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Simple Summary: Canine leishmaniosis is a challenge in veterinary medicine and no drug to date
has achieved parasite clearance in dogs. We have recently found that Vorinostat derivatives (O-alkyl
hydroxamates) are active against Leishmania infantum intracellular forms and effective in laboratory
models of visceral leishmaniasis without producing toxicity. We designed a clinical trial with
18 dogs naturally infected with the parasite and demonstrated that our flagship compound, MTC-305,
is superior to the current first-line treatment of canine leishmaniasis, meglumine antimoniate, at
reducing the parasite numbers in target organs (bone marrow, lymph nodes and blood) and improving
the dogs’ clinical state. MTC-305 was not toxic in dogs, unlike the standard treatment that causes
gastrointestinal alterations. We believe that, despite the limitations of the present work, MTC-305
and other O-alkyl hydroxamates are promising drugs in the fight against this neglected disease.

Abstract: Canine leishmaniosis is a challenge in veterinary medicine and no drug to date has achieved
parasite clearance in dogs. Histone deacetylase inhibitors are a drug class widely used in cancer
chemotherapy. We have successfully used O-alkyl hydroxamates (vorinostat derivatives) in the
treatment of a laboratory model of visceral leishmaniasis without showing toxicity. In order to
test the effectiveness of a particular compound, MTC-305, a parallel-group, randomized, single-
centre, exploratory study was designed in naturally infected dogs. In this clinical trial, 18 dogs
were allocated into 3 groups and were treated with either meglumine antimoniate (104 mg SbV/kg),
MTC-305 (3.75 mg/kg) or a combination of both using a lower MTC-305 dose (1.5 mg/kg) through
a subcutaneous route for 2 treatment courses of 30 days, separated by a 30-day rest period. After
treatment, a follow-up time of 4 months was established. Parasite burden in bone marrow, lymph
node and peripheral blood were quantified through qPCR. Antibody titres were determined through
an immunofluorescence antibody test, and cytokine expression values were calculated through RT-
qPCR. Treatment safety was evaluated through the assessment of haematological and biochemical
parameters in blood, weight, and gastrointestinal alterations. Assessment was carried out before,
between and after treatment series. Treatment with MTC-305 was effective at reducing parasite
burdens and improving the animals’ clinical picture. Dogs treated with this compound did not
present significant toxicity signs. These results were superior to those obtained using the reference
drug, meglumine antimoniate, in monotherapy. These results would support a broader clinical trial,
optimised dosage, and an expanded follow-up stage to confirm the efficacy of this drug.

Keywords: vorinostat derivatives; canine leishmaniosis; treatment; O-alkyl hydroxamates; histone
deacetylase inhibitors; effectiveness; safety
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1. Introduction

Canine leishmaniosis (CanL) is a dog multisystemic disease caused by Leishmania
infantum [1,2], a protozoan parasite that also causes visceral, mucosal and cutaneous
leishmaniasis in humans across the world, including the Mediterranean basin, Middle East,
China and Latin America, where it is endemic [3,4]. Dogs are the main reservoir of this
widespread parasite and once infected they can be asymptomatic carriers or develop the
disease, whereby, unlike in humans, cure is an uncommon event, since the dog’s immune
system cannot produce an effective response to eliminate the parasite even under treatment.
Since available drugs cannot eliminate the pathogen and L. infantum reaches deep organs
such as the bone marrow, therapies focus on improving the animal’s state, strengthening the
immune system, decreasing the ability to transmit the parasite to vectors and preventing
clinical relapses, which are common once the treatment is over.

Even though pentavalent antimonials are still the first-line drugs for CanL [5], they
exhibit high toxicity and the risk of resistance is high [6]. Allopurinol is usually adminis-
tered in combination, alone or with antimonial therapy in order to prevent the occurrence
of relapses [5]. Some drugs used in human visceral leishmaniasis, such as miltefosine and
aminosidine, have been found efficacious against CanL in monotherapy or in combina-
tion with allopurinol; however, parasite elimination was not achieved and dogs suffered
relapses at the end of the study [7].

Histone deacetylases (HDAC) inhibitors have proved effective in the treatment of
cancer: several molecules such as vorinostat have been approved for the treatment of
cutaneous T-cell lymphoma and they are showing promising activity in laboratory models
of malaria [8]. Histone-modifying enzymes, such as HDAC, are essential for the mod-
ulation of chromatin structure, thus indirectly regulating gene expression in eukaryotic
species. Their relevance seems even higher in trypanosomatid parasites, organisms that
lack canonical transcription regulation.

We have recently demonstrated that O-alkyl hydroxamates (vorinostat derivatives)
display potent and selective in vitro activity against L. infantum and are effective in a
laboratory model of visceral leishmaniasis, both in monotherapy or in combination with
meglumine antimoniate without displaying toxicity [9,10].

CanL is a veterinary practice challenge that is directly associated with public health,
considering its high prevalence and closeness with humans [1,11]. The aim of this study
was to evaluate the promising antileishmanial agent MTC-305 in dogs with naturally
acquired CanL, in order to assess its effectiveness and safety profile in the dog and support
the feasibility of a broader clinical trial. For that purpose, a randomized exploratory or
pilot clinical trial was designed.

2. Material and Methods
2.1. Drugs

Meglumine antimoniate (Glucantime®) was purchased from Merial (Barcelona, Spain).
MTC-305 was synthesised and nanoencapsulated as previously described [10].

2.2. Study Design

A randomized, parallel-group, single-centre, exploratory study with balanced ran-
domisation (1:1:1 ratio) was designed and carried out in the facilities of an animal shelter
(registry number ES189790000096) from September 2014 to February 2015. The animal
shelter staff, the veterinarian and the researchers were kept blinded. Only the person
administering the drug was not blinded.

2.3. Dog Enrolment

Eighteen privately owned dogs were enrolled in the clinical trial. All owners lived in
Granada province, where leishmaniasis due to L. infantum is endemic and CanL prevalence
is high [1]. Three inclusion criteria were established: two or more signs compatible with
CanL, IFAT titre ≥ 40 and positive L. infantum qPCR. Exclusion criteria were as follows:
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pregnant and lactating bitches, dogs presenting with other infectious diseases, dogs that
had recently received antileishmanial treatment (within 2 years) and dogs presenting
with severe liver or kidney disease. Some measures were taken to protect the dogs from
vectors: small-grid nets were placed in the facilities, dogs wore deltamethrin-impregnated
collars Scalibor® (MSD Animal Health, Kenilworth, NJ, USA) and a repellent-insecticide,
Advantix® (Bayer, Leverkusen, Germany), was applied in September 2014, July 2015 and
October 2015. Dogs were checked for their vaccination status, and they were dewormed,
treated for ectoparasites and analysed for other infections (i.e., ehrlichiosis) as per the
animal shelter’s guidelines by the veterinary practitioner.

2.4. Treatment Allocation

Dogs were randomly allocated to the treatment groups: MTC-305 (n = 6), meglumine
antimoniate (n = 6) or a combination of both (n = 6). This allocation was carried out
using a concealed list of random numbers once a dog passed the baseline evaluation. The
interventionist and the veterinary practitioner assessed treatment compliance. The shelter
staff and the veterinarian monitored the dogs on a daily basis.

2.5. Drug Therapy Intervention

The intervention consisted of two 28-day treatment series (starting on day 0 and 60) with
a 1-month rest between these treatments. MTC305 was administered at 3.75 mg/kg/day,
subcutaneously; meglumine antimoniate (MA) was administered subcutaneously at
104 mg SbV/kg/day; the combination group was administered MA (104 mg SbV/kg/day)
and MTC305 (1.5 mg/kg/day). A follow-up period of 4 months started at the end of the
treatment. The dogs were assessed by the research team and the veterinarian 4 times:
baseline evaluation (day 0), 30 days after the first treatment course (day 60), 30 days after
the second treatment course (day 120) and at the end of the follow-up period (day 210). At
every assessment, a complete clinical picture of the dogs was carried out including blood
and parasitological tests.

2.6. Outcome Assessment: Drug Efficacy

A 50% reduction of the parasite load in bone marrow, lymph node and peripheral
blood by day 120 was established as a marker of efficacy (primary outcome measure).

Other measures such as the clinical score and the immune status were evaluated
(secondary outcome measures).

2.7. Outcome Assessment: Safety Evaluation

Weight, appearance and behaviour were recorded at every analysis point. Blood
tests were performed in order to evaluate biochemical, enzymatic and haematological
parameters. The following safety issues were categorised as toxicity events that would
lead to the withdrawal of the dog from the study: kidney damage, liver damage, chronic
vomiting, chronic diarrhoea.

2.8. Sample Collection and Processing

Cephalic venipuncture was used for peripheral blood collection. These samples were
split into aliquots for qPCR (EDTA tubes), biochemical and haematological tests (heparin
and EDTA tubes) and serum (clean Eppendorf tubes) for antibody determination. Bone
marrow aspirates were taken via aspiration and stored in EDTA tubes for cell culture and
qPCR. Lymph node samples were also obtained via popliteal ganglion aspiration and used
for culture and qPCR. For parasite culture, samples were inoculated in culture tubes and
incubated; the rest of the samples were stored at −20 ◦C.
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2.9. Clinical State Evaluation

Clinical state was assessed at every time point through the scoring of clinical signs
on a 0–3 scale (absence to severe), as previously reported [12]. Clinical score (CS) resulted
from the addition of all sign scores.

2.10. Parasite Isolation

EMTM (agar blood solid phase) with RPMI-1640 medium as liquid phase and sup-
plemented with 20% FBS was used to incubate bone marrow and lymph node aspirates.
Culture tubes were incubated at 26 ◦C and sub-inoculated weekly until they were rejected
after two months.

2.11. Parasite Load Quantitation

DNA was extracted from blood (200 µL), bone marrow samples (200 µL) and lymph
node aliquots using a commercial kit (MasterPure® Extraction Kit, Epicentre, Charlotte,
NC, USA), as previously described [13]. Parasite burden in these tissues was quantified via
qPCR, as previously described [13].

2.12. Cytokine Expression

RNA extraction, complementary DNA synthesis and cytokine expression analysis
(interleukin 4 (IL4) and γ-interferon (IFNG)) was performed using a retrotranscriptase-
quantitative PCR technique, as previously described [12].

2.13. Immunofluorescence Antibody Test

Immunofluorescence antibody test (IFAT) was carried out to measure L. infantum-
specific antibodies in dog sera, as reported elsewhere [12].

2.14. Ethical Statement

Owners filled in an informed consent form and granted permission to house their pets
in our facilities, to administer Glucantime®, MTC-305 or their combination to their dogs
and to take samples as above. This clinical trial was approved by the Ethics Committee of
the University of Granada and the Andalusian Ministry of Agriculture, in agreement with
European law (Directive 2010/63/EU).

2.15. Statistical Analysis

Calculations on sample size estimated that three dogs were necessary per group in
order to detect 80% parasitaemia reduction, 80% power and a 5% significance level. These
estimations were based on our group’s interim data. Mann–Whitney and Kruskal–Wallis
tests were used to find differences among antibody levels and cytokine expression values.
Linear mixed models were used to evaluate parasite load and CS evolution using time, dog
identity and treatment as independent variables. Dog identity was labeled as a random
effect to account for dog variability.

3. Results
3.1. Participants and Participants Flow

Out of 118 dogs evaluated, 18 were recruited for the study and were randomly assigned
to the study groups. All dogs received the treatment and completed the follow-up period.
Dog age, sex, breed, IFAT titre and signs compatible with CanL during the selection stage
are shown in Supplementary Table S3.

3.2. Efficacy of MTC305 and Its Combination

MTC305 treatment in monotherapy was effective in all six dogs, producing a marked
parasite load decrease at day 120: 89.5% reduction in bone marrow (BM), 96% reduction
in lymph node (LN) and 53% reduction in parasitaemia (PB). Consequently, their clinical
score decreased in 5 out of 6 dogs at an average 60%. In the absence of drug pressure,
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parasite load continued to decline in some dogs, whereas it recidivated in others (dogs
7 and 10, day 210, Table 1). Antibody titres changed slightly during the analysis despite
the overall parasite burden reduction, showing a mixed Th1/Th2 response, whereas IL4
expression decreased in five of the dogs. Although the immune response was mixed during
the clinical trial, IgG2 increased in dogs that did not experience a relapse (Table 2 and
Supplementary Figures S1–S4).

Table 1. Parasite load and the clinical state during the experiment in MTC-305-treated dogs. BM, bone
marrow (parasites/µL); LN, lymph node (parasites/µg DNA); PB, parasitaemia (parasites/100 µL);
CS, clinical score.

Parasite Burden or CS

Dog Sample Day 0 60 120 210

7 BM 0 0 0 0

LN 1.04 0 0 1.51

PB 0.01 0 0 0

CS 3 2 2 2

8 BM 82.4 3.16 19.2 4.61

LN 270.2 33.2 2.61 43.7

PB 0.004 0.004 0.007 0.005

CS 10 10 13 20

9 BM 0.09 0 0 0

LN 0 0 0 0

PB 0.007 0.001 0 0

CS 7 5 1 2

10 BM 0.013 0.004 0.003 0.011

LN 0.83 0 0 0.26

PB 0.01 0 0.003 0.01

CS 2 1 1 1

11 BM 17.2 1.07 0.91 0.11

LN 302.3 4.91 0.03 0.1

PB 0.001 0.010 0.031 0.0005

CS 14 12 4 4

12 BM 0.050 0 0 0.008

LN 2.78 1.12 0.48 5.34

PB 0.0025 0.0002 0.0029 0.0158

CS 14 14 6 8

Table 2. Antibody titres and cytokine expression during the experiment in MTC-305-treated dogs.
tIgG, total IgG; IgG1, IgG1 subclass; IgG2, IgG2 subclass; IFNG, gamma interferon; IL4, interleukin 4.

Titre or Expression Level

Dog Analysis Day 0 60 120 210

7 tIgG 40 20 40 40

IgG1 0 0 0 0

IgG2 0 20 80 40

IFNG 27.9 0.31 1.20 0.13

IL4 0.40 0.07 0.03 1.80
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Table 2. Cont.

Titre or Expression Level

Dog Analysis Day 0 60 120 210

8 tIgG 640 1280 1280 1280

IgG1 0 0 0 40

IgG2 1280 1280 1280 1280

IFNG 7.78 19.7 21.6 17.8

IL4 0.03 0.25 0.03 0.33

9 tIgG 1280 1280 1280 1280

IgG1 80 80 80 40

IgG2 1280 1280 1280 1280

IFNG 0.64 0.65 13.5 3.89

IL4 0.03 0.32 2.20 1.51

10 tIgG 40 0 40 40

IgG1 0 80 20 0

IgG2 40 80 80 40

IFNG 47.8 44.0 0.8 78.2

IL4 0.16 0.55 0.03 0.25

11 tIgG 80 40 1280 1280

IgG1 0 0 80 80

IgG2 80 80 320 1280

IFNG 18.9 1.56 9.06 9.92

IL4 0.03 0.03 0.03 0.07

12 tIgG 160 160 80 160

IgG1 40 80 40 0

IgG2 320 320 80 320

IFNG 30.06 1.41 1.95 1.83

IL4 1.55 0.34 0.49 0.03

The combination was effective in 5/6 dogs: BM, LN and PB parasite loads decreased in
more than 90% of these five dogs (day 120, Table 3); conversely, LN parasite load increased
in dog 14. Clinical score decreased in all animals, including dog 14. The immune response
progression was divergent in this group as well except for dog 13, which experienced a
marked Th1 response increase through the increase of the IgG2/IgG1 and IFNG/IL4 ratios.
At the end of the follow-up (day 210, Table 4), relapses occurred in two dogs for which
treatment worked (dogs 16 and 18).

Table 3. Parasite load and the clinical state during the experiment in combination-treated
dogs. BM, bone marrow (parasites/µL); LN, lymph node (parasites/µg DNA); PB, parasitaemia
(parasites/100 µL); CS, clinical score.

Parasite Burden or CS

Dog Sample Day 0 60 120 210

13 BM 172.1 0 0 0.1

LN 409.06 0.03 0.003 16.93

PB 0.004 0.005 0 0

CS 23 8 4 5
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Table 3. Cont.

Parasite Burden or CS

Dog Sample Day 0 60 120 210

14 BM 0 0 0 0

LN 0 1.69 0.18 0.60

PB 0.001 0 0.001 0

CS 4 2 2 2

15 BM 0 0 0 0

LN 100.3 3.57 1.52 0.21

PB 0.003 0.003 0.002 0

CS 4 5 3 3

16 BM 0.001 0.0004 0 0.0069

LN 1.98 0.00 0.02 5.11

PB 0.09 0 0.01 0.10

CS 2 1 1 1

17 BM 0.015 0.009 0.003 0.002

LN 4.19 0 0 0

PB 0.002 0 0.04 0.01

CS 4 5 0 1

18 BM 0.0191 0 0 0.055523

LN 0 0 0 0

PB 0.07 0 0.024 0.013

CS 2 0 0 0

Table 4. Antibody titres and cytokine expression during the experiment in combination-treated dogs.
tIgG, total IgG; IgG1, IgG1 subclass; IgG2, IgG2 subclass; IFNG, gamma interferon; IL4, interleukin 4.

Titre or Expression Level

Dog Analysis Day 0 60 120 210

13 tIgG 1280 1280 1280 1280

IgG1 640 320 80 320

IgG2 1280 1280 1280 1280

IFNG 0.68 5.28 7.62 4.69

IL4 0.30 1.42 0.50 0.68

14 tIgG 160 80 80 80

IgG1 20 40 40 40

IgG2 320 80 80 320

IFNG 0.90 4.76 1.35 5.31

IL4 1.34 0.03 0.03 0.03

15 tIgG 80 0 0 0

IgG1 0 0 0 0

IgG2 20 20 0 0

IFNG 0.57 0.13 1.25 0.09

IL4 0.03 0.69 0.03 0.03



Animals 2022, 12, 2700 8 of 13

Table 4. Cont.

Titre or Expression Level

Dog Analysis Day 0 60 120 210

16 tIgG 160 40 40 80

IgG1 0 20 0 0

IgG2 80 320 40 80

IFNG 59.71 6.36 1.69 19.70

IL4 0.37 0.49 0.38 1.75

17 tIgG 160 80 80 40

IgG1 20 80 40 0

IgG2 320 320 40 80

IFNG 0.13 0.27 1.74 0.13

IL4 1.08 0.03 0.15 0.07

18 tIgG 160 20 20 20

IgG1 20 0 0 0

IgG2 40 40 0 0

IFNG 2.03 1.56 1.75 0.27

IL4 1.37 0.32 0.03 0.03

Conversely, meglumine antimoniate (MA) in monotherapy was considered effective in
only one out of six dogs (Supplementary Tables S1 and S2; Supplementary Figures S1–S4).

The regression analysis performed revealed that treatment with MTC-305 significantly
reduced parasite load in BM (p < 0.005) and LN (p < 0.005). The analysis found association
between treatment with MTC-305 and the clinical picture improvement (p < 0.05).

3.3. Treatment Safety

MTC-305 in monotherapy did not cause weight loss, diarrhoea or vomiting. The
only haematological alteration found was a decrease in segmented neutrophils in the
day 120 analysis that disappeared in the day 210 analysis, alteration shared with dogs
treated with MA. Regarding biochemical alterations, lipase, amylase and urea increased in
MTC-305-treated dogs without reaching the upper limit after treatment (day 120) but this
alteration disappeared in the follow-up analysis.

The combination therapy seemed more aggressive despite the lower MTC-305 dose:
there was a weight loss after the first treatment series in four dogs (day 60), but this
alteration did not appear after the second treatment series. No vomiting or diarrhoea
events were reported in this group and only some biochemical values increased in some of
the dogs (amylase, urea and bilirubin) but these values were within the normal range.

MA treatment led to a weight loss >5% in four out of six dogs treated with this
reference compound. Platelets and segmented neutrophils values decreased after the
treatment with this drug. Other alterations included high amylase values in one dog and
elevated bilirubin values in several animals in this group.

4. Discussion

The present study constitutes a pilot or exploratory clinical trial with the objectives
of assessing the safety of an O-alkyl hydroxamate (MTC-305) in dogs with CanL and
comparing its effectiveness with meglumine antimoniate (MA), the reference treatment in
Europe [14], in order to find out if a larger clinical trial is feasible. This is usually the aim of
the pilot, exploratory or proof of concept trials [15,16]. In addition to these objectives, we
evaluated the effectiveness of a combination of MTC-305 and MA given its good results in
mice. The number of dogs in this study was small but it was adequate in terms of statistical
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power based on previous data gathered by our group. Ideally, a study with a larger number
of animals could be designed given the positive results of this exploratory study.

Inclusion criteria were not strict, but have been used in the past [17], and allowed a
mixed dog cohort in the study that reflects the actual clinical picture of dogs with CanL,
with a mixed population of oligosymptomatic and polisymptomatic animals (phase I to III
according to [18]). Although the dog groups were mixed, the groups were homogenous
regarding age, sex and clinical state.

Regarding intervention structure, dose and length, MTC-305 treatment was adjusted
to the most common MA regime, and the dose was extrapolated from the one used in
mice using body surface area approximation [19]. Antimonial therapy in dogs is usually
administered in two treatment series in order to reduce the chance of relapse and treatment
failure [20]. In the present study, we applied this structure allowing a 30-day interval period
between series. The follow-up period was established at 4 months, under funding pressure.
Some authors consider that a follow-up period should be at least 6 months long given
that relapses can occur afterwards and antibody titres usually take longer than 3 months
to change [21,22]. The results of this exploratory clinical trial could be used to design
an optimized study with a larger number of dogs, an adjusted drug dose and a broader
follow-up period.

Parasitaemia is usually evaluated in the monitoring of treatment effectiveness in dogs
as it is less invasive than other tissues or organs [23]. Clinical score is usually employed
too as it shows correlation with parasite load and antibody titres [24,25]. Bone marrow is
a heavily parasitized organ in most dogs with CanL, which usually leads to changes in
this tissue and subsequent alterations associated with splenomegaly [26]. Some studies
have found high parasite load in this tissue regardless of their clinical state [27], and other
authors have considered bone marrow the best biomarker to monitor the dog’s clinical
picture [28] given its association with antibody titres and parasite loads in spleen. Therefore,
the present study considered bone marrow parasite burden the primary outcome measure,
whereas lymph node and peripheral blood were considered in dogs in which the parasite
was absent in bone marrow. In our study, lymph node and particularly bone marrow
parasite load, were associated with the clinical state.

Clinical score (CS) in our study was 6.9 on average (in the range 2–24), which is low
compared to the maximum achievable score (67), but it is similar to other studies such
as that of Proverbio et al., 2014 (mean CS 5.1 and the maximum CS found 30) [25]. We
found the bone marrow to be the most parasitized tissue studied, followed by lymph
node and peripheral blood, similar to other studies [29,30]. Regarding antibody titres,
total IgG was very variable and IgG2 was larger than IgG1, similar to other studies [28].
IgG isotypes interpretation is not consistent across literature as some authors associate it
with their clinical state [31], whereas other authors cannot find any correlation [32]. In the
present work, IgG isotypes, particularly IgG1, showed a positive correlation with the CS.
IFNG expression (associated with Th1 response) was higher than IL4 (linked to disease
progression and Th2 response) in most dogs, confirming that Th1 response appeared higher
in most individuals. However, it should be noticed that only two cytokines were evaluated
in this study and other actors may have relevance in the immune response. The bone
marrow parasite load found in this study showed good correlation with IgG1 and IL4.

MA was only effective in one treated dog in the present study; consequently, their
immune response leaned towards Th2 in 4 dogs and towards Th1 in the remaining two.
This therapeutic failure could be attached to the use of MA in monotherapy: 82% veterinary
practitioners use antimonials in combination with allopurinol in Mediterranean Europe.
However, our results with MA were poorer than those previously reported [33,34]. Drug
resistance is one of the main issues in antileishmanial chemotherapy [35], and CanL is not
exempt from this problem [6,36], which may have played a role in this treatment failure.

The effectiveness of MTC-305 has been demonstrated in the present study: treatment
reduced BM, LN and PB parasite loads by more than 50% in all dogs. This effect did not
seem associated with the animals’ previous state since the immune response pattern was
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similar among the groups (IgG2 titres were higher than IgG1 and IFNG expression was
higher than IL4). Clinical score also decreased at the end of the treatment. Although the
immune response only varied slightly, IL4 seemed to decrease during treatment and IgG2
increased, particularly in dogs that did not recidivate. After the follow-up period, a relapse
was found in some of the dogs. An in vivo pharmacokinetic study of the drug would
be very beneficial to improve the dosage regime of this drug in order to maintain drug
pressure at an optimal level for longer periods.

A drug combination of MA and MTC-305 at a lower dose was effective in all but one
dog. Similar to the MTC-305 treatment in monotherapy, the immune response did not
change significantly, and its evolution was dissimilar. Drug combinations are widely use in
antileishmanial chemotherapy in order to reduce toxicity, relapses and resistance generation.
MA is usually employed in combination with allopurinol, a leishmaniostatic drug that
is also administered in monotherapy in asymptomatic or stage 1 dogs. In this instance,
MTC-305 dose was reduced in order to reduce toxicity and interaction risk with MA.

The different therapies were well tolerated overall. MA safety has been evaluated in
the past [37,38], but in the present study, no hepatotoxicity, kidney or pancreatic toxicity
were found, apart from increases in some parameters (creatitine, lipase and amylase) at
different points. Diarrhoea and weight loss were found, a finding that has been reported
previously [33]. Dogs treated with MTC-305 did not experience weight loss or gastroin-
testinal alterations. Some dogs showed slight biochemical alterations during the study that
returned to normality in the following evaluation, but they were not indicative of kidney,
hepatobiliary and pancreatic damage according to international guidelines [39–42].

Vorinostat, a MTC-305 parent compound, has been tested using preclinical models,
showing little or no toxicity. It only showed gastrointestinal alterations in dogs and the
NOAEL was established at 60 mg/kg. Cardiac alterations and mutagenesis have also been
discarded in this compound [43]. MTC-305 has been previously assessed, showing no
mutagenesis potential or activity over hERG channels [10].

No significant toxicity was recorded in dogs treated with the combination therapy.
Four dogs suffered a 5% weight loss after the first treatment series, but they had recovered
it by day 120. Although this combination was expected to be more aggressive, their safety
profile was similar to dogs treated with MTC-305, recording some mild alterations that
improved over time. The positive disease evolution in this group of dogs may have
prevented other effects that were recorded in dogs treated with MA, which in turn suffered
a disease deterioration.

Our results indicate that MTC-305, both in monotherapy and as a combination with
MA, was more efficacious and safer than the reference antimonial treatment, in the context
of a limited pilot exploratory clinical trial. A broader study that includes an optimised
dosing through pharmacokinetic profiling, a large number of animals and a broader follow-
up would be ideal to reinforce these findings.

5. Conclusions

The effectiveness of the vorinostat derivative MTC-305 has been assessed in a small
cohort of dogs involving a deep analysis of disease biomarkers. The effectiveness of
this drug in this incurable animal model, superior to the reference treatment, makes a
larger clinical trial feasible, including an optimised dosage and a broader follow-up taking
advantage of the results of this pilot or exploratory clinical trial. In addition, safety and
efficacy in canine leishmaniasis puts forward the idea of its use in human leishmaniases.
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