiple farms jointly train a shared model using their private dataset while protecting
data privacy and ownership. To the best of our knowledge, this is the first time the FL
method has been explored in automated AAR across multiple data sources.

• To alleviate client-drift issues, we devise a PLU module to replace the traditional
local training process. The PLU module forces all clients to learn consistent feature
knowledge by imposing a global prototype guidance constraint to local optimisation,
further reducing the divergence between client updates.

• Different from existing aggregation mechanisms, we design a GRA module to reduce
conflicts among local gradients. The GRA module eliminates conflicting compo-
nents between local gradients during global aggregation, effectively guaranteeing
that all refined local gradients point in a positive direction to improve the agreement
among clients.

• Our experimental results demonstrate that our proposed FedAAR outperforms the
state-of-the-art FL strategies and exhibits performance close to that of the centralised
learning algorithm. This proves the promising capability of our method to enhance
AAR performance without privacy leakage. We also validate the performance ad-
vantages of our approach compared to the baseline in different practical scenarios
(i.e., local data sizes, communication frequency, and client numbers), providing rich
insights into the appropriate future applications of our method.

2. Materials and Methods
2.1. Data Description

The dataset used in this study is a public dataset created by [22]. This dataset is a
centralised dataset comprising 87,621 two-second samples that were collected from six
horses with neck-attached IMUs. The sampling rate was set to 100 Hz for both the tri-axial
accelerometer and gyroscope and 12 Hz for the tri-axial magnetometer. Table 1 illustrates
the data distribution of the dataset. Six activities (i.e., eating, galloping, standing, trotting,
walking-natural, and walking-rider) were registered, and the number of activity samples of
the six individuals (i.e., Happy, Zafir, Driekus, Galoway, Patron, and Bacardi) was 23,625,
11,071, 10,127, 24,602, 12,849, and 5347, respectively. As in our previous study set [23],
we exploited the tri-axial motion data from the accelerometer and gyroscope as our input
samples, which were normalised before being input into the network.
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Table 1. Number of data samples per subject and activity.

Subject
Activity

Eating Galloping Standing Trotting Walking-Natural Walking-Rider Total

Happy 5063 696 1186 7038 746 8896 23,625
Zafir 1091 835 347 3559 161 5078 11,071

Driekus 2496 323 341 2673 270 4024 10,127
Galoway 4331 1043 1750 6423 1402 9653 24,602

Patron 1951 714 1244 3402 388 5150 12,849
Bacardi 1116 328 245 1981 360 1317 5347

2.2. Preliminaries for Federated Learning

A federated learning (FL) system coordinates K clients to collectively train a global
model while keeping their data stored locally, effectively reducing the potential for violating

data privacy. In each client k, the local dataset
{(

xk
i , yk

i

)}Nk

i=1
is sampled from a distribution

Dk, where yk
i ∈ {1, · · · , C} corresponds to the ground-truth label of the data instance

xk
i , C is the number of label categories, and Nk is the data number of the k-th client. The

training of the FL system mainly consists of T communication rounds between a global
server and K clients, with the detailed procedure of each communication round divided
into the following three steps:

Step 1. All clients synchronously download a global model wglobal from a global server.
Step 2. Each client k uses the global model wglobal to initialise its local model wk (i.e.,

wk
initial = wglobal) and then conducts local training for E epochs, i.e., minimising the

local optimisation objective by using a gradient descent algorithm:

min
1

Nk ∑Nk

i=1 L
k
CE

(
wk, xk

i , yk
i

)
, (1)

where Lk
CE denotes the cross-entropy loss function of the k-th client. After local training,

we can obtain the updated local model wk
updated and local gradient gk (i.e., the difference

between the updated local model wk
updated and the initial local model wk

initial).

Step 3. Each client k then uploads its local gradient gk to the global server. These local

gradients
{

gk
}K

k=1
from all clients are aggregated by directly averaging to generate

global gradients gglobal:

gglobal =
1
K

K

∑
k=1

gk. (2)

Afterwards, the global gradient gglobal is used to further update the original global
model wglobal:

wglobal = wglobal + gglobal . (3)

The updated global model wglobal will be sent to all clients again in the next communi-
cation round (Step 1). The above steps are performed repeatedly until the global model
achieves convergence.

The implementation of standard FL (e.g., FedAvg) heavily relies on the assumption
that no data heterogeneity issues occur across clients (i.e., data between clients follow a
uniform distribution). However, this assumption does not hold in AAR tasks because
the discrepancy of movement patterns among individual animals often results in data
heterogeneity, thus giving rise to detrimental effects on the training of FL. Specifically,
data heterogeneity across clients inevitably enlarges the inconsistency of learned features
between clients, thereby inducing drift between client updates as each client model is opti-
mised toward its local objective instead of global optima [17]. In addition, local gradients
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may conflict with each other due to the inconsistent local objectives, resulting in knowledge
interference among clients when directly aggregating all local gradients. Hence, there is a
need to reformulate the above optimisation process to adapt to AAR tasks.

2.3. Our Proposed FL Framework for AAR
2.3.1. Overview

In this study, we propose a novel FL framework called FedAAR to achieve automated
AAR in the context of data heterogeneity between clients, as illustrated in Figure 1. The
training of FedAAR consists of T communication rounds between a global server and K
clients, where the detailed procedures of each communication round include three steps
as follows. (1) Each client k first downloads the same global model wglobal and global
prototype Pglobal from a global server simultaneously. (2) Based on the local dataset Dk in
each client k, the local model wk is initialised as the global model wglobal and then trained in
a prototype-guided local update (PLU) module (Figure 1a; see Section 2.3.2). After local
training, the updated local model wk

updated and local prototype Pk
updated can be obtained.

Then, the local gradient gk can be calculated as the difference between the updated local
model wk

updated and the initial local model (i.e., the downloaded global model wglobal). (3) All

local gradients
{

gk
}K

k=1
and local prototypes

{
Pk

updated

}K

k=1
are then uploaded to the global

server simultaneously. Afterwards, these local gradients
{

gk
}K

k=1
are aggregated to a global

gradient gglobal using a gradient-refinement-based aggregation (GRA) module (Figure 1b;
see Section 2.3.3) and then used to update the global model wglobal (see Equation (3)). In

addition, local prototypes
{

Pk
updated

}K

k=1
are aggregated to update the global prototype

Pglobal . The updated global model wglobal and global prototype Pglobal are sent to all clients
again in the next communication round. The above three processes are repeated until the
global model achieves convergence.
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Figure 1. Overall architecture of our proposed FedAAR framework. The training of FedAAR consists
of T communication rounds between a global server and K clients, where the workflow of each
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communication round includes three steps as follows. 1© Each client k first downloads the same global
model wglobal and global prototype Pglobal from a global server simultaneously. 2© Based on the local
dataset Dk in each client k, the local model wk is initialised and then trained in a prototype-guided
local update (PLU) module (Figure 1a). After local training, the updated local model wk

updated and

local prototype Pk
updated can be obtained. The local gradient gk can be calculated as the difference

between the updated local model wk
updated and the initial local model (i.e., the downloaded global

model wglobal). 3© All local gradients
{

gk
}K

k=1
and local prototypes

{
Pk

updated

}K

k=1
are then uploaded

to the global server. Afterwards, these local gradients
{

gk
}K

k=1
are aggregated to a global gradient

gglobal using a gradient-refinement-based aggregation (GRA) module (Figure 1b) and then used to

update the global model wglobal. In addition, local prototypes
{

Pk
updated

}K

k=1
are aggregated to update

the global prototype Pglobal . The updated global model wglobal and global prototype Pglobal are sent to
all clients again in the next communication round. The above three processes are repeated until the
global model achieves convergence.

2.3.2. Prototype-Guided Local Update

To alleviate client-drift issues in the local training, we devised a PLU module (Figure 1a),
which introduces a global prototype to serve as the shared feature knowledge to guide
local optimization.

First, each client k simultaneously downloads the same global model wglobal and global
prototype Pglobal from the server. Based on the local dataset Dk in each client k, the local
model wk is initialised as the global model wglobal and then trained in the proposed PLU

module. Specifically, given batchwise samples
{(

xk
i , yk

i

)}B
i=1

with C categories in client k,

we first adopted the feature extractor to extract feature representation
{

ek
c,i

}Bc

i=1
for samples

in each class c, where B and Bc represent the number of total samples and the c-th categorial
samples in a batch, respectively. These features are then used to calculate the corresponding

classwise prototype
{

Pk
c

}C

c=1
, where Pk

c is the mean value of feature representations of
samples in class c, i.e.,

Pk
c =

Bc

∑
i=1

ek
c,i

Bc
. (4)

Herein, we empirically used the network that removed the last fully connected layer
as the feature extractor [24].

Inspired by prototype learning, in which gathering the prototypes across hetero-
geneous datasets enables the incorporation of feature representations over various data

distributions [24,25], we brought a global prototype
{

Pglobal
c

}C

c=1
(Pglobal) aggregated across

clients as consistent feature-level views to guide local training. We propose a new prototype
guidance regularisation (PGReg) loss Lk

PGReg as follows:

Lk
PGReg = ∑c∈C ||P

k
c − Pglobal

c ||2, (5)

where Pglobal
c denotes the global prototype of the c-th category and ||· ||2 denotes the L2

distance. The PGReg loss sufficiently encourages local prototype
{

Pk
c

}C

c=1
of each client to

approach the same global prototype
{

Pglobal
c

}C

c=1
, effectively keeping all clients as having

a consistent direction of feature learning. Thus, the total loss function can be reformulated
as the linear combination of the original classification loss Lk

CE and PGReg loss Lk
PGReg:

Lk = Lk
CE + λ ∗ Lk

PGReg, (6)
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where λ is the weight coefficient of PGReg loss and its value equals 0 in the initial state.
Then, we conducted the local training (see Equation (1)) to obtain the updated local model

wk
updated. The updated local prototype

{
Pk

c,updated

}C

c=1
can be computed based on the feature

vectors of correctly classified samples using the updated local model wk
updated. The local

gradient gk can be calculated as the difference between the updated local model wk
updated

and the initial local model (i.e., the downloaded global model wglobal). Afterwards, all local

gradients
{

gk
}K

k=1
and local prototypes

{
Pk

updated

}K

k=1
are uploaded to the server to update

the original global model and global prototype.
At the server-side, to avoid the attack resulting from noise components involved in

the updated local prototypes
{

Pk
updated

}K

k=1
, we devised a novel adaptive global prototype

update process. Instead of directly replacing the global prototype with the average values of

local prototypes over clients, we define the updated global prototype
{

Pglobal
c

}C

c=1
(Pglobal)

as a linear combination of the weighted averaged local prototypes
{

Pc
}C

c=1 and the original

global prototype
{

Pglobal
c

}C

c=1
:

Pglobal
c = γc ∗ Pglobal

c + (1− γc) ∗ Pc, (7)

where γc is an adaptively balanced coefficient controlling the updating degree of the global
prototype and Pc = ∑K

k=1 nk
c Pk

c,updated/ ∑K
k=1 nk

c , where nk
c represents the number of cor-

rectly classified samples belonging to the c-th category in client k. Considering that the
updated global prototype may be transferred close to each other due to noise components,
inducing similarity increases of inter-class feature vectors [26], we modulated γc accord-
ing to the intra-class and inter-class distance between local prototypes and the original
global prototype:

γc =
expd(Pc , Pglobal

c )

expd(Pc , Pglobal
c ) + expd(Pc , Pglobal

c′ )
, (8)

where d(·) denotes the Euclidean distance and Pglobal
c′ is the global prototype of class c’, that

is the closest class to class c, i.e., c′ = argmin
j∈{1,2,...,C}\c

d
(

Pglobal
c , Pglobal

j

)
. Intuitively, when the

averaged local prototype Pc is farther from the global prototype of the same class c than the
global prototype of its closest class (i.e., d

(
Pc, Pglobal

c

)
> d

(
Pc, Pglobal

c′

)
), the contribution

of Pc on the update process (Equation (7)) should be lower than that of Pglobal
c . Note that

when the value of Pglobal
c is empty at the early training phase, we directly put the updated

averaged prototype Pc into global prototype Pglobal
c .

2.3.3. Gradient-Refinement-Based Aggregation

To reduce conflicts among local gradients during global aggregation, we designed a
new GRA module (Figure 1b), which eliminates the conflicting components between local
gradients, ensuring all refined local gradients point in a positive direction to improve the
agreement across clients.

Given a set of local gradients
{

gk
}K

k=1
that are uploaded to the global server, we

first characterised any two of these gradients as conflicting when their directions point
away from one another (i.e., having a negative cosine similarity). Herein, we aimed
to reconstruct consensus vectors by refining the conflicting local gradients and keeping
the non-conflicting local gradients invariant. Figure 2 visualises the main step of the
local gradient refinement process. Specifically, suppose gi is the local gradient at the i-th
client and gj is selected in a random order from the rest of the local gradients, where
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i ∈ {1, 2, . . . , K} and j ∈ {1, 2, . . . , i− 1, i + 1, . . . , K}. The cosine similarity between gi and
gj can be denoted as cos θi,j, where θi,j is the angle between gi and gj. As shown in Figure 2a,
if gi conflicts with gj (i.e., cosine similarity cos θi,j < 0), we remove the component of gi in
the direction fully opposite that of gj and alter gi by its projection g̃i onto the normal plane
of gj:

g̃i = gi − gi·gj

||gj||2
gj. (9)

If gi and gj are not in conflict (i.e., cosine similarity cos θi,j > 0), we retain the original
local gradient gi as unchanged (i.e., g̃i = gi), as shown in Figure 2b. Afterward, the updated
g̃i is further selectively updated according to the condition of whether there are conflicting
components compared to other local gradients. This process is repeated until all of the local
gradients are compared.

Supposing
{

g̃k
}K

k=1
is a collection of refined local gradients, we then aggregate them

using Equations (2) and (3) to further update the global model wglobal .
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2.4. Evaluation Methods

The precision, recall, F1-score, and accuracy were measured to indicate the compre-
hensive performance of the classification model. They are defined as follows:

Precision =
TP

TP + FP
× 100%, (10)

Recall =
TP

TP + FN
× 100%, (11)

F1-score =
2TP

2TP + FP + FN
× 100%, (12)

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%, (13)

where TP, FP, TN, and FN are the number of true positives, false positives, true negatives,
and false negatives, respectively.

2.5. Implementation Details

In our previous work, we established a cross-modality interaction network (CMI-
Net) for equine activity recognition based on accelerometer and gyroscope data [23]. The
CMI-Net consists of a dual CNN trunk architecture and a joint cross-modality interaction
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module, effectively improving the classification performance for equine activities. Herein,
we used CMI-Net as the global classification model to achieve our proposed FedAAR.

During training, we used softmax cross-entropy loss with L2 regularisation (a weight
decay of 0.15). An Adam optimiser with an initial learning rate of 5 × 10−5 was used, and
the learning rate decreased by 0.1 times every 20 epochs. The communication rounds T and
batch size were set to 100 and 256, respectively. If not specified, the value of local training
epochs E was set to 1, and the weighting coefficient λ in PLU was set to 0.05 by default.
The global model was initialised randomly before being downloaded to clients in the first
round. Over the communication rounds, the best global model with the highest testing
accuracy was saved as the optimal model. To verify the model’s generalisation abilities,
we performed the leave-one-out-based validation method. Specifically, we separately ran
three times in each experiment. In each run (time), we randomly selected five horses from
the original six horses and individually assigned these five horses to five farms (clients).
Each of these five horses’ data serves as each client’s data, and all client data were used as
training data to train a shared global model collectively. The data from the remaining horse
(the sixth horse) were then used as the test data to verify the performance of the trained
global model. The final test result of the model performance is presented in the format
mean ± std from the three runs. This kind of data allocation can well simulate practical
scenarios, i.e., data heterogeneity across farms, since the movement patterns of individual
animals are often drawn from distinct distributions. All experiments were executed using
the PyTorch framework on an NVIDIA Tesla V100 GPU. The source code is available at
https://github.com/Max-1234-hub/FedAAR (accessed on 20 June 2022).

3. Results and Discussion

Overall, the experimental results demonstrate that our proposed FedAAR outper-
forms the state-of-the-art FL strategies from both quantitative and qualitative perspectives
while exhibiting performance close to that of the centralised learning algorithm. Ablation
studies were then carried out to evaluate the effectiveness of the PLU and GRA module
on the classification capability. In addition, a comprehensive investigation of FedAAR’s
performance was conducted at different levels of three practical conditions (i.e., dataset
sizes on local clients, communication frequency between local clients and the global server,
and client numbers). The experimental results of FedAAR were compared with those of its
corresponding baseline, further validating the performance advantages of our method. In
the end, some possible future research directions are proposed. The details are described
as follows.

3.1. Comparisons with State-of-the-Art Methods

Quantitative comparison: We compared the performance of our proposed FedAAR
with the state-of-the-art FL approaches (i.e., FedAvg, FedPorx, IDA, SiloBN, FedBN, and
precision-weighted FL) and with centralised learning. As illustrated in Table 2, our pro-
posed framework outperformed all of the selected state-of-the-art FL methods, with the
highest average values of 75.23%, 75.17%, 74.70%, and 88.88% in precision, recall, F1-score,
and accuracy, respectively. These results demonstrate the promising capabilities of FedAAR
for animal behavioural classification. In particular, compared with the precision-weighted
FL [19], which obtains relatively good performance among the selected state-of-the-art FL
methods, our proposed approach achieves remarkable increments of 3.75%, 9.39%, 8.34%,
and 4.22% in the average values of the precision, recall, F1-score, and accuracy, respectively.
This can be ascribed to the ability of our architecture to effectively alleviate client-drift
concerns in local training and conflicts of local gradients during global aggregation. Com-
pared with centralised learning, which provides the upper bounds, the performance of our
method is close, with 3.64%, 3.26%, and 3.49% lower average values of the recall, F1-score,
and accuracy, respectively. This further reveals the favourable performance of our method.
It is also worth noting that the proposed approach demonstrates smaller variances than
the state-of-the-art works, with 1.01%, 3.92%, 2.49%, and 1.36% variance in the precision,

https://github.com/Max-1234-hub/FedAAR
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recall, F1-score, and accuracy, respectively, indicating the good stability and robustness of
our approach.

Table 2. Comparative results (mean ± std) of our proposed FedAAR with state-of-the-art federated
learning (FL) methods. The best two results for each metric are highlighted in bold.

Method Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Centralised learning [23] 83.34 ± 10.81 78.81 ± 2.40 77.96 ± 2.28 92.37 ± 3.84
FedAvg [6] 71.10 ± 4.42 64.96 ± 9.81 65.40 ± 8.93 84.31 ± 3.05

FedProx [16] 71.10 ± 4.42 64.93 ± 9.83 65.37 ± 8.96 84.30 ± 3.06
IDA [21] 70.67 ± 5.45 64.35 ± 10.68 64.27 ± 10.02 84.36 ± 3.33

SiloBN [27] 71.15 ± 2.73 64.57 ± 9.41 64.96 ± 7.94 83.18 ± 2.64
FedBN [28] 70.90 ± 2.84 65.45 ± 8.81 65.82 ± 7.14 83.72 ± 2.16

Precision-weighted FL [19] 71.48 ± 3.78 65.78 ± 9.15 66.36 ± 8.03 84.66 ± 2.68
FedAAR (ours) 75.23 ± 1.01 75.17 ± 3.92 74.70 ± 2.49 88.88 ± 1.36

Qualitative comparison: To qualitatively verify our proposed approach, we visualise the
feature vectors of the test set before the last fully connected layer within FedAAR and the
state-of-the-art FL models, with the help of t-distributed stochastic neighbour embedding
(t-SNE) [29]. As illustrated in Figure 3, the two-dimensional embeddings can reflect the
distribution of the network features in the feature space and indicate the generalisation
ability of models, in which each point corresponds to a sample and different colours
represent different category labels (ground-truth). Better generalisation means that the
feature points of samples belonging to the same class cluster closer to each other, whereas
the points between different classes are located far from each other. From the embedding
visualisation, we can observe that the proposed FedAAR displays more compact clusters
within the same categories and larger distances between different categories compared to
the selected state-of-the-art methods. This reflects the success of our approach in improving
the consistency of update directions across clients from both the local optimisation and
global aggregation perspectives, which is beneficial to the generalisation performance
promotion of the global model.
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3.2. Ablation Studies
3.2.1. Evaluation of PLU and GRA Module

Quantitative analysis: To investigate the effectiveness of PLU and GRA on classification
performance, we designed four different experimental settings as follows. (1) Baseline: we
applied FedAvg as our baseline for the ablative comparison; (2) Baseline + PLU: we used
the PLU module instead of the original optimisation process in the baseline during local
training; (3) Baseline + GRA: we replaced the original weighted average mechanism in
the baseline with our proposed GRA module during global aggregation; (4) FedAAR: we
used our proposed framework involving both PLU and GRA modules simultaneously. The
quantitative results are shown in Table 3. It is remarkable that the two modules individually
yield desirable performance improvements over the baseline, which proves that each of
the PLU and GRA modules plays an important role in AAR tasks with data heterogeneity
issues. In particular, the GRA module contributes to the tremendous performance im-
provements, with increases of 3.07%, 9.23%, 8.34%, and 3.47% in the average values of
the precision, recall, F1-score, and accuracy, respectively. The variances also significantly
decline, by 3.47%, 6.85%, 7.63%, and 2.27% in the precision, recall, F1-score, and accu-
racy, respectively, when the GRA module is used separately. These experimental results
validate the significance of the GRA module in the model’s performance and robustness
improvements. The inclusion of the PLU module in addition to the GRA module enables
all clients to possess consistent guidance directions of feature learning and further obtain
relative gains of 1.06%, 0.98%, 0.96%, and 1.10% in the average values of the precision,
recall, F1-score, and accuracy, respectively.

Table 3. Evaluation results (mean ± std) of the GRA and PLU modules on classification performance.
The best results for each metric are highlighted in bold.

Method Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Baseline 71.10 ± 4.42 64.96 ± 9.81 65.40 ± 8.93 84.31 ± 3.05
Baseline + PLU 73.04 ± 2.89 65.98 ± 9.34 67.10 ± 8.02 84.92 ± 3.00
Baseline + GRA 74.17 ± 0.95 74.19 ± 2.96 73.74 ± 1.30 87.78 ± 0.78

FedAAR 75.23 ± 1.01 75.17 ± 3.92 74.70 ± 2.49 88.88 ± 1.36

Analysis of the hyper-parameter λ in PLU: The hyper-parameter λ in Equation (6) rep-
resents the weight of newly added PGReg loss, corresponding to the constraint degree
of global knowledge on local training. We conducted experiments to evaluate the perfor-
mance of our approach with different λ values (i.e., 0.01, 0.03, 0.05, 0.07, and 0.09), with the
results shown in Table 4. The FedAAR achieves clearly the best average values in the recall
and F1-score when λ was set to 0.05, while obtaining a performance in the precision and
accuracy comparable to the model with λ set to 0.09. Although the precision and accuracy
arrive at the highest average values when λ was set to 0.09, the model exhibits a poor
recall and F1-score. In addition, the average recall and F1-score values first increase and
then decrease as λ varied from 0.01 to 0.09, which illuminates the likely benefit of properly
choosing the value of λ for the improvement of overall classification performance.

Table 4. Experimental results (mean ± std) of FedAAR with different weighting coefficients λ of the
prototype guidance regularization loss. The best two results for each metric are highlighted in bold.

λ Precision (%) Recall (%) F1-Score (%) Accuracy (%)

0.01 74.39 ± 1.07 74.56 ± 2.81 74.08 ± 1.07 88.17 ± 0.61
0.03 75.10 ± 0.82 74.87 ± 3.39 74.53 ± 1.93 88.55 ± 0.80
0.05 75.23 ± 1.01 75.17 ± 3.92 74.70 ± 2.49 88.88 ± 1.36
0.07 74.97 ± 1.08 74.66 ± 4.07 74.18 ± 2.59 88.88 ± 1.65
0.09 75.94 ± 2.14 72.50 ± 5.21 72.80 ± 3.85 88.89 ± 1.67
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Visualisation of refinements in GRA: To provide further insights into the enormous
contributions of the GRA module, we visualise the counts of gradient refinement operations
during the training process over three runs in Figure 4. It can be observed that various
numbers of gradient modulation operations occur in each communication round, which
confirms that conflicts among local gradients arise continuously during the training process.
In addition, this observation implies that our framework can constantly and steadily
recalibrate the local gradients across clients, effectively enhancing the model’s performance.
This finding also reinforces the suitability of the proposed GRA module for AAR tasks in
the context of data heterogeneity.
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3.2.2. Analysis of Local Dataset Size

To observe the behaviour of our proposed method over different data capacities,
we present in Figure 5a the average testing accuracy of FedAAR and the baseline under
various local dataset percentages (i.e., 20%, 40%, 60%, 80%, and 100%). The test accuracies
of both FedAAR and the baseline decrease gradually as the number of training samples
reduces, but the accuracy of FedAAR continues to exceed that of the baseline, validating
the performance advantages of our method under scenarios with a small amount of data.
In addition, FedAAR conducted on 60% local data still obtains higher accuracy than the
baseline performed on full-sized local data, which reveals that our approach can effectively
mitigate the performance degradation due to the reduced data amount.
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3.2.3. Analysis of Communication Frequency

The communication frequency between local clients and the global server may influ-
ence learning behaviour. We decreased the communication frequency by increasing the
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local updating epochs and present in Figure 5b the average testing accuracy of FedAAR
and the baseline on various local updating epochs (i.e., E = 1, 2, 4, 8, 16). As expected [28],
both FedAAR and the baseline achieve higher testing accuracy under smaller local updat-
ing epochs, because aggregating at lower frequencies (i.e., larger local updating epochs)
easily results in the models’ divergence, especially in the early training stages [6]. Notably,
FedAAR with a local epoch of 16 still exhibits higher accuracy than the baseline with one
local epoch, demonstrating the superiority and reliability of our approach.

3.2.4. Analysis of Client Numbers

A larger number of clients may bring more conflicts among local gradients, which
poses a great challenge to the practical application of FL. To further verify the performance
advantages of FedAAR compared to the baseline under scenarios with more clients, we
simulated the situations with varying client numbers by redistributing the original data
based on the basic setting with five clients (see Section 2.5). Specifically, we separately
parcelled each of five horse datasets into 2, 3, 4, 5, and 6 smaller ones, each serving as the
training data of a single client, thus forming five settings with total client numbers of 10,
15, 20, 25, and 30, respectively. The data from the remaining horse were still used as the
test data to validate our method’s performance. As shown in Figure 6, the testing accuracy
consistently decreases as client numbers increase, but FedAAR drops more slowly than the
baseline, indicating the robustness and scalability of our approach under scenarios with
more clients.
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3.3. Limitations and Implications

Due to its privacy-preserving nature, FL has been increasingly adapted to various
applications, including mobile edge devices, industrial engineering, and health care [30–32].
As far as we know, no previous work has developed FL frameworks tailored for automated
AAR applications based on decentralised data. Our method is the first to exploit FL to
achieve animal behavioural recognition using distributed data without privacy leakage,
opening up new opportunities for developing animal monitoring systems with strong
robustness and generalisation capabilities.

Our method additionally requires the transmission of prototypes between clients
and the server, increasing the dissemination of client information and communication
overhead. However, this does not raise privacy concerns because prototypes only represent
the average statistics across all already compressed local features [33]. In addition, the
transmitted prototypes between the server and each client occupied 3 KB, which is only
2.35% of the communication cost of model parameters/gradients. This further reinforces
the suitability of our proposed algorithm in practice.

Our method achieves automated AAR based on distributed data in the context of
data heterogeneity. The major limitation is that our approach remains at the experimental
level. To simulate practical scenarios, i.e., data heterogeneity across farms (clients), we
assigned the horse dataset to multiple clients according to individuals since the movement
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patterns of individual animals are often drawn from distinct distributions. This kind of
data allocation refers to some previous works [6,15,34], which generally divide a single
centralised dataset into small ones. In addition, we separately selected one horse dataset
(excluded in the training set) as the test set to test the trained model’s performance in each
run of the experiment, which effectively promotes the generalisation capabilities of the
model. In the future, we will collect more data from different farms and further verify the
effectiveness of our proposed FL strategy.

Considering real-world applications, it is impossible for the client data to be fully
labelled due to the time-consuming and costly process of data annotation. Thus, promising
solutions are required for integrating FL with potential techniques (e.g., semi-supervised
learning) for exploiting the unlabelled data sufficiently. In addition, our method can
be extended to AAR tasks with other forms of data (e.g., visual) and different kinds of
production management systems that need to use cross-silo data, further promoting the
development of agriculture.

4. Conclusions

In this study, we developed a novel FL framework called FedAAR involving a PLU
module and a GRA module to achieve automated AAR by uniting decentralised sensor
data while avoiding privacy leakage. The PLU module forces all clients to learn consistent
classwise feature representations in local training, effectively reducing drift among client
updates. The GRA module eliminates the conflicting components between local gradients
during global aggregation, which ensures that all refined local gradients point in a positive
direction to improve the agreement among clients. The experimental results reveal that
our approach outperforms the state-of-the-art FL methods and achieves performance that
is close to that of the centralised learning algorithm. Ablation studies further illuminated
the effectiveness of the PLU and GRA modules. In addition, comparative analyses of the
performance of FedAAR and the baseline at different levels of three practical conditions (i.e.,
local data sizes, communication frequency, and client numbers) confirm the performance
advantages of our algorithm. These analyses also provide rich insights into the appropriate
future applications of our method.
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