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Simple Summary: Acute cervical disk disease may result in tetraplegic dogs without the ability of
sternal posture, which could result in aspiration pneumonia, hypoventilation and other complications.
The main treatment approach is surgical, depending on the clinical sign’s severity, and early post-
operative rehabilitation may also be considered, including in dogs with spinal hyperesthesia, through
the implementation of locomotor training with specific guidelines in the first days after surgery.

Abstract: Locomotor training (LT) is task-specific repetitive training, with sensorimotor stimulation
and intensive exercises that promote neuromuscular reorganization. This study aimed to observe if
LT could be initiated safely in the first 3–15 days after surgery in tetraplegic C1–C5 IVDD—Hansen
type I dogs. This prospective blinded clinical study was conducted at two rehabilitation centers
in Portugal, with 114 grade 1 (MFS/OFS) dogs, divided by the presence of spinal hyperesthesia
into the SHG (spinal hyperesthesia group) (n = 74) and the NSHG (non-spinal hyperesthesia group)
(n = 40), evaluated in each time point for two weeks according to a neurorehabilitation checklist by
three observers for inter-agreement relation. LT was safely applied with 62.3% of the OFS ≥ 11 within
15 days and of these, 32.4% achieved a OFS ≥ 13. There were no new cases of hyperesthesia in the
NSHG and from the SHG all recovered. Comparing groups, a significant difference was observed
in their ability to achieve ambulatory status (p < 0.001), between the presence of hyperesthesia and
days until ambulation (p < 0.006) and in each time point (p < 0.001; R2 = 0.809). Early LT may be
a safe treatment to be applied in the first 3 days on these dogs and spinal hyperesthesia should be
important to the rehabilitation team. This study should be continued.

Keywords: cervical IVDD; neurorehabilitation; locomotor training; hyperesthesia

1. Introduction

Acute cervical disk disease accounts for approximately 15% of all intervertebral disk
extrusions, with Dachshunds, Beagles and Poodles representing 80% of the cases [1,2].
Cervical myelopathies are associated with many problems, such as dogs with tetraplegia
without the ability of sternal posture, which could present severe clinical situations, such
as aspiration pneumonia, hypoventilation and seizure activity [3–8].

Disc disease is often divided into two distinct categories: Hansen type I and type II [1,9].
However, previous reports suggested that type I is common to occur spontaneously or
secondary to mild trauma [10].

In small breed dogs, Hansen type I cervical disc disease usually affects the cranial
cervical disc [11] with C2–C3 as the most common location, typically causing severe neck
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pain with mild neurologic deficits [12]. These signs can go from a sharp superficial burning
pain or itching sensation to dysfunction in the spinothalamic system with paresthesia’s,
such as tightness, squeezing or swelling sensation, usually described in human patients,
suggesting dysfunction in the ascending sensory tracts, with an electro shock-like sensation
promoted by neck flexion that spreads to the arms, down the spine and legs (“Lhermitle
sign”) [13].

Clinical signs of ataxia or paresis predominantly affect the pelvic limbs and cervical
pain is usually caused by cervical spinal cord and/or nerve root compression [14]. This
spinal cord compression could be caused by ventral, ventrolateral or circumferential com-
pression [15] and some dogs that initially improve may develop compression at adjacent
sites [16,17]. Compression lesions may be dynamic, with the possibility of the so-called
“domino effect” or adjacent segment disease, also reported in humans and well known to
occur following distraction-stabilization techniques and less commonly following ventral
slot [17–20], one of the most widely used approaches for spinal cord decompression in dogs
with cervical intervertebral disc disease (IVDD) [21].

Regarding diagnosis, radiographic exams have shown that neck extension (dorsi-
flexion) was associated with compression exacerbation and ventral flexion with compres-
sion relief, leading to the concept of dynamic cord compression. In some cases, linear
traction also may relieve spinal cord compression [14,22]. The computed tomography (CT)
can be used to help diagnosis, showing hyperdense material in the vertebral canal, loss of
epidural fat and distortion of the spinal cord. In acute and sub-acute epidural hemorrhage,
it may be seen an irregular hyperdense line, cranial and caudal to the herniated disc mate-
rial [23]. An alternative exam for diagnosis would be magnetic resonance imaging, which
allows the possibility to see not only the intervertebral discs and vertebral canal but also
the nerve roots and paravertebral tissues [24], thus being considered the gold standard [25].

The first approach to treatment may be conservative or surgical, depending on the
clinical signs and severity of presentation. The most common is the surgical approach [26];
however, it is often followed by conservative management, which is based on restricted
activity with a body harness to help in weight support, associated with analgesic drugs
and possibly steroid administration [26,27].

Motor recovery in SCI patients can be improved with both conventional overground
walking training and body-weighted supported treadmill training (BWSTT) [28]. BWSTT
enables early initiation of gait training, incorporation of weight-bearing activities and
balance, using a task-specific approach based on a symmetrical gait pattern [29,30]. With
the BWSTT, to replicate a regular gate pattern manually, two to three therapists are needed
for control and assistance with trunk and limb kinematics [29,31,32]. Walking function may
be improved by repetitive movements involving major muscle groups, depending on the
amount of practice and the number of repetitions [29,32,33]. As a new training paradigm
develops, the importance of appropriated afferent input has emerged as a requirement for
adaptive plasticity [34].

The aim of this study was to observe if locomotor training could be initiated safely in
the first 3 to 15 days after surgery in tetraplegic dogs diagnosed with cervical IVDD. We
hypothesize that early locomotor training, applied in the first 3 to 15 days after surgery,
does not increase the neurologic deficits, such as spinal hyperesthesia, in tetraplegic cervical
post-surgical IVDD dogs.

2. Materials and Methods

This was a prospective blinded clinical study conducted at Arrábida Animal Rehabili-
tation Center (Setúbal, Portugal) and at the Animal Rehabilitation and Regeneration Center
of Lisbon (Lisbon, Portugal) from July 2017 to July 2022. This study had the approval of the
Veterinary Medicine Faculty—Lusófona University ethics committee (Nº 18-2022) and was
performed after owners’ consent.
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2.1. Participants

All dogs included in this study had IVDD—Hansen type I with cervical neuro-location
(n = 114), specifically with C1–C5 location. Dogs were referred by the neurology depart-
ment of another hospital after IVDD diagnosis by X-ray and CT or myelo-CT (Figure 1),
and performed single-ventral slot surgery. Dogs presented tetraplegic and clinical signs
manifested for 1 to 5 days until surgery. At admission, all remained tetraplegic and were
classified in grade 1, according to the modified Frankel scale (MFS), and grade 1, according
to the open field score (OFS), therefore with deep pain perception (DPP+).
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Figure 1. Computed tomography-myelogram image from a 9-year-old mixed breed dog with a single
compressive disc extrusion in C4–C5. (A) Sagittal view; (B) dorsal view; (C) transverse view. Figure
courtesy of Professor Dr. António Ferreira from the Neurology department of Veterinary Medicine
Faculty, University of Lisbon, Portugal. Legend: P–Posterior; S–Superior; A–Anterior.

Some of the dogs presented with normal or exaggerated flexor reflexes at the hindlimbs
and normal reflexes at the forelimbs. Others presented with signs of spinal shock, given the
fact that all patients were admitted to the rehabilitation centers until 3 days after surgery.

All dogs performed locomotor training after admission, thus within 3 days post-
surgery, always when hemodynamic stabilization was assured. Dogs were excluded from
this study if there were any signs of destabilization, such as respiratory deficits.

The participants did not have pressure sores at admission, all were tetraplegic without
the ability to maintain sternal recumbency, and some presented spinal hyperesthesia and
neck movement difficulties (discomfort signs). In contrast, others did not have signs
of pain or cervical discomfort. This sternal recumbency ability is fundamental to avoid
aspiration pneumonia and dogs with respiratory signs (e.g., cough, increased temperature
and respiratory rate) were not included in this study. Total population characterization is
described in Table 1, as well as division into two groups—the spinal hyperesthesia and the
non-spinal hyperesthesia groups.

Table 1. Characterization of the total population.

Characterization Parameters SHG (n = 74) NSHG (n = 40) Total (n = 114)

Breed Breed: 63/74 (85.1%)
Mixed breed: 11/74 (14.9%)

Breed: 23/40 (57.5%)
Mixed breed: 17/40 (42.5%)

Breed: 86/114 (75.4%)
Mixed breed: 28/114 (24.6%)

Chondrodystrophy Present: 29/74 (39.2%)
Absent: 45/74 (60.8%)

Present: 6/40 (15%)
Absent: 34/40 (85%)

Present: 35/114 (30.7%)
Absent: 79/114 (69.3%)

Sex Male: 52/74 (70.3%)
Female: 22/74 (29.7%)

Male: 17/40 (42.5%)
Female: 23/40 (57.5%)

Male: 69/114 (60.5%)
Female: 45/114 (39.5%)

Age
<7 years: 24/74 (32.4%)
≥7 years: 50/74 (67.6%)

Mean: 7.78 years

<7 years: 17/40 (42.5%)
≥7 years: 23/40 (57.5%)

Mean: 8.07 years

<7 years: 41/114 (36%)
≥7 years: 73/114 (64%)

Mean: 7.89 years

Weight
≤10 kg: 24/74 (32.4%)
>10 kg: 50/74 (67.6%)

Mean: 22.07 kg

≤10 kg: 7/40 (17.5%)
>10 kg: 33/40 (82.5%)

Mean: 18.23 kg

≤10 kg: 31/114 (27.2%)
>10 kg: 83/114 (72.8%)

Mean: 20.72 kg

Neuro-location

C1–C2: 8/74 (10.8%)
C2–C3: 9/74 (12.2%)
C3–C4: 15/74 (20.3%)
C4–C5: 42/74 (56.8%)

C2–C3: 12/40 (30%)
C3–C4: 16/40 (40%)
C4–C5: 12/40 (30%)

C1–C2: 8/114 (7%)
C2–C3: 21/114 (18.4%)
C3–C4: 31/114 (27.2%)
C4–C5: 54/114 (47.4%)
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Table 1. Cont.

Characterization Parameters SHG (n = 74) NSHG (n = 40) Total (n = 114)

Spinal hyperesthesia Present: 74/74 (100%) Absent: 40/40 (100%) Absent: 40/114 (35.1%)
Present: 74/114 (64.9%)

Sternal recumbency
Absent: 74/74 (100%) Absent: 40/40 (100%) Absent: 114/114 (100%)

Postural standing

Neurogenic bladder Absent: 17/74 (23%)
Present: 57/74 (77%)

Absent: 6/40 (15%)
Present: 34/40 (85%)

Absent: 23/114 (20.2%)
Present: 91/114 (79.8%)

Neck movement Absent: 26/74 (35.1%)
Present: 48/74 (64.9%) Present: 40/40 (100%) Absent: 26/114 (22.8%)

Present: 88/114 (77.2%)

Flexor reflex (forelimbs) Present: 68/74 (91.9%)
Absent: 6/74 (8.1%)

Present: 37/40 (92.5%)
Absent: 3/40 (7.5%)

Present: 105/114 (92.1%)
Absent: 9/114 (7.9%)

Flexor reflex (hindlimbs) Present: 68/74 (91.9%)
Absent: 6/74 (8.1%)

Present: 39/40 (97.5%)
Absent: 1/40 (2.5%)

Present: 107/114 (93.9%)
Absent: 7/114 (6.1%)

Ambulation Absent:
74/74 (100%)

Absent:
40/40 (100%)

Absent:
114/114 (100%)Placing (fore and hindlimbs)

Normal flexor muscle group tonus Abnormal:
74/74 (100%)

Abnormal:
40/40 (100%)

Abnormal:
114/114 (100%)

Normal extensor muscle group tonus Normal: 68/74 (91.9%)
Abnormal: 6/74 (8.1%)

Normal: 39/40 (97.5%)
Abnormal: 1/40 (2.5%)

Normal: 107/114 (93.9%)
Abnormal: 7/114 (6.1%)

Pressure sores Absent: 74/74 (100%) Absent: 40/40 (100%) Absent: 114/114 (100%)

Legend: SHG—spinal hyperesthesia group; NSHG—non-spinal hyperesthesia group.

2.2. Study Design

In this prospective blinded clinical study, 144 dogs with the cervical neuro-location
were admitted to a neurorehabilitation consultation. However, 30 dogs were excluded,
25 with C6–T2 neuro-location and 5 with respiratory signs (2 with increased temperature,
2 with cough and 1 with increased respiratory rate). Thus, 114 dogs were randomized
through aleatory stratification, according to the presence of spinal hyperesthesia by a
Canine Certified Rehabilitation Practitioner (CCRP) veterinary instructor. Dogs were
divided into two groups, the spinal hyperesthesia group (SHG) (n = 74) and the non-spinal
hyperesthesia group (NSHG) (n = 40), which are described in the flow diagram of Figure 2.
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Dogs of both groups were evaluated for mental status, posture, spinal reflexes (patellar,
withdrawal, cranial tibial, crossed-extensor and perineal), cutaneous trunci reflex, spinal
hyperesthesia, superficial pain and deep pain. This hyperesthesia was tested through
vertebral palpation by placing slight pressure on the ligament supraspinal, between each
spinous process and intervertebral space, constantly with one hand on the abdominal
muscles. Additionally, an orthopedic examination was performed, and muscle tone was
evaluated. All dogs were classified according to the OFS, always in the same exact location
with walking stimulation by two rehabilitation technicians.

All participants were subjected to the same locomotor training protocol, including land
treadmill, underwater treadmill and kinesiotherapy exercises. Requirements for locomotor
training procedures are shown in Table 2.

Table 2. Key points—requirements for locomotor training procedures.

Material

Land treadmill;
Underwater treadmill;
Passive standing device;
Harness;
Four support straps;
Cavaletti rail;
Trampoline;
Ramps;
Different floor surfaces.

Rehabilitation Team Dogs ≤ 10 kg: One technician (Two in the first week);
Dogs > 10 kg: Two technicians (Four in the first week).

All dogs were evaluated at admission and at each time point, according to a neurore-
habilitation checklist (Table 3), by a CCRP instructor. This checklist has key points from
postural standing and sternal recumbency to bladder disfunction and pressure sores. All
images were recorded with a camera (Canon EOS 2000D).

Table 3. Key Points—neurorehabilitation checklist.

Time Points T0 T1 T2 T3 T4

Postural standing (30 s)

Absence of spinal hyperesthesia (palpation of
the vertebral column from C1–T2)

Normal neck movement

Normal flexor reflex (forelimbs and hindlimbs)

Normal placing test (forelimbs and hindlimbs)

Ability to perform until 10 steps without
falling (OFS ≥ 11)

Ability to perform ≥ 10 steps in different
floors (OFS 13/14)

Normal muscle tone
(palpation of the extensor muscles)

Normal muscle tone
(palpation of the flexor muscles)

Sternal recumbency

OFS evaluation

Pressure sores

Neurogenic bladder
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After this evaluation, two CCRP blinded observers performed the movie evaluation in
slow motion and classified the dogs with the same neurorehabilitation checklist throughout
this study. These two observers were blinded to each other results and to which group
the dogs belong to, essential to perform an inter-agreement relation. Additionally, the two
blinded observers did not speak with the CCRP instructor.

2.3. Outcomes

Time points of evaluations included the admission day (T0), 24 h (T1), 48 h (T2),
7 days (T3) and 15 days after admission (T4). The flow diagram describing the evolution
according to the time points is illustrated in Figure 3.
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2.4. Primary Supportive Care

All dogs were hospitalized due to the owner’s decision regarding primary care condi-
tions, such as nutrition and hydration, that could not be done at home. The absence of a
sternal recumbency ability makes it difficult for dogs to be able to eat and drink without
secondary complications. Thus, all dogs rested in soft beds, with “doughnuts” bandages
on the bone prominences to avoid pressure sores. Positioning was performed every 4–6 h,
avoiding atelectasis and lung secretions [35].

Regarding nutrition, they were fed three times a day with an increase of 30% of the rest-
ing energy requirement (RER) and hydric support was performed (100–120 mL/kg/day).
Some dogs had neurogenic bladders, which had to be expressed every 4–6 h as a daily
rule [35,36]. All occurrences were recorded, such as pressure sores, hypoventilation,
seizures and aspiration pneumonia.

2.5. Locomotor Training Procedures

Participants performed the same protocol in a calm environment with music, starting
with postural standing (1 min) with the help of a passive standing device (Figure 4A),
followed by 30 bicycle movements in a central pad stimulation with a rough surface
(Figure 4B), 4–6 times per day and 3–5 days per week. Two rehabilitation nurses and two
veterinarians were needed to perform these exercises, assuring the rhythm and coordination
between the forelimbs and hindlimbs, similar to locomotion. All these exercises were
completed while listening to music, and their progression is described in Figure 5.
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Figure 5. Postural standing exercises protocol throughout this study. D: day; T: time point;
T0: admission day; T1: day 2; T2: day 3; T3: day 7; T4: day 15; 6=: different.

After a 30 min rest, all dogs executed the locomotor training on the land treadmill
with slope (Fit Fur Life, Haslemere, UK), with the same terms regarding team members
and coordination/rhythm of the movement. Training started at 0.8–1 km/h without slope
and weight support by two straps, progressively increasing (Figure 6) Dogs with more than
10 kg resorted to a weight-support device (Figure 7). This was performed 4–6 times per
day, 3–5 days per week, and in older dogs (≥6 kg) with monitoring by electrocardiogram
(Mindray iMEC8 Vet, Shenzhen, China) and for vital parameters (e.g., heart rate, respiratory
rate, perfusion parameters and rectal temperature). Dogs were excluded from this study if
they had extra-systoles or other arrhythmias, and any deviations from the vital parameters
were recorded daily.

The aquatic exercises were always performed during morning time and introduced
carefully after 48 h of admission, especially in dogs with spinal shock signs and decreased
muscle tone. To avoid suture contamination by water, technicians´ hands had to be dry and
water line near the proximal epiphysis of the tibia. Water temperature was near 24–26 ◦C
and treadmill velocity started at 1.2 km/h, from 2 to 5 min until 40 min, with progression
described in Figure 8.
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Figure 8. Underwater treadmill exercises throughout this study. UWTM: underwater treadmill;
D: day; T: time point. T1: day 2; T3: day 7; T4: day 15.

It is essential to mention that during the locomotor exercises, the vertebral column
had to remain stable and without oscillations, avoiding other occurrences.

Additionally, the kinematic and kinesiotherapy exercises included cavalleti rails, tram-
poline, ramps and different floor surfaces that started at day 7 (T3 time point), following
the order described in Figure 9.
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Figure 9. Kinesiotherapy circuit performed by this order, between day 7 and day 15. Patients
performed one circuit in the morning and the other in the afternoon. If non-ambulatory patients, two
rehabilitation technicians were needed and support was made with a harness (forelimbs) and by the
tail or with straps (hindlimbs).

2.6. Data Collection

Data were collected from all 114 dogs and were included as categorical nominal vari-
ables: breed, chondrodystrophy, sex, neuro-location (C1–C2; C2–C3; C3–C4 and C4–C5),
spinal hyperesthesia, sternal recumbency, postural standing, neurogenic bladder, neck
movement, flexor reflex (thoracic and pelvic limbs), placing (thoracic and pelvic limbs),
muscle tonus (extensors and flexors), pressure sores, ambulation (OFS ≥ 11) and ability to
perform≥ than 10 steps in different floors (OFS 13–14). Age and weight were the continuous
quantitative variables collected. Data collection also included OFS evaluation at admission
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and following time points as categorical ordinal variable. Dogs with a OFS ≥ 11 were
considered ambulatory and had medical discharge.

2.7. Statistical Analysis

Complete data were recorded in Microsoft Office Excel 365® (Microsoft Corporation,
Redmond, WA, USA) and processed in IBM SPSS Statistics 25® (International Business
Machines Corporation, Armonk, NY, USA) software. Normality tests (Shapiro–Wilk and
Kolmogorov–Smirnov), arithmetic means, minimum, maximum, standard deviation (SD)
and standard error of mean (SEM) were reported for continuous variables (age and weight).
Descriptive statistics was performed comparing clinical and outcome variables between
dogs with or without spinal hyperesthesia at admission. The two groups were compared
using the non-parametric Kruskal–Wallis and Mann–Whitney tests. It was performed a
univariate analysis of variance, considering OFS scores with time as a repeated measure.
Chi-square tests were also performed to identify possible differences between the SHG and
the NSHG.

3. Results

In this prospective blinded clinical study, from the 114 dogs included, 24.6% (n = 28)
were mixed breed and 75.4% (n = 86) were purebred dogs, including Labrador Retriever
(n = 13), Yorkshire Terrier (n = 13), Dobermann Pinscher (n = 8), Dalmatian (n = 5), Beagle
(n = 4), French Bulldog (n = 4), Great Danois (n = 4), Greyhound (n = 3), Chihuahua
(n = 3), Weimaraner (n = 3), Spitz (n = 3), Portuguese Podengo (n = 2), Pug (n = 2), Bouvier
Bernois (n = 2), English Bulldog (n = 1), Cane Corso (n = 1), Poodle (n = 1), Epagneul
Breton (n = 1), Fox Terrier (n = 1), Golden retriever (n = 1), Jack Russel terrier (n = 1),
Rhodesian lion (n = 1), Briard (n = 1), Pekingese (n = 1), Pinscher (n = 1), Giant Poodle
(n = 1), Alentejo Mastiff (n = 1), Rottweiler (n = 1), Soft-Coated Wheaten Terrier (n = 1),
American Staffordshire Terrier (n = 1) and Dachshund (n = 1). Chondrodystrophic breeds
represented 30.7% (35/114) of the study population.

Regarding continuous variables age and weight, the total population presented normal
distribution by the Kolmogorov–Smirnov test. Both the SHG and the NSHG presented
similar means and medians, making groups comparable, as shown in Table 4.

Table 4. Descriptive analysis of age and weight in both the spinal hyperesthesia group and the
non-spinal hyperesthesia group.

SHG (n = 74) NSHG (n = 40) Total (n = 114)

A
ge

(y
ea

rs
)

Mean 7.78 8.07 7.89
Median 8 8 8
Variance 11.514 14.533 12.474

SD 3.393 3.812 3.532
Minimum 1 1 1
Maximum 14 16 16

SEM 0.394 0.603 0.331
Normality Test 0.009 (Kolmogorov–Smirnov) 0.587 (Shapiro–Wilk) 0.015 (Kolmogorov–Smirnov)

W
ei

gh
t(

kg
)

Mean 22.07 18.23 20.72
Median 21.5 19 20.5
Variance 183.571 139.82 170.239

SD 13.549 11.825 13.048
Minimum 3 3 3
Maximum 62 45 62

SEM 1.575 1.87 1.222
Normality Test 0.066 (Kolmogorov–Smirnov) 0.019 (Shapiro–Wilk) 0.033 (Kolmogorov–Smirnov)

Legend: SHG—spinal hyperesthesia group; NSHG—non-spinal hyperesthesia group.

Of the total population, the most common neuro-location was at C4–C5 with total
47.4% (54/114). Additionally, in the SHG was shown a C4–C5 neuro-location with 58.8%
(42/74), whereas the C3–C4 neuro-location showed to be more frequent in the NSHG with
40% (16/40).
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In regard to the neurorehabilitation check list throughout the study time points, frequency
analysis of the total population was performed and is described in Figures 10 and 11.
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Figure 10. Total population frequency analysis of spinal hyperesthesia, neck movement, neuro-
genic bladder and ambulation evolution throughout the study time points. T0: admission day;
T1: day 2; T2: day 3; T3: day 7; and T4: day 15; x-axis: neurorehabilitation check list parameters;
y-axis: frequency number.
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Figure 11. Total population frequency analysis of flexor reflex, sternal recumbency, postural stand-
ing, placing, normal extensor and flexor muscle tonus evolution along the study time points.
T0: admission day; T1: day 2; T2: day 3; T3: day 7; and T4: day 15; x-axis: neurorehabilitation
check list parameters; y-axis: frequency number.
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As for the inter-observer validation, evaluations of the neurorehabilitation checklist
parameters resulted in a total of 195 observations between the three observers, with only
32 inconsistencies, resulting in 17.4% inter-observer disagreement.

The clinical sign of spinal hyperesthesia revealed 100% recovery until the end of this
study, with an evident decrease during evaluation time points (Figure 12). Additionally,
in the first three days after starting protocol (T2), there were no dogs in the NSHG that
developed signs of hyperesthesia and there was 47.3% (35/74) in the SHG that improved
from this clinical sign.
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Occurrences were present in 31.58% (36/114) of the total population (Figure 13), with
31 dogs presenting pressure sores throughout the study time, 1 dog with hypoventilation
and 4 dogs with aspiration pneumonia (2 of them euthanatized at T4 for further complica-
tions). No seizures were reported during the study time. Additionally, pressure sores that
were present in 27.25% (31/114), revealed a solid significance between their presence and
the ambulatory status achieved (X2 (1, n = 114) = 70.304, p < 0.001).
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Figure 13. Frequency analysis of occurrences reported in the 36 dogs throughout this study.

Ambulatory status was achieved in 62.3% (71/114) of total population within the
first 15 days. Five dogs were ambulatory and had medical discharge at time point T2,
followed by 14 dogs and 52 dogs at the time points T3 and T4, correspondingly (Figure 14).
Considering the ambulatory dogs, 32.4% (23/71) showed the ability to perform ≥than
10 steps in different floors (OFS 13 or 14), by the time of medical discharge. Of the total
population, 43 dogs remained non-ambulatory until T4 (day 15).

The SHG was able to achieve ambulatory status in 48.6% (36/74) of dogs and 17.6%
(13/74) achieved ability to perform ≥ than 10 steps in different floors, whereas in the
NSHG, ambulatory status was reached in 87.5% (35/40) of dogs and 25% (10/40) had
the ability to perform ≥ than 10 steps in different floors. Comparing the two groups, a
significant difference concerning their ability to achieve ambulation status was observed
(X2 (1, n = 114) = 16.683, p < 0.001).
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Figure 14. Diagram of the ambulation status and medical discharge. SHG: spinal hyperesthesia
group; NSHG: non-spinal hyperesthesia group; OFS: open field score; T0: admission day; T1: day 2;
T2: day 3; T3: day 7; and T4: day 15.

Regarding the dogs that achieved ambulatory status, when considering the SHG and
the NSHG, a strong significance between spinal hyperesthesia at admission and the number
of days until ambulation was achieved (X2 (2, n = 71) =10.329, p = 0.006).

OFS scores obtained at the time of medical discharge were compared in both the
SHG and the NSHG using non-parametric the Kruskal–Wallis test and the non-parametric
Mann–Whitney test, which revealed evident difference in the distribution of OFS scores
between groups (p < 0.001). Additionally, according to the univariate analysis of variance,
a significant difference between both groups in each time point was observed (p < 0.001;
adjusted R2 = 0.809). OFS scores for the SHG and the NSHG were registered and estimated
marginal means evolution chart is shown in Figure 15.
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points. T0: admission day; T1: day 2; T2: day 3; T3: day 7; and T4: day 15; x-axis: time points of this
study; y-axis: OFS.
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4. Discussion

This prospective blinded clinical study included 144 dogs with cervical compressive
myelopathy, who were subjected to a first neurorehabilitation consultation, selecting only
114 dogs with C1–C5 neuro-location compatible with chondroid metaplasia, thus IVDD—
Hansen type I. According to the literature [11], this specific neuro-location is most seen in
small breed dogs. However, in the present study, the main frequency was the Labrador
Retriever with 11.4% (13/114) with the Dobermann Pinscher (n = 8) as the third most
registered breed, possibly due to the higher frequency of Hansen type I and the relative
vertebral canal stenosis [37,38].

Our study had only 30.7% (35/114) of chondrodystrophic breeds, which was not in
accordance to previous studies [11]. The mean age was 7.78 years old in the SHG, similar
to the NSHG (mean age 8.07), with a median of 8 in both groups, assuring homogeneity
between them. The presence of IVDD associated with increase in age [37] may be a possible
reason for this result. In regard to weight, there was a normal distribution, making both
groups comparable.

Cervical compressive myelopathy or cervical spondylomyelopathy do not have a simple
pathophysiology; however, it seems to be related to static and dynamic factors [39–41]. In
the present study, dogs were interpreted with a static element and compressive spinal cord
disease that was approached by a single-ventral slot decompressive surgery, agreeing with
da Costa (2010) [41], that previously reported a long-term success of nearly 72%, and other
authors [16,20,42].

To Bonelli and colleagues (2021) [43], 80% of the dogs with a single affected site were
younger than 6 years of age, while most dogs with multiple sites affected were 6 years
or older, not identical to our study based on middle-aged to older dogs subjected to a
single-ventral slot approach [44–46].

In previous studies [1,47,48], the C2–C3 and C3–C4 intervertebral sites are the most
common injury locations, in contradiction to our population with the highest frequency at
C4–C5 in ~60% at the SHG and ~30% at the NSHG.

The division of the study population into the SHG and the NSHG was based on
the hyperesthesia clinical sign. Both groups underwent the same neurorehabilitation
procedures, including hospital care, nutrition and environment adaptation. The admission
to the rehabilitation centers until 3 days after surgery and the observation of primary
neurological signs (e.g., spinal shock), defined an essential timeline detail of this study
design, needed to show if early locomotor training could potentially increase pain or
neurological deficits.

The hyperesthesia secondary to cervical compressive myelopathy may be caused by
compression of the spinal cord if disc material extrusion occurs in a dorsolateral direction
(e.g., between the dorsal longitudinal ligament and vertebral venus sinus), by root nerve
compression, by meningeal irritation [2], or by damage in soft tissue and ligamentum
flavum, mainly present in dogs with multiple compression sites and foraminal stenosis [49].

In the present study, with a single ventral slot approach, the possibility of pain with
progressive persistency or new cases of hyperesthesia in the NSHG, could indicate that early
prescription of locomotor training was not a possibility in post-surgical dogs. However,
in Figures 10 and 12, the frequency analysis of this clinical sign on the total population,
revealed an exponential decrease in each time point, with no dog manifesting pain within
two weeks. In Figure 10, it can be observed that normal micturition was recovered mostly
in T4 (day 15) in 45% (43/95) of the dogs.

The study design resorted to a neurorehabilitation checklist to help in the evaluations
at each time points (Figures 10 and 11), such as the sternal recumbency ability, which
increased from no dog to 80% (76/95) at T4, and the postural standing ability that achieved
66% (63/95).

As mentioned above, spinal hyperesthesia revealed 100% of resolution until the end
of this study, without resorting to the usual rehabilitation modalities for neuropathic
and nociceptive pain treatment (e.g., transcutaneous electrical stimulation, interferential
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electrical stimulation, laser therapy, and electroacupuncture) [50]. The introduction of these
modalities would result in a potential bias for the study design, although they could be
useful for reorganization of the descending tracts, neurogenesis and strengthening the
pre-existing neural tracts both cranially and caudally to the injury, and possibly through it,
promoting the anatomic and synaptic plasticity [51–54]. Multidisciplinary protocols are
based in functional electrical stimulation and transpinal stimulation [53,55], which could
also be implemented in tetraplegic patients who suffered injury in the phrenic motoneuron
pools and/or phrenic nerves to improve ventilatory status [56,57]. Although in our study,
dogs were only under locomotor training to improve ambulation.

In Figure 12, regarding spinal hyperesthesia throughout the different time points, it is
possible to observe that even with the implementation of early locomotor training at T2 (day
3), 47.3% (35/74) dogs improved from that clinical sign in the SHG and no dog developed
new signs of hyperesthesia in the NSHG, suggesting that locomotor training could be
introduced in the first days after surgery, contrary to the usual cage rest recommendation
or simply restricted activity using a body harness and analgesia [27]. Additionally, da
Costa (2010) [41] has reported that physical therapy should be considered as a treatment
for dogs with severe cervical myelopathies and Zidan et al. (2018) [58] suggested that
early post-operative rehabilitation was safe in dogs with incomplete SCI after surgery for
thoracolumbar IVDD.

Some authors [59,60] reported that dogs bear 60% of their body weight in the forelimbs
and nearly 40% on the hindlimbs, which is an important consideration when implementing
weight-supported training and encouraging correct postural standing ability. That is
the main reason for dogs with more than 10 kg resorted to a weight-supported device,
considering our population of tetraplegic dogs with a weight mean of 22.07 kg (SHG) and
18.23 kg (NSHG).

The BWSTT, in both human and veterinary medicine, has already proved that allows
a repetitive strep training for several consecutive days, starting on T0 (day of admission)
to promote early increase in muscle force output and endurance with rhythmic activity
by stimulating the spinal locomotor circuitry and remnants ascending/descending path-
ways [28,61–63]. In addition, to Frank and Roynard (2018) [50], locomotor training itself
could be helpful in decreasing pain conditions, such as allodynia.

The tetraplegic dogs needed strict and complex care, resting in soft beds with dough-
nuts bandages at bone prominences to avoid occurrences such as pressure scores [3,64].
In this study, dogs had acute (2–48 h after injury) or sub-acute (48 h to 14 days) pre-
sentation [65,66], thus without pressure sores. However, 27.2% (31/114) developed this
occurrence, revealing a solid significance between their presence and the ambulatory status
achieved (p < 0.001). Additionally, from the 36 dogs who manifested any type of occur-
rences, 11% (4/36) developed aspiration pneumonia, resulting in the euthanasia of two
dogs. However, it is important to mention that early implementation of locomotor training
was not directly associated with any of these occurrences. Therefore, a relation between
complications and decreasing neurological status or even hemodynamic instability, as
observed in other studies, was not observed [67].

This study was conducted with ethical guidelines to understand if this approach was a safe
and beneficial treatment, resulting in 62.3% (71/114) of ambulatory status (OFS≥ 11) within
15 days, from the total population (Figure 14). Of these 71 dogs, 32.4% (23/71) manifested the
ability to perform more than 10 steps in different floor types (OFS 13 and 14) by the time of
medical discharge.

Furthermore, comparing both groups, a significant difference in their ability to achieve
ambulatory status was observed (p < 0.001) and in the NSHG 25% (10/40) achieved a
OFS ≥ 13–14. Additionally, there was a clear difference between spinal hyperesthesia at
admission and the number of days until ambulation (p < 0.006). These results suggested that
hyperesthesia could be a clinical sign related to inflammation, oedema and compression of
the neural tissues. To support the comparison between the SHG and the NSHG, it was used
a non-parametric test that confirmed the significant difference between them (p < 0.001).
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This difference was also observed in each time point (p < 0.001) with a R2 = 0.809, as shown
in Figure 15. For example, in T2, the OFS-estimated marginal mean was 8.8 in the NSHG
and 7.1 in the SHG.

Inter-observer evaluations had a disagreement < 20% between the CCRP blinded
observers, which indicates that early locomotor training could be a safe tool to be imple-
mented in the first 3 days after surgery in tetraplegic dogs with cervical IVDD—Hansen
type I. Additionally, allowing the observation that the clinical sign of hyperesthesia should
be considered in the recovery of these dogs.

This clinical study proposed new research tools that lead us to understand and justify
the rupture of the cage rest or reduced exercise activity paradigm in these populations of
dogs, suggesting early and intensive training [28,29,32,58,68–71], now applied in cervical
C1–C5 compressive myelopathies. In contrast to the usual physical rehabilitation that is
recommended with cryotherapy, passive range of motion, massage, assisted standing and
walking [29,72–76]. Although in acute ataxic dogs, cage rest could be essential to reduce
pain and inflammation secondary to affected nerve roots and meninges [77,78].

A new perspective is needed based on a multidisciplinary team approach, with knowl-
edge in the rehabilitation field and equipped with essential devices to assure correct
postural standing (Table 2). All the rehabilitation procedures allowed the synaptogenesis of
rubrospinal and medullary reticulospinal tracts, facilitating the flexor muscles and inhibit-
ing the extensors [79,80]. The kinesiotherapy exercises promoted the imbalance correction,
while the vestibulospinal tract stimulation played an essential role in posture [54,80]. The
propriospinal fibers also should be stimulated by multisynaptic pathways, re-establishing
the connections between descending motor tracts, the central pattern generators, intrinsic
circuitry and interneurons located on the pelvic and thoracic intumescences [81–84]. All
those exercises were performed in an integrated sensory environment (e.g., listening to
music), promoting somatosensory stimulation, as mentioned by Lewis and collaborators
(2022) [72].

One of this study’s limitations is the number of dogs that should be higher. Addition-
ally, the absence of long-term follow-ups to understand the evolution of the 43 dogs that
did not achieve ambulatory status until day 15, and the absence of a detailed comparison
between each parameter of the neurorehabilitation checklist after T4 in those dogs, were
also limitations that should be considered.

5. Conclusions

Early locomotor training in tetraplegic post-surgical dogs with acute/subacute cervical
IVDD—Hansen type I following a single ventral slot approach may be a possible and safe
treatment to be implemented within the first 3 days after surgery, allowing 62.3% (71/114)
of recovery within 15 days of protocol, with no occurrences registered. Therefore, there was
no relation between complications or decreased neurological status and early locomotor
training implementation.

Furthermore, spinal hyperesthesia was an important clinical sign to consider and
throughout the different time points, it was possible to observe that even with the imple-
mentation of early locomotor training at T2 (day 3), 47.3% (35/74) dogs improved from that
clinical sign in the SHG and no dog developed new signs of hyperesthesia in the NSHG,
suggesting that locomotor training could be introduced in the first days after surgery,
contrary to the usual cage rest recommendation. Thus, dogs manifesting hyperesthesia
may need more time until recovery, although the locomotor training performed did not
increase pain or other neurological deficits.
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