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Simple Summary: Livestock performance is influenced by different elements due to the complex
interactions between the individual animals and environmental conditions such as temperature and
humidity. Hence, the influence of environmental temperature and humidity on milk production
quality parameters needs to be investigated. The objective of this study is to elucidate the effect of
environmental temperature and humidity on milk composition, microbial load, and somatic cells
in the milk of Holstein dairy cows. Our findings reveal that, when temperature increased from
6.2 ◦C to 31.3 ◦C, the milk protein, fat, solids-not-fat (SNF), and somatic cell count (SCC) significantly
decreased. In contrast, the microbial count in milk significantly increased, by approximately 13.7%.
When humidity increased from 54% to 82%, the milk protein, fat, SNF, and SCC significantly increased.
However, under the same increase in humidity, the microbial count in milk significantly decreased,
by approximately 16.3%. The results indicate that there exists a correlation between different months
of the year, temperature, and humidity of the environment, in terms of milk components and
somatic cells. Our findings reveal that the optimum performance, in terms of milk composition,
occurred in the first quarter of the year, while milk quality decreased as temperature increased and
humidity decreased.

Abstract: The present study aims to examine the relationships between temperature and humidity
and milk composition, microbial load, and somatic cells in the milk of Holstein dairy cows. For this
purpose, the temperature–humidity index, ambient temperature, and relative humidity data were
obtained from the nearest weather stations. Production data were obtained from four dairy farms in
Golestan province, Iran, collected from 2016 to 2021. The traits investigated were protein, fat, solids-
not-fat (SNF), microbial load, and somatic cell count (SCC) in milk. The effects of the environmental
temperature, humidity, month, and season on the milk composition, microbial load, and somatic cells
were analyzed through analysis of variance. The effects of environmental temperature, humidity,
month, and season on the milk composition, microbial load, and somatic cell composition were
analyzed using a mixed procedure with a restricted maximum likelihood model. Although our
findings revealed that there were significant differences in fat, protein, SNF, and SCC among the
different months of the year (p < 0.01), no significant difference was observed in the total microbial
count in milk. Environmental temperature presented significant impacts on fat, protein, SNF, SCC,
and total microbial count within various temperature ranges (p < 0.01). When the temperature
increased from 6.2 ◦C to 31.3 ◦C, the milk protein, fat, SNF, and somatic cell count significantly
decreased, by approximately 4.09%, 5.75%, 1.31%, and 16.8%, respectively; meanwhile, the microbial
count in milk significantly increased, by approximately 13.7%. Humidity showed an influence on
fat, protein, non-fat solids, somatic cells, and total microbial count within different temperature
ranges (p < 0.01). When the humidity increased from 54% to 82%, the milk protein, fat, SNF, and SCC
significantly increased, by approximately 3.61%, 4.84%, 1.06%, and 10.2%, respectively; meanwhile,
the microbial count in milk significantly decreased, by approximately 16.3%. The results demonstrate
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that there is a negative correlation between different months of the year, temperature, and the
humidity of the environment, in terms of milk components and SCC. Our findings demonstrate that
the optimum performance, in terms of milk composition, occurred in the first quarter of the year. As
temperature increases and humidity decreases, milk quality decreases. Therefore, the adverse effects
of environmental conditions on agricultural profits are not negligible, and strategies to better deal
with the negative environmental effects are needed in order to improve milk quality in dairy cows.

Keywords: temperature; humidity; season; milk composition; somatic cell; microbial load

1. Introduction

Cow’s milk is a valuable food for humans as it is a rich source of macro- and micro-
nutrients, thus playing an important role in both nutrition and health protection [1]. De-
veloping effective methods to improve milk composition has long been an active area
of research, and continues to attract increasing interest in the worldwide dairy indus-
try [2,3]. The levels of milk composition traits are influential factors that significantly affect
product quality and yield in dairy cows [4]. In various developed countries, farmers are
currently paid for milk deliveries based on the levels of fat and protein [5,6]. Therefore,
milk composition has gained significance in the dairy industry, having a direct influence
on the income of farmers and product processing. The dairy industry must make strategic
decisions regarding optimizing agents that affect milk composition; in this way, they can
better meet the ever-changing technological requirements and consumer preferences [7].
In general, factors affecting milk composition include the season [8], feeding [9], stage of
lactation, milking interval, the health status of the cow [10,11], genetic factors, and other
day-to-day variations [12,13]. The effects of environmental temperature and humidity
on milk-related performance, fertility, and welfare have been widely studied in dairy cat-
tle [14,15], and the effects of seasonal changes on milk composition have been discussed by
several researchers [16–18].

It is widely accepted that the levels of milk components, similar to the physicochemical
properties, can fluctuate extensively over the year [19]. Lactating animals are thought to
be extremely sensitive to high temperature and high humidity since it has been widely
accepted that environmental factors play an essential role in the health, growth, develop-
ment, and lactation performance in lactating animals [2,3]. Under favorable environmental
conditions, lactating animals can develop and produce milk normally. Conversely, ad-
verse environmental conditions are known to affect the metabolism of the body, leading to
declines in milk yield, milk composition, and quality in lactating animals [17,20]. Milk com-
position includes milk fat, milk protein, dry matter, and solids-not-fat, the decreases and
changes in which lead to reduced milk quality [21,22]. Milk fat and protein contents are two
major factors that fluctuate significantly during seasonal changes [22,23]. A previous study
reported that, in dairy cows, high temperatures led to variations in milk composition [24].

On the other hand, a few studies have reported correlations among temperature and
humidity and other indices in raw milk, including milk yield, somatic cell count (SCC),
and milk losses, which are directly dependent on the cow’s health status [25,26]. The SCC
is a major factor influencing udder health, as somatic cells are involved in protecting the
mammary glands from infection, as part of the animal’s immune system [21,22]. The SCC
in milk is affected by many factors, including species, management methods, level of milk
production, and lactation stage, in addition to a range of individual and environmental
factors [27].

Furthermore, Godden et al. [28] detailed that increasing heat and humidity amplified
the pathogen load in the environment, resulting in a greater incidence of mastitis and
increased microbial load. Therefore, climate change is assumed to affect the milk micro-
bial count through the direct effect of months and climate variables, including average
temperature and relative humidity, on the milk microbial ecology [29–31]. This increases
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the susceptibility of milk to microbial infection. Furthermore, the indirect effect of climate
change on milk microbial count will be through the induction of heat stress in dairy cattle,
which makes them more susceptible to pathogenic microbes [32,33].

Unfortunately, little is known regarding the effects of high levels of temperature
and humidity on milk yield and quality in dairy farms of Iran. As milk quality and
production are real challenges for dairy farmers, a successful strategy for improving cow
farm management in Golestan Province must take into account environmental conditions
such as high temperature and high humidity. Therefore, the aim of this study was to
determine the effect of environmental temperature and humidity on milk composition,
microbial load, and somatic cell count in Holstein dairy cows.

2. Materials and Methods

All experimental procedures involving animals were approved by the Animal Welfare
and Ethics Committee of Gorgan University of Agricultural Sciences and Natural resources,
Gorgan, Iran (approval number: N.T. 20/1115).

2.1. Animals, Nutrition and Maintenance Conditions

This study was conducted on four dairy farms in the northern region of Iran (Gor-
gan, Iran), characterized by a hot-summer Mediterranean climate. Production data were
collected from 2016 to 2021. The cows were raised under the same management and
environmental conditions and housed in an open loose barn. The loose open barn was
designed with the overshot roof with a ridge exhaust, fans to move and exchange the air
in summer, and winch curtains to block the cold wind in winter. A total mixed ration
(TMR) was offered once a day at 09:00 AM, the composition of which tried to keep constant
throughout the study; however little changes occurred according to the farm requirements.
It included corn silage, alfalfa hay, concentrate mixture, soybean meal, and corn grain,
in addition to mineral and energetic components. Cows were given ad libitum access to
feed and water for 24 h. The TMR contained, on average, 47.3% dry matter (DM), 16.6%
crude protein (CP), 4.96% ether extract (EE), 38.7% neutral detergent fiber (NDF), and 19.5%
acid detergent fiber (ADF) on a DM basis. The percentages of DM, CP, and crude fiber
in oat silage were 28.5%, 6.7%, 35.1%, and 30%, 7.11%, 34% for the spring and summer
periods, respectively. The energy content in the diet of all cows was 1.7 Mcal net energy
for lactation/kg DM with total digestible nutrients of 68.7%. TMR samples were taken
monthly and stored at −20 ◦C until analysis. Furthermore, they were analyzed for DM, CP,
and EE according to the AOAC [34] procedures. NDF and ADF contents were analyzed
using the amylase-treated NDF (aNDF) method developed [35].

2.2. Samples and Laboratory Analysis

A total of 54,888 test-day records of milk composition, microbial load, and somatic
cell count, collected from 2016 to 2021, were included in the study. SCS was calculated
(NucleoCounter® SCC-100™; Allerod, Denmark) by taking the logarithm of somatic cell
count (SCC): SCS = log2(SCC/100,000) + 3. Ambient temperature and relative humidity data
were collected from the nearest weather stations [36]. In the laboratory, the samples were
immediately tested for total bacterial count, where eight consecutive dilutions were prepared
from each sample, with the plated surface of each dilution in two plates containing standard
plate count (SPC) medium being cultivated for a certain period of time. They were kept in a
greenhouse for 72 h at a temperature of 32 ◦C, following which the colonies were counted and
the number of bacteria per milliliter of the samples was determined [37]. The milk samples
were evaluated, in terms of protein, fat, and non-fat solids, using a Milkoscan 134 model
(Foss-Electric A/C, Hillerod, Denmark), according to the IDF (inverse document frequency)
Standard 141B:1996. To calculate the THI (temperature–humidity index), ambient temperature
and relative humidity were obtained from the nearest weather stations, and the following
formula was used: THI = (1.8 × T + 32) − (0.55 − 0.0055 × RH) × (1.8 × T − 26), where T
is the air temperature (in degree Celsius) and RH is the relative humidity (in percentage).
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The average and maximum THI of the 3 days preceding the milk sampling were used for
statistical analysis [38].

2.3. Statistical Analysis

The data analysis was performed using the statistical package SAS Enterprise Guide
7.1 (SAS Institute Inc., Cary, NC, USA). Seasons were defined as follows: spring (March to
May), summer (June to August), autumn (September to November), and winter (December
to February). The effects of the environmental temperature, humidity, month, and season
on the milk composition, microbial load, and somatic cell count were analyzed using an
analysis of variance. Duncan’s test was used to separate the means when significance
was indicated. The effects of environmental temperature, humidity, month, and season
on the milk composition, microbial load, and somatic cell count were analyzed using a
mixed procedure with a restricted maximum likelihood model. Environmental temperature,
humidity, month, and season were included as fixed effects. Pearson correlations were
calculated for the different measured parameters of milk composition and environmental
factors. The values are presented as least-squares means and standard errors of the means,
unless otherwise stated. Differences were considered significant if a probability (p) of < 0.05
was observed, and trends are discussed for variables with p ≤ 0.10.

3. Results

Meteorological data including the number, mean, minimum, and maximum of dif-
ferent variables measured during milk recording of farms in period from 2016 to 2021 are
summarized in Table 1.

Table 1. Descriptive statistics of milk composition, microbial load, and somatic cell count in milk for
the period 2016–2021.

Variable Label N Mean Std Dev Minimum Maximum

Total Protein Protein 144 3.12 0.097 2.80 3.40
Fat Fat 144 3.22 0.098 3.00 3.47

SNF 1 SNF 144 8.17 0.061 8.00 8.40
Microbial load Total 144 199,625 59,605.7 12,000 320,000

SCC 2 SCC 144 162,781 31,495.4 98,000 274,000
Rainy days Rainy days 144 7.5277778 3.8 0 18

Evaporation Evaporation 144 111 76.1 25 274
Sunny total Sunny total 144 196 60.1 83 333

ATR 3 TR 144 39.8 33.21 0 136.2
ARH 4 ARH 144 68.5 7.21 54.2 81.5
AT 5 AT 144 18.5 7.78 6.1 31.3

SNF 1, solids-not-fat; SCC 2, somatic cell count; ATR 3, average radiation temperature; ARH 4, average relative
humidity; AT 5, average temperature.

In the present study, the months of the year and milk’s main compositions (fat, pro-
tein, SSC, and SNF) had significant positive correlations, while the correlations between
environmental temperature and milk composition indicators were significantly negative
(Table 2).
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Table 2. Analysis of correlation coefficients between measured parameters of milk composition and environmental factors.

Items 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 Fat 1.00
2 Protein 0.47 ** 1.00
3 SCC 1 0.26 ** 0.23 ** 1.00
4 SNF 2 0.49 ** 0.37 ** 0.44 ** 1.00
5 Microbial load −0.12 ns −0.10 ns 0.16 * −0.02 ns 1.00
6 Farm −0.35 ** −0.21 * 0.004 ns 0.14 ns 0.05 ns 1.00
7 Month 0.46 ** 0.35 ** 0.51 ** 0.54 ** 0.01 ns 0.00 ns 1.00
8 Season 0.47 ** 0.33 ** 0.50 ** 0.55 ** 0.01 ns 0.00 ns 0.97 ** 1.00
9 Year 0.03 ns 0.08 ns 0.05 ns −0.07 ns −0.19 * 0.00 ns 0.00 ns 0.00 ns 1.00
10 No. rainy day 0.27 ** 0.23 ** 0.09 ns 0.21 ** −0.26 ** 0.00 ns 0.04 ns 0.05 ns −0.03 ns 1.00
11 Evaporation −0.52 ** −0.38 ** −0.23 ** −0.46 ** 0.13 ns 0.00 ns −0.59 ** −0.62 ** 0.03 ns −0.55 ** 1.00
12 No. sunny day −0.45 ** −0.35 ** −0.25 ** −0.38 ** 0.18 * −0.00 ns −0.49 ** −0.53 ** 0.00 ns −0.66 ** 0.90 ** 1.00
13 Average T 3 −0.59 ** −0.41 ** −0.27 ** −0.54 ** 0.09 ns 0.00 ns −0.62 ** −0.64 ** 0.03 ns −0.50 ** 0.95 ** 0.84 ** 1.00
14 Total rain 0.37 ** 0.18 * 0.34 ** 0.36 ** −0.11 ns 0.00 ns 0.36 ** 0.40 ** −0.04 ns 0.55 ** −0.58 ** −0.51 ** −0.55 ** 1.00
15 Average RH 4 0.41 ** 0.30 ** 0.20 * 0.36 ** −0.12 ns 0.00 ns 0.32 ** 0.34 ** −0.23 ** 0.72 ** −0.83 ** −0.88 ** −0.79 ** 0.55 ** 1.00
16 THI 5 −0.59 ** −0.42 ** −0.27 ** −0.55 ** 0.09 ns 0.00 ns −0.64 ** −0.66 ** 0.03 ns −0.49 ** 0.95 ** 0.84 ** 0.99 ** −0.54 ** −0.79 ** 1.00

SCC 1, somatic cells count. SNF 2, solids-not-fat. Average T 3, average temperature. Average RH 4, average relative humidity. THI 5, temperature–humidity index. * p < 0.05, ** p < 0.01,
ns non-significant.
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3.1. Month

The effects of the month on fat, protein, solids-not-fat (SNF), somatic cell count, and
total microbial count in milk are shown in Figure 1. There were significant differences
in fat, protein, SNF, and somatic cells among the different months of the year (p < 0.01),
while there were no significant differences in the total microbial count in milk (p > 0.01).
Based on our study, the percentage of milk fat was the highest in January, February, and
March, while it was the lowest in May and June (p < 0.01). The milk fat content did not
significantly vary during January, February, and March. Then, it sharply dropped (by
approximately 5.52%) in April and remained steady during May, June, July, and August.
The milk fat content increased by 1.24% in September, and did not significantly change
during October, November, and December (Figure 1a). The percentage of milk protein was
the highest in March, and the lowest in June (p < 0.01). The milk protein content did not
change significantly in January, February, and March. Then, it decreased (by approximately
4.48%) in April and did not significantly vary during May, June, July, and August. The
milk protein content increased by approximately 1.72% in September. In October, the milk
protein content experienced a numerical drop of approximately 2.48%, and then remained
steady during November and December (Figure 1b). The percentage of non-fat solids
was the highest in January, February, and March, and lowest in August (p < 0.01). The
content of SNF in milk was significantly similar during the months of January, February,
and March; however, it was significantly reduced in April and remained steady during
May and June. Then, after a numerical increase of approximately 0.19% in July, it dropped
significantly by 0.53% in August. In September, the SNF content in milk was significantly
raised by 0.88% and, after a numerical drop of approximately 0.20%, it did not change
during November and December (Figure 1c). The somatic cell count in milk was the highest
in March and the lowest in September–December (p < 0.01). The somatic cell count in
milk was higher in February and March compared to January. Then, it remained stable
from April to August and decreased and remained stable from September to December
(Figure 1d). There was no significant difference in the milk total microbial count throughout
the year (p > 0.01); however, it was numerically the highest in May and June, and lowest in
September (Figure 1e).

3.2. Temperature

The effects of environmental temperature on the fat, protein, non-fat solids, somatic
cell count, and total microbial count in milk are reported in Figure 2. There were significant
differences in the milk fat, protein, non-fat solids, somatic cells, and total microbial count
values at different temperatures (p < 0.01). When the temperature increased from 6.2 ◦C
to 31.3 ◦C, the milk protein, fat, SNF, and somatic cell count significantly decreased by
approximately 4.09%, 5.75%, 1.31%, and 16.8%, respectively (Figure 2a–d), while the total
microbial count in milk significantly increased by approximately 13.7% (Figure 2e).

3.3. Humidity

The effects of the relative humidity on the fat, protein, non-fat solids, somatic cells, and
total microbial count in milk are reported in Figure 3. There were significant differences
in milk fat, protein, non-fat solids, somatic cell count, and total microbial count values
under different relative humidities (p < 0.01). When the relative humidity increased from
54% to 82%, the milk protein, fat, SNF, and somatic cell count significantly increased, by
approximately 3.61%, 4.84%, 1.06%, and 10.2%, respectively (Figure 3a–d), while the total
microbial count in milk significantly decreased by approximately 16.3% (Figure 3e).
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4. Discussion

It is widely accepted that reductions in milk production and milk composition are
the most well-known negative responses to extreme temperature and humidity [2,39–43].
Environmental temperature and relative humidity have been reported to account for up to
a 6% difference in the proportions of cow milk constituents [44]. The climatic conditions
of the region where the animals are raised are among the most important causes of these
variations [45]. In the current study, the months of the year and milk main compositions
(fat, protein, SSC, and SNF) had significant positive correlations, while the correlations
between environmental temperature and milk composition indicators were significantly
negative. Kljajevic et al. [46] also confirmed a similar negative effect in their study for
Saanen goats, with a significant negative correlation between ambient temperature and the
main physicochemical characteristics of the milk. According to their report, fat was the
component most highly affected by environmental temperature. They also reported that the
fat content in goat milk was significantly correlated with the relative humidity (correlation
coefficient of approximately 0.70). Based on the results of our study, the highest levels for
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the major milk composition indicators (fat, protein, SNF, and SSC) were observed in the
cooler months of the year. This was also confirmed by the significant negative correlations
observed between the level of milk components and temperature, as well as significant
positive correlations between the level of milk composition and relative humidity. This has
also been supported by the records of Barash et al. [47], who reported the highest milk yield
and protein level in cows that calved in December, rather than those that calved in June.
In a similar study, Zhu, et al. [48] reported that environmental conditions—particularly
changes in temperature—caused decreases in milk production, fat content, protein content,
dry matter, and non-fat solids in milk. Importantly, these changes were observed in
July and August. Additionally, Bohmanova et al. [49] reported a sharp decline in milk
components from June to August. Our results were consistent with the previous reports
from April to August, showing decreases in fat, protein, and non-fat solids. Prolonged
exposure to the high air temperatures over the critical physiological phase could result
in decreased feed intake and a disorder of the endocrine functions of animals, indirectly
affecting lactation performance and further leading to declines in milk production [2,3,50].
Another factor influencing milk yield is the photoperiod, which increases in correlation
with day length [51]. Therefore, based on the latitude of farms in our study, the increase
in milk yield during April, May, and June in response to the longer photoperiod could
be a reason for the reduced milk fat and protein content, in terms of a dilution effect.
Adverse environmental conditions may induce different levels of body stress in dairy
animals, influencing the metabolism of the animal. This is further reflected in the decline in
milk yield and changes in milk composition. Therefore, efforts to reduce the influence of
adverse environmental conditions on dairy cows are urgently needed [48]. Appreciable
evidence on the relationships between humidity and increased milk composition have
been widely reported in dairy cows [26,39], while very little information exists for dairy
sheep [20,24]. In general, the results from our study (Table 2) illustrate moderate negative
correlation coefficients between ambient temperature and milk constituents (−0.59, −0.41,
and −0.54, for fat, protein, and NFS, respectively) and a weak negative correlation (−0.27)
for SSC when compared to those between relative humidity and milk constituents (0.41,
0.30, 0.36, and 0.20 for fat, protein, NFS, and SSC, respectively). We postulate, from these
data, that milk composition was more susceptible to temperature than humidity in this
study. In line with our results, Lim et al. [52] stated that, in summer—when the average
ambient temperature (◦C) and temperature–humidity index (THI) were higher—there
was a negative correlation between these factors and milk production, in addition to
the proportions of milk fat and protein. This was explained by Johnson [53] as greater
production of heat during summer speeding up the rate of decline in milk production for
cows. Additionally, the same author believed that the constant decrease in the current
lactation was proportional to the length of exposure to heat stress. Bouraoui et al. [54] also
attributed the reduced milk fat level to the lower intake of forage in the diet, and suggested
that a total mixed ration could help to alleviate the reduction in milk fat associated with
heat stress, by retaining the ratio of forage to concentrate, which ensures that the cows
receive adequate fiber for normal rumen function. These results were also in accordance
with the seasonal variations reported in the study of Jensen et al. [55], who observed a
lower milk fat content during the summer months, as well as the study of Lindmark-
Månsson et al. [56]. In addition, Hill and Wall [57] reported lower milk fat and protein
contents in dairy cattle with increasing THI values. McDowell et al. [58] claimed that the
decline in milk protein could occur as a result of a decrease in dry matter (energy) intake
in dairy herds when the THI increases. In their review, Kadzere, Murphy, Silanikove, and
Maltz [14] showed that the levels of milk protein, fat, and SNF were reduced in hot weather.
Similarly, Bouraoui, Lahmar, Majdoub, Djemali, and Belyea [54] saw lower levels of milk
protein and milk fat during the summer months. Lower levels of milk fat, protein, and
SNF were also found in the study of Gaafar et al. [59]. Another potential postulate for
the decreased fat and protein content in spring is the higher incidence of calving and,
consequently, the higher number of fresh cows compared with other seasons [6]. In our
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study, there was a significantly negative correlation between THI and SSC, in contrast
with the studies of Igono et al. [60], Zare-Tamami et al. [61], and Hammami, Bormann,
M’Hamdi, Montaldo, and Gengler [26]. The main contagious pathogens initiating an
increase in SCC include primary Staphylococcus aureus and Streptococcus agalactiae, as well
as environmental pathogens such as coliforms and Streptococcus spp. [62]. In the present
study, we found no significant correlations between the total microbial count in milk and
temperature or humidity. To explain the discrepancies in the literature, it can be stated
that, as high temperature intrinsically does not have any effect on the SCC in uninfected
udders [63], it may be presumed that heat stress may compromise the immune status of the
animals [64]. In addition, higher SCC can also be attributed to a depressed immune function
due to the oxidative stress effect [26]. Furthermore, Godden, Rapnicki, Stewart, Fetrow,
Johnson, Bey, and Farnsworth [28] detailed that increasing heat and humidity amplified the
pathogen load in the environment, resulting in a greater incidence of mastitis and increased
SSC. In the present study, no significant correlation between the milk microbial count and
climate variables (i.e., month, environmental temperature, and relative humidity) was
observed. However, climate change is assumed to affect the milk microbial count through
the direct effect of months and climate variables, including average temperature and
relative humidity, on the milk microbial ecology [29–31]. This increases the susceptibility
of the milk to microbial infection. Furthermore, the indirect effect of climate change on the
milk microbial count is expected to be mediated through the induction of heat stress in
dairy cattle, making them more susceptible to pathogenic microbes [33].

5. Conclusions

The results presented in this paper indicate that there exists a correlation between dif-
ferent months of the year, temperature, and humidity of the environment, in terms of milk
components and somatic cells. Our findings demonstrated that the best performance, in
terms of milk composition, occurred in the first quarter of the year. As temperature increases
and humidity decreases, milk quality decreases. Therefore, the effects of adverse environ-
mental conditions on agricultural profits are not negligible, and strategies to deal with
negative environmental effects should be formulated to improve dairy farm management.
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