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Simple Summary: Female reproductive failure is still a challenge for the beef industry. Several
biological processes that underlie fertility-related traits, such as the establishment of pregnancy
and embryo survival, are still unclear. Increased availability of transcriptomic data has allowed
a deep investigation of the potential mechanisms involved in fertility. This study investigated
candidate gene biomarkers predictive of pregnancy status and underlying fertility-related networks.
To this end, we integrated gene expression profiles through supervised machine learning and gene
network modeling. We identified nine biologically relevant endometrial gene biomarkers that could
discriminate against pregnancy status in cows. These biomarkers were co-expressed with genes
critical for uterine receptivity, including endometrial tissue remodeling, focal adhesion, and embryo
development. This study outlined key pathways involved with pregnancy success and provided
predictive candidate biomarkers for pregnancy outcome in cows.

Abstract: Reproductive failure is still a challenge for beef producers and a significant cause of eco-
nomic loss. The increased availability of transcriptomic data has shed light on the mechanisms
modulating pregnancy success. Furthermore, new analytical tools, such as machine learning (ML),
provide opportunities for data mining and uncovering new biological events that explain or predict
reproductive outcomes. Herein, we identified potential biomarkers underlying pregnancy status and
fertility-related networks by integrating gene expression profiles through ML and gene network mod-
eling. We used public transcriptomic data from uterine luminal epithelial cells of cows retrospectively
classified as pregnant (P, n = 25) and non-pregnant (NP, n = 18). First, we used a feature selection
function from BioDiscML and identified SERPINE3, PDCD1, FNDC1, MRTFA, ARHGEF7, MEF2B,
NAA16, ENSBTAG00000019474, and ENSBTAG00000054585 as candidate biomarker predictors of
pregnancy status. Then, based on co-expression networks, we identified seven genes significantly
rewired (gaining or losing connections) between the P and NP networks. These biomarkers were
co-expressed with genes critical for uterine receptivity, including endometrial tissue remodeling,
focal adhesion, and embryo development. We provided insights into the regulatory networks of
fertility-related processes and demonstrated the potential of combining different analytical tools to
prioritize candidate genes.

Keywords: biomarker; cow fertility; data mining; machine learning; transcriptomics

1. Introduction

The sustainability of a cow-calf production system relies on the efficiency of repro-
ductive performance per cow. However, a decline in cattle fertility has led to increased
reproductive failure [1,2], which is a challenge for beef producers and a significant cause
of economic loss [3]. Fertility is a lowly heritable, multifactorial trait affected by genetic,
environmental, and management factors [2,4,5]. Despite the limited selection response
to traditional selective breeding strategies, reproductive and genomic technologies have
provided opportunities to improve reproductive efficiency [3,6]. Several candidate genes
and biological processes have been identified through genome-wide association studies
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(GWAS) [7–9]. Likewise, genomic testing and selection, mainly in dairy cattle, has increased
the rate of genetic improvement for female fertility [2,8].

Other omics approaches, such as transcriptomics and metabolomics, have shed light
on the complex regulatory mechanisms of cattle fertility [10–14]. Canovas et al. [12]
reported 1515 differentially expressed genes (DEGs) from eight tissues by comparing pre-
and post-pubertal Brangus heifers. Similarly, Geary et al. [14] profiled the endometrium
of highly fertile, subfertile, or infertile heifers and found downregulated DEGs involved
with immune response. From metabolomic approaches, ornithine and L-alanine were less
abundant in the blood plasma of infertile cows and were reported as potential biomarkers
of pregnancy outcome through artificial insemination [11] or embryo transfer [15]. Despite
the fruitful results and the massive amount of information provided by different omics
approaches, no major gene or causal mutation determining fertility-related traits has been
reported. Additionally, most studies have focused on differential expression analysis.
Despite its benefits, this approach does not account for the complex interactions among
genes. Thus, a systemic approach considering the multiple gene relationships can add new
knowledge to decipher the gene architecture of female cattle fertility.

Several analytical methods have been proposed to mine meaningful biological in-
formation from complex biological data. Genes do not work alone. Thus, gene network
approaches have been used to reduce the dimensionality of omics data and outline specific
molecular mechanisms driven by co-expressed genes [16,17]. Likewise, ML methods have
provided opportunities to dissect genomic signatures from omics data [18]. ML is a broad
term encompassing different methods that use self-learning algorithms to analyze large,
complex data and extract patterns that can be used for prediction [18,19]. Despite the
opportunities provided by these methods, few studies have coupled these tools to address
the interplay between genes and fertility. Based on ML, Rabaglino et al. [19] integrated en-
dometrial transcriptomic profiles from public datasets and identified 50 genes as predictors
of uterine receptivity to embryo transfer in cattle. Fonseca et al. [20] reported 32 functional
candidate genes from a co-expression network meta-analysis by comparing transcriptomic
profiles of high and low-fertile crossbred heifers. Combining blood transcriptomics, ML,
and gene networks, Moorey et al. [10] reported RPL39, SMIM26, LONRF3, GATA3, and
N6AMT1 as the top five genes for classification of pregnancy outcome at the artificial
insemination timepoint in heifers.

In this work, we presented a comprehensive multi-tiered approach using ML feature
selection, gene co-expression network, and functional analysis on transcriptomic profiles of
uterine luminal epithelial cells. Specifically, ML was assigned to screen out gene expression
signatures to predict whether a recipient cow would become pregnant or remain open.
Furthermore, a gene co-expression framework was used for modeling gene relationships
and putative regulatory mechanisms involved with fertility and pregnancy outcomes.
Our goal was to identify potential gene biomarkers predictive of pregnancy outcomes
and underlying fertility-related networks by integrating gene expression profiles and
prioritizing candidate genes retrieved through ML and gene network modeling. We
have demonstrated the potential of combining different methods to identify candidate
biomarkers and provided insights into the complex genomic basis underlying pregnancy
establishment and fertility in cattle. We identified nine biomarkers discriminating between
P and NP cows, including SERPINE3, MRTFA, and ENSBTAG00000019474.

2. Materials and Methods

All transcriptomic and phenotypic data used in this current study were retrieved from
the Gene Expression Omnibus database (GEO – Accession number GSE171577, BioProject
PRJNA720121). The dataset comprises RNA-sequencing profile, progesterone level, block,
and pregnancy status of 43 multiparous, Angus-Brahman crossbred cows.

The data and the main findings were published by Martins et al. [21]. In brief, estrous
synchronized recipient cows had uterine luminal epithelial cells sampled three days before
embryo transfer. Pregnancy was diagnosed on day 30 through transrectal ultrasonogra-
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phy. Pregnancy status was as follows: 25 pregnant (P) and 18 non-pregnant (NP) cows.
Further information about experimental design and laboratory procedures is described
elsewhere [21]. An overview of the methodological approach for the current study is shown
in Figure 1.
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Figure 1. Overview and analysis workflow to identify predictive biomarkers of pregnancy status and
fertility-related networks in cows.

2.1. Data Retrieval and Quality Control

The FASTQ files were downloaded from the GEO database using a bash script from
the SRA-Explorer web tool [22]. Data quality control was carried out using FastQC v0.11.9
(https://bit.ly/3pCUvar, accessed on 6 January 2022) [23] and MultiQC v1.11 (https:
//multiqc.info/, accessed on 6 January 2022) software [24]. On average, each sample
had 23.7 M reads (paired-end, 150 bp) with a PhredScore greater than 35. The Bos taurus
genome ARS-UCD 1.2 [25] was used as the reference for sequence assembly and annotation.
Read mapping was performed using the two-pass mode of the STAR aligner v.2.7.5 (https:
//rb.gy/dlgdva, accessed on 6 January 2022) [26]. The –quantMode GeneCounts flag from
STAR and the annotation file (release 104) from Ensembl were used for read counting. Post-
mapping quality control was performed using MultiQC, Principal Component Analysis
(PCA) using the R software [27], NOISeq v.2.38.0 (10.18129/B9.bioc.NOISeq, accessed on
6 January 2022) [28], and edgeR v.3.36.0 (10.18129/B9.bioc.edgeR, accessed on 6 January
2022) [29] R-packages.

2.2. Gene Expression Normalization and Supervised Machine Learning

Counts for unstranded RNA-Seq for each sample were retrieved from STAR and
transformed to counts per million (CPM) using edgeR. Genes with low count expression
(CPM < 0.5 in 50% of samples) were filtered out [29]. The gene expression normalization
procedure used the DESeq2 v.1.26.0 (10.18129/B9.bioc.DESeq2) VST function. The gene
expression values were adjusted for the effect of the block, as reported by Martins et al. [21],
using the removeBatchEffect function from the Limma R-package [30].

The VST normalized genes were subjected to ML using BioDiscML. BioDiscML auto-
mates ML steps by implementing methods for features (genes) and model selection [31]. To
compare the prediction performance of the models, we ran the software on the training
dataset using a categorical classification (pregnant or non-pregnant—P or NP). To this
end, 2/3 of the samples (n = 30; 18 P and 12 NP) were randomly used for training. The
remaining cows (n = 13; 7 P and 6 NP) were used for model validation. Then, the feature
ranking algorithm sorted the features based on their predictive powers with respect to class
(P or NP). Based on that, only features (genes) with an information gain > 0.01 were selected
for further analysis [31]. Two methods were used by the software for model selection: top
k features and stepwise for each algorithm and each optimization evaluation criteria. The

https://bit.ly/3pCUvar
https://multiqc.info/
https://multiqc.info/
https://rb.gy/dlgdva
https://rb.gy/dlgdva
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models generated were evaluated by tenfold cross-validation and the genes improving
the predictive performance were retained. Once the models were optimized, prediction
performance was measured using 10 cross validations (CV), leave-one-out cross validation
(LOOCV), holdout, repeated holdout, bootstrapping, and a 0.632+ bootstrap estimator [31].

Since the software generates many models, we selected the top five (numberOfBest-
Models = 5). In the current dataset, the classifier was categorical (P or NP). Therefore, a
stable model selection and evaluation method that minimized the overfitting of the data
was used. For this purpose, the software recommends selecting a model having the best
average Mathew’s correlation coefficient (AVG_MCC) with a standard deviation lower
than 0.1. The Mathew’s correlation coefficient provides an informative and truthful score
in evaluating binary classifications [32]. The top five best models were selected using
the numberOfBestModelSortingMetric as AVG_MCC on the training set. The test dataset
was validated using the predict function with the genes from the top 5 selected models.
These genes were identified as potential biomarkers and subjected to further analysis. The
expression differences of the selected candidate biomarkers between the P and NP groups
were visualized using the ggplot2 v3.3.5 R-package [33].

2.3. Gene Co-Expression Network Analysis

To investigate the coordinated gene expression and putative regulatory relationships
underlying the differences between P and NP cows, we created two independent networks.
Thus, the normalized genes (see Methods Section 2.2) were used. To create the networks,
we used the Partial Correlation and Information Theory (PCIT) algorithm [34], as described
by Diniz et al. [35]. This approach explores relationships between all possible triplets of
genes to determine truly informative correlations between gene pairs [17,34].

Significantly correlated pairs were selected when the candidate biomarkers from
the ML approach were identified (p ≤ 0.05). The Network Analyzer tool [36] was used
for network analysis, and Cytoscape v.3.8.2 [37] was used for visualization. The highly
connected genes, or “hubs”, were identified considering the degree measure (Mean + 2SD)
retrieved from Network Analyzer. The changes in the nodes and edge rewiring from the P
and NP groups were visualized using DyNet [38]. To identify the differentially connected
genes in each group, the connectivity (K) measure for each network was standardized
by dividing the gene connectivity by the maximum connectivity [39]. The differential
connectivity (DK) measure was calculated as DKi = KNP(i) − KP(i). The DK values were
transformed to a z-score and values ± 1.96 SD were considered significant (p ≤ 0.05) [35].
The networks were visualized using Cytoscape v3.8.2.

2.4. Functional Over-Representation Analysis

Functional over-representation analysis was performed to retrieve biological processes
based on gene ontology (GO) terms and KEGG pathways that underlie the co-expressed
genes. The queried gene lists included the biomarker-gene co-expressed pairs within P and
NP cows separately. Likewise, overlapping genes were analyzed to identify shared path-
ways. Functional annotation of unknown genes was based on the targeted co-expressed
genes. The over-representation analyses were performed using ShinyGO v0.76 [40], which
calculates a hypergeometric test followed by a false discovery rate (FDR) correction. A cus-
tomized background gene list (Table S1) for functional analysis was based on all expressed
genes detected in our dataset (n = 15,039). Significant results were retrieved after p-value
adjustment using the Benjamini–Hochberg method (FDR ≤ 0.05).

3. Results

In this study, our goal was to investigate potential gene biomarkers underlying preg-
nancy status and fertility-related networks by integrating gene expression profiles through
supervised machine learning (ML) and gene network modeling. First, we used a feature
selection function from BioDiscML and identified genes as candidate predictors of preg-
nancy outcome. Then, we created gene co-expression networks to identify differences in
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network topology linked to the gene predictors identified through ML. Lastly, we used
the co-expressed networks to get insights into the gene function and over-represented
biological processes affecting fertility as measured by pregnancy status.

Figure 1 summarizes the approach adopted in the current study. After QC, on average,
93.4% of unique reads were mapped to the bovine reference genome. A summary of
sequencing throughput and read mapping per sample is available in Table S2. Based on the
QC criteria, 15,039 genes out of 27,607 were kept for further analysis (see Section 2.2).

3.1. Identification of Potential Biomarker Genes through ML

The ML steps were automated by BioDiscML for feature and model selection on 15,039
genes. The feature ranking algorithm sorts the genes based on predictive powers based
on class (P or NP) and retains the genes with an information gain > 0.01. Considering
the predictive power with respect to class exhibited by the feature ranking algorithm, we
retrieved 225 genes for model evaluation with an information gain > 0.01. Based on that,
4524 models were generated out of 6580 models tested by the software. Next, we selected
the top 5 models with an AVG_MCC > 0.97 (see Methods Section 2.2) to evaluate the test
dataset (Table S3). These models were from three categories: functions, lazy, and rules. The
details of the models are as follows:

(1). Functions category with SPegasos (Stochastic primal estimated sub-gradient solver
for SVM) as classifier optimized by false discovery rate (FDR);

(2). Three models of the lazy category with IBk (K-nearest neighbors with and without
Gaussian) optimized by Matthew’s correlation coefficient (MCC), FDR, and balanced error
rate (BER) as the classifier;

(3). Rules category with ordinal learning method (OLM) as the classifier and optimized
by the area under the curve (AUC).

In the training dataset, all the models, except for rules-OLM-AUC, exhibited a pre-
diction accuracy greater than 90%. The accuracy considered the following evaluation
procedures: tenfold cross-validation, leave-one-out cross-validation, repeated holdout, and
bootstrapping in the entire dataset. For the same evaluation procedures, the rules-OLM-
AUC model exhibited 80% accuracy on the training dataset.

Using these models, nine genes (SERPINE3, PDCD1, FNDC1, MRTFA, ARHGEF7,
MEF2B, ENSBTAG00000019474, ENSBTAG00000054585, and NAA16) were identified as
discriminating between P and NP cows and are reported here as candidate biomarkers.
Figure 2 shows the differences in the expression levels of the nine candidates between
the P and NP groups. To evaluate the prediction performance of the identified models
based on the candidate biomarkers, we tested each model on the validation dataset and
the accuracy was recorded. All the models exhibited an accuracy of 61.54%, except for the
rules-OLM-AUC model (accuracy = 53.85%).

3.2. Gene Network Analysis

To investigate the functional gene-gene relationship between P and NP cows, we
created co-expression networks from 15,039 genes for each group separately using PCIT.
Using this approach, we identified 8,554,787 and 7,227,015 significantly correlated pairs
(p < 0.05) for P and NP, respectively. To reduce the data dimensionality, we kept only gene
pairs correlated with the candidate biomarkers (nine genes as identified above). Thus, 5412
and 4204 pairs were kept (corresponding to 4382 and 3166 unique genes) in the P and NP
networks, respectively (Figure 3, Table S4). By overlapping the gene lists, we identified
1341 genes that were shared between the groups (Figure 3a). To visualize the connectivity
between P and NP gene networks, we built a central reference network using DyNet. This
network comprised 6202 nodes (genes) and 9020 edges (interactions) (Figure 3b). The nodes
were filtered for the nine candidate biomarkers based on degree measure (see Methods
Section) from both the P and NP groups (Figure 3c).
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Figure 2. Normalized gene expression of candidate biomarkers discriminating between pregnant (P)
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Considering the differential connectivity measure, we identified seven genes signif-
icantly rewired (gaining or losing connections) between P and NP networks (Figure 3c,
Tables 1 and S5). Despite the similar topological behavior, the P network had more co-
expressed nodes than NP. On the other hand, the candidate biomarkers identified in the NP
cows were more connected. A significant increase in connectivity in the NP networks was
identified for the MEF2B, FNDC1, ENSBTAG00000019474, SERPINE3, and MRTFA genes.
Conversely, NAA16 and AEHGEF7 were more connected in the P network.

Table 1. Uterine luminal epithelial differentially connected genes between pregnant (P) and non-
pregnant (NP) cows.

Ensembl Gene ID Gene Symbol Nodes in NP Nodes in P DIFFK z-Score *

ENSBTAG00000001818 MEF2B 794 169 0.88983 45.428
ENSBTAG00000003938 FNDC1 670 342 0.62088 31.6887
ENSBTAG00000005284 SERPINE3 646 401 0.55219 28.1798
ENSBTAG00000019474 ENSBTAG00000019474 577 507 0.39619 20.2104
ENSBTAG00000002630 MRTFA 373 127 0.38698 19.74
ENSBTAG00000038251 NAA16 384 1488 −0.4864 −24.876
ENSBTAG00000020726 ARHGEF7 331 1534 −0.5831 −29.818

NP—non-pregnant; P—pregnant; DIFFK—Differential connectivity index. * p-value < 0.05.

Further, we examined the DEG list from Martins et al. [21] to investigate whether these
genes were co-expressed with the candidate biomarkers we found. By overlapping the lists,
we identified 66 genes that were shared between the P, NP, and DEG lists (Figure 3a). Genes
that were DEGs [21], identified as biomarkers through ML, and differentially connected
included ENSBTAG00000019474, PDCD1, and MRTFA.
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Figure 3. Uterine luminal epithelial co-expressed genes between pregnant (P) and non-pregnant
(NP) cows. (a) Genes that overlap across analyses; *DEGs – differentially expressed genes from
Martins et al. [21]; Biomarkers were identified through machine learning. (b) Central reference union
networks between the P and NP groups, with 6202 nodes (genes) and 9020 edges (interactions);
(c) Only gene pairs that are co-expressed with a candidate biomarker are shown; red and green lines
(connections) represent negative and positive correlation, respectively.

3.3. Functional Over-Representation Analysis

We used a functional over-representation analysis based on the ShinyGo tool to re-
trieve biological processes and KEGG pathways affected by the co-expressed genes. The
over-representation analyses of overlapping genes between P and NP groups (n = 1341)
retrieved protein digestion and absorption, ECM-receptor interaction, and focal adhesion
(FDR < 0.05). Additionally, we analyzed the gene lists separately for P (n = 4382) and NP
(n = 3166) (Figure 4a,b). Unique pathways from pregnant co-expression networks included
ribosomes, proteasomes, and oxidative phosphorylation (Figure 4a, Table S6). Likewise,
pathways related to tissue remodeling, such as degradation of the extracellular matrix, col-
lagen formation, ECM proteoglycan, and blood vessel development, were over-represented
by co-expressed genes from the NP network (Figure 4b, Table S7).

To predict the biological processes (BP) of the ENSBTAG00000019474 and ENSB-
TAG00000054585 identified as candidate biomarkers, we used their respective co-expressed
genes. The queried list of the ENSBTAG00000019474 included 508 and 578 unique genes,
whereas the ENSBTAG00000054585 gathered 145 and 47 from P and NP subnetworks,
respectively. The significant over-represented BP (FDR < 0.05) underlying the co-expressed
genes for P and NP cows from the ENSBTAG00000019474 gene are shown in Figure 4c,d
(Tables S8 and S9). In the NP subnetwork, most of the genes were positively correlated
(413 pairs out of 577) with ENSBTAG00000019474. Interestingly, the most over-represented
terms were those related to early pregnancy and included embryo development, tissue
development, and vasculature development (Figure 4d). No significant BP was over-
represented for the genes co-expressed with ENSBTAG00000054585.
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Figure 4. Top over-represented KEGG pathways and biological processes (BP) underlying uterine
luminal epithelial co-expressed genes. KEGG pathways from the individual network of co-expressed
genes from pregnant (a) and non-pregnant cows (b); BP of individual subnetworks of genes co-
expressed with the ENSBTAG00000019474 gene from pregnant (c) and non-pregnant cows (d).

4. Discussion

Fertility is a general term encompassing a variety of traits important in animal repro-
duction [41]. Herein, we will broadly define fertility as “the ability to conceive and maintain
a pregnancy” [2,41]. The establishment of pregnancy and embryo survival are dependent
on a cascade of biochemical and hormonal events. Thus, the uterine environment is critical
in supporting pregnancy [42]. Likewise, changes in gene expression of endometrial epithe-
lial cells are associated with pregnancy success or failure [21]. In this study, we investigated
candidate gene biomarkers underlying fertility-related networks and pregnancy outcomes
by integrating gene expression profiles through supervised machine learning and gene
network modeling. To this end, we used public transcriptomic data generated from uterine
luminal epithelial cells of recipient cows biopsied three days before embryo transfer [21].
The data was published by Martins et al. [21], which reported 240 genes affected by pro-
gesterone concentration and 317 differentially expressed genes (DEGs) by comparing P
and NP cows based on a linear model. Furthermore, the authors identified 25 genes with a
predictive ability to discriminate against pregnancy outcomes [21].

Pregnancy success is dependent on a number of events that include embryonic viability
and a receptive uterine environment to sustain embryonic growth and development [43,44].
Regarding embryonic viability, Martins et al. [21] transferred either fresh or frozen em-
bryos to recipient cows. Although the pregnancy rate per embryo transfer has previously
been shown to be lower for recipients receiving frozen embryos [45], no significant dif-
ferences in pregnancy rates were reported by Martins et al. [21]. Several studies have
focused on endometrial biopsies to profile gene expression and characterize the mecha-
nisms underlying endometrial receptivity [14,43,44,46]. In the current study, however, the
authors proposed a less invasive approach and sampled luminal epithelial cells using a
cytobrush [47]. While there are tissue-specific differences [47], the gene expression profile
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of epithelial cells provides a representative picture of the physiological status of the uterine
environment [21].

Herein, we have shown the potential of combining different analytical tools to priori-
tize candidate genes. Our results, however, should be interpreted considering the limited
sample size used to train and predict ML models. Additionally, the expression profile
was measured at one timepoint in only one tissue and does not capture all the genomic
mechanisms and factors involved with pregnancy success [10]. Lastly, we cannot expect
the expression of a limited number of genes to provide high accuracy in determining
pregnancy outcomes [19]. Thus, testing in larger cohorts with a similar approach would
provide increased accuracy and reliability of the genes as predictors.

Based on the ML approach, we identified SERPINE3, PDCD1, FNDC1, MRTFA,
ARHGEF7, MEF2B, ENSBTAG00000019474, ENSBTAG00000054585, and NAA16 as candi-
date biomarkers discriminating between P and NP cows. Among them, MRTFA, PDCD1,
and ENSBTAG00000019474 were reported by Martins et al. as DEGs and negatively as-
sociated with odds of pregnancy [21]. While these genes are suggested as key players
underlying pregnancy and fertility, they are not acting alone. Thus, we implemented a
network approach to better understand their involvement in pregnancy success. Through
co-expression analysis, we identified 4382 and 3166 unique genes that showed a coordinated
expression pattern with the candidate biomarkers in the P and NP networks. Interestingly,
only 123 and 116 genes we have identified from the P and NP networks were previously
reported as DEGs by Martins et al. [21].

Among the candidate biomarkers, SERPINE3 was more expressed in pregnant cows.
Its role in female fertility, however, is unknown. Serpins are a superfamily of protease
inhibitors involved in several biological processes [48], including inflammation and tissue
remodeling [49]. In line with the same family, the SERPINE2 gene was highly expressed in
the granulosa cells of growing dominant bovine follicles [50]. The PDCD1 gene has been
linked to the growth and differentiation of uterine epithelium [51]. Additionally, this gene
codes for an immune-inhibitory receptor important for the maternal immune system during
pregnancy [52]. Although we did not find immune-related processes over-represented in
our study, Martins et al. [21] reported downregulation of genes associated with immune
function in pregnant cows. Other studies in crossbred heifers have reported a cross-talk
between immune function and pregnancy outcome [10,53]. The regulatory mechanisms
that underlie this interplay, however, remain unclear.

We identified the MEF2B and MRTFA transcription factor (TF) coding genes among the
predictors of pregnancy outcomes. Both TFs are involved in cell differentiation [54,55]. Ad-
ditionally, MEF2 genes code essential regulators of organogenesis [55]. During early preg-
nancy [56], the MEF2B protein was highly expressed in primary human cytotrophoblasts.
Li et al. suggested that MEF2B regulates the extravillous cytotrophoblast invasion and
differentiation [56]. MEF2B and MRTFA were negatively correlated with the SRF gene
in the network of NP cows. MRTFs co-regulate SRF and activate genes involved in cy-
toskeletal dynamics and focal adhesion proteins [54,57]. SRF is an important regulator of
early development, and its knockout leads to embryonic lethality [58]. We found ENSB-
TAG00000019474 co-expressed with genes involved in tissue remodeling, vasculogenesis,
and embryo development. Interestingly, these processes were over-represented only in
the network of NP cows. Likewise, it was more expressed in NP cows. Multiple signaling
pathways are required to establish and maintain pregnancy. Considering the biological
processes and KEGG pathways we identified, endometrial morphology and remodeling
seem to be crucial to proper embryo implantation [59].

Although many gene connections were identified in the P network, we found that SER-
PINE3, FNDC1, MRTFA, MEF2B, and ENSBTAG00000019474 were more connected in the
NP network. Similar findings were reported by Banerjee et al. [60]. Their study identified
a rewiring of major gene regulators in the blood transcriptome network of NP crossbred
heifers. These findings suggest that these genes may change regulatory patterns between
P and NP cows, consequently leading to deregulated biological pathways [16]. Although
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our co-expression analysis framework cannot confer information about causality, we found
several KEGG pathways that were exclusive to each group. The ribosome pathway was
over-represented by co-expressed genes from the P network. Ribosomes are critical for
cellular function and metabolism as they control the translation of specific mRNAs [61].
Deficiencies in genes coding to ribosomal proteins and translation initiation factors were
related to blastocyst implantation failure [62]. Likewise, based on a proteomics study, Xin
et al. identified dysregulation of focal adhesion and ribosome pathways associated with
early pregnancy loss in humans [63]. Focal adhesion was over-represented by the shared
genes underlying networks from both groups. These molecules play a key role as struc-
tural cellular components in integrin-mediated signal transductions and angiogenesis [64].
Previous studies have also highlighted that adhesion molecules are critical during embryo
implantation [44,65,66].

5. Conclusions

We applied a multi-tiered approach to identify predictive candidate biomarkers and
fertility-related co-expressed gene networks. Based on that, we identified nine biologically
relevant genes expressed in the endometrial epithelium that could discriminate against
pregnancy in cows. These genes act in critical pathways for uterine receptivity, including
endometrial tissue remodeling, focal adhesion, and embryo development. Furthermore, we
identified differences in the network topology of biomarker co-expressed genes between
pregnant and non-pregnant cows. In summary, our findings provided new insights into
the regulatory network of fertility-related processes. We also demonstrated the potential
of combining different analytical tools to prioritize candidate genes and shed light on
molecular features involved with pregnancy outcomes. Further investigation, however, is
still needed to determine the reliability and sensitivity of these genes in other larger cohorts.
Similarly, future experimental studies are needed to elucidate the mechanisms that underlie
these biomarkers and their co-expressed pairs in determining pregnancy and fertility.
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