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Simple Summary: It is well known that intrauterine growth-restricted offspring present physiologic
and metabolic modifications later in life. Therefore, understanding the impact of the maternal
nutritional plane on feed intake patterns may lead to new feeding strategies to improve the feed
efficiency and performance of beef cattle. In this study, we have evaluated the effect of maternal
protein supplementation (PS) during mid-gestation and its interaction with the offspring’s sex on
the voluntary feed intake and nutrient use of the progeny. Our results show that PS during mid-
gestation increases performance and improves the voluntary feed intake of the offspring. Prenatal PS
induced favorable changes in the feeding behavior, in which CON offspring spent more time per day
eating supplements and ruminating but spent fewer periods in idleness. Maternal protein restriction
demonstrated positive effects on the ability to digest the nutrients of male calves. In summary, our
data show that PS alters the gain potential, indirectly demonstrating an increase in their nutritional
requirements. In contrast, protein restriction causes a compensatory mechanism on the offspring’s
nutrient useability in a sex-dependent manner, increasing the total tract digestibility of nutrients in
response to a growth-restriction exposure during intrauterine development.

Abstract: This study aimed to assess the effects of maternal protein supplementation and offspring sex
(OS) on the intake parameters of the offspring. Forty-three Tabapuã cows were randomly allocated in
the following treatments: protein supplementation (PS) during days 100–200 of gestation (RES, 5.5%
total crude protein (CP), n = 2, or CON, 10% total CP, n = 19) and OS (females, n = 20; males, n = 23).
The offspring were evaluated during the cow–calf (0–210 days), backgrounding (255–320 days),
growing 1 (321–381 days), and growing 2 (382–445 days) phases. The CON offspring tended to
present higher dry matter intake (DMI) at weaning (p = 0.06). The CON males presented lower
digestibility of major diet components in the growing 2 phase (p ≤ 0.02). The CON offspring spent
52% more time per day eating supplements at 100 days and 17% less time in idleness at 210 days. The
CON males spent 15 min more per day ruminating than RES males in the feedlot phase (p = 0.01). We
concluded that protein supplementation over gestation alters the offspring feed intake pattern as a
whole, while protein restriction promotes compensatory responses on nutrient digestibility in males.
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1. Introduction

Meat production is an essential part of the world economy, with substantive contri-
butions to local, national, and international trade [1]. There may be multiple paths to the
future of meat production, but challenges to how it is produced will be under increasing
pressure in the immediate and the foreseeable future [2]. In tropical areas, the vast majority
of beef is produced under grazing conditions [3]. Seasonality affects forage production and
its nutritional value , and the protein content of the forage is the main limitation related
to animal feed intake [4]. To overcome a possible low nutritional value of the forage in
tropical grazing systems, the breeding and calving seasons are usually programmed to
overlap the rainy period [5] as a strategy to attend to the greater nutrient requirements
for lactation. However, pregnant cows raised under extensive systems experience this
extremely unfavorable nutritional scenario during mid-to-late gestation [6]. Thus, the
use of nutritional corrections for pregnant cows exposed to the productive seasonality of
pastures (such as protein supplementation) may be an interesting alternative to reduce the
deleterious effects on the cows’ longevity and on their offspring [7,8].

It has been well documented that alterations in the prenatal environment affect the
productivity of the offspring later in life [9–12]. Moreover, the maternal nutrition plans
during pregnancy affect not only the offspring’s body weight [12], but also their post-natal
growth rate, growth efficiency, and body gain composition [13–15], which in turn, may
lead to changes in their nutritional requirements [13]. Consistently, available evidence from
Greenwood et al. [15] demonstrated that low-birth-weight lambs had 30% lower energy
requirements than their high-birth-weight contemporaries. Thus, once the nutritional re-
quirements trigger the animals’ feed intake [16], this available evidence indirectly suggests
that the feeding intake pattern later in life may be shaped by the nutritional conditions
during intrauterine development. It has also been shown that maternal nutrition changes
the dynamic of the hypothalamic circuit, which controls the feed intake [17–19], which
in turn alters the offspring’s voluntary feed intake [17,20,21]. Therefore, based on the
existing data, we hypothesized that exposure to nutritional insults during pregnancy could
lead to changes in the offspring’s feed intake in a global manner, affecting the nutritional
management decisions of beef cattle producers.

There is also available evidence that the mass of several organs [22,23], mRNA ex-
pression of membrane transporters in the small intestine (the main site of nutrient absorp-
tion) [24], digestive enzyme activity [25], and energy metabolic pathways in the liver [26]
of the offspring may be shaped by nutritional conditions over gestation. Thus, based on
the aforementioned, it is also possible that nutritional disturbances during intrauterine
development affect the offspring’s nutrient digestibility in the long term. Nevertheless,
little is known on if maternal nutrition during gestation in beef cattle may affect the per-
formance of the offspring through changes in their nutrient use capacity. Therefore, this
study also aimed to explore this knowledge gap, considering that nutritional perturbations
during gestation may promote compensatory responses on the nutrient digestibility of
the offspring.

Moreover, some studies on farm animals [5,7,27,28] support that the fetal programming
responses occur in a sex-dependent manner. This sexual dimorphism may be triggered
by the different DNA methylation patterns between male and female embryos over the
pregnancy course, influencing epigenetic responses between the genders [29], as well as
by the different steroid exposure during intrauterine development [30]. The maternal
tissue mobilization intensity also differs between cows carrying female or male fetuses.
As an adaptive mechanism [31], under a nutritionally challenging scenario, dams seem
to invest more in female than male fetuses [32], making the fetal programming responses
sex-dependent [33].

In summary, this study aimed to evaluate the effects of protein supplementation
during mid-gestation in zebu beef cows and the offspring’s sex-dependent interaction on
intake parameters, behavior, digestibility, feed efficiency, and liver size in the offspring.
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2. Materials and Methods

This study was performed in the Beef Cattle Facility at the Universidade Federal de
Lavras (UFLA—Lavras, Minas Gerais, Brazil) and was performed in two stages of two
and half years each, with the same experimental procedures. Each period included the
gestation of beef cows and the offspring evaluation from birth to 445 days of age. Animal
welfare and all procedures were previously approved by the Brazilian Ethics Committee
on Animal Use of UFLA (Protocol No. 015/17).

2.1. Animals, Housing, and Feeding

Forty-three purebred Tabapuã (Bos taurus indicus) multiparous cows (490.5 ± 17.8 kg of
initial body weight (BW)) were artificially inseminated using semen from 3 different bulls.
Fetal sex was detected at 60 days of gestation using ultrasound scans by a trained profes-
sional, characterizing 20 female and 23 male embryos. Cows were individually allotted in
pens during mid-gestation, and at 102 ± 5 days of gestation, they were randomly divided
into two groups: restricted (RES), fed basal diet (corn silage + sugarcane bagasse, achieving
5.5% CP plus a mineral mixture) (n = 24), or supplemented (CON), fed basal diet plus
protein supplementation (40% CP at the level of 3.5 g/kg of BW, n = 19). The experimental
diet (DM basis) provided to the cows from 102 ± 5 to 208 ± 6 days of gestation was based
on 75% corn silage, 25% sugar cane bagasse, and a macro and micro mineral supplement
provided ad libitum. For cows in the CON group, the protein supplement consists of a
50:50 mixture of soybean meal and a commercial supplement (Probeef Proteinado Sprint,
Cargill Nutrição Animal, Itapira, SP, Brazil). The nutrient composition (per kilogram) from
the commercial supplement was: 70 g Ca (max), 50 g Ca (min), 15 mg Co (min), 255 mg
Cu (min), 15 g S (min), 2000 mg F (max), 20 g P (min), 15 mg I (min), 510 mg Mn (min),
340 NPN protein eq. (max), 450 g CP (min), 4 mg Se (min), 95 g Na (min), 850 mg Zn (min),
and 50 mg Flavomycin. In both periods of gestation, animals were fed twice a day (at
7:00 a.m. and 1:00 p.m.). The average chemical composition of the feedstuffs used during
the experimental period is described in Table 1.

From 208 ± 6 days of gestation until the parturition, all cows were fed ad libitum with
corn silage and mineral mixture ad libitum. During the gestational period, the feed intake
was measured as the difference between the amounts of ingredients supplied and the orts
obtained. Feeds were sampled daily, and weekly composite samples were obtained for
further analysis. Refusals were collected daily and sampled weekly for further analysis.

After parturition, cow–calf pairs were allocated in a Brachiaria brizantha cv. Marandu
pasture area (y1 (in a DM basis): DM = 29.6%, CP = 14.5%, neutral detergent fiber
(NDF) = 66.3%; y2: DM = 29.8%, CP = 13.9%, NDF = 75.7%) and raised in an intensive
grazing management. The animals were managed under a continuous stocking method in
a single pasture area (70,000 m2) with no subdivisions. Thus, the pasture area was the same
for all cows and their calves during the entire cow–calf phase. Moreover, in the second
repetition of the experiment (y2), the same pasture area used in the first experimental
year (y1) was used for matrices and their offspring allocation. Cows received mineral
supplementation, and calves received a commercial supplement (Probeef maxima creep,
Cargill Nutrição Animal, Itapira, SP, Brazil) at the level of 5 to 7 g/kg of BW/day. Nutrient
composition per kilogram of product was: 200 g crude protein (min), 20 g Ca (max), 30 g
Ca (min), 3 mg Co (min), 51 mg Cu (min), 1 mg (min) Cr, 10.4 g dextrose, 3000 mg S (min),
0.42 ethoxyquin (min), 2000 mg F (max), 6000 mg P (min), 3 mg I (min), 700 mg mananas
(min), 108 mg Mn (min), 60 mg monensin, 0.90 mg Se, 10 g Na (min), 12,000 UI vitamin A
(min), 15,000 UI vitamin D3 (min), 50 UI vitamin E (min), 180 mg Zn (min).
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Table 1. The chemical composition of the feedstuffs in both experimental replicates (expressed in the
table as the mean ± standard deviation).

Mid-Gestation
(Day 100 to Day 200, Period of Treatment Application)

Late Gestation
(Day 100 to Parturition)

Chemical Composition of Feedstuffs,
g/kg of DM Corn Silage + Sugarcane Bagasse Supplement Corn Silage

Dry matter 418 ± 5.82 881 ± 0.70 330 ± 2.88
Organic matter 951 ± 2.67 958 ± 0.90 941± 1.37
Crude protein 53.3 ± 2.30 400 ± 1.44 72.2 ± 0.42

Ash and protein-free neutral
detergent fiber 631 ± 10.60 213 ± 0.18 549 ± 3.62

Non-fibrous carbohydrates 242 ± 5.61 342 ± 2.20 291 ± 2.14
Ether extract 24.1 ± 1.10 41.2 ± 0.32 29.2 ± 0.40

Calves were weaned at 210 days of age and remained in a grazing system until 255 days
of age, when they were transferred to a feedlot. Animals were confined for 190 days, and
this period was divided into three phases with different diets, as follows: backgrounding
(255–320 days of average age), growing 1 (321–381 days of average age), and growing 2
(382–445 days of average age) phases. Males and females were fed ad libitum and received
diets with the same roughage:concentrate ratio during the backgrounding (72:28), growing
1 (65:35), and growing 2 phases (30:70). The diets provided during the feedlot period
were offered as total mixed rations (TMRs). Nevertheless, the concentrate formulation
for backgrounding and growing 1 phase was different for males and females, aiming to
fully meet the specific nutritional requirements for each sex (Table 2). It is well known
that males and females have different nutritional requirements, which is explained by the
differences in growth dynamics between the sexes. Therefore, in the backgrounding and
growing 1 phases (when the sex differences in growth trajectory were accentuated), males
and females were fed with the same roughage:concentrate proportion, but the concentrate
formulation was different between the sexes (to fully meet the specific requirements for
each sexual category; Table 2). Thus, if we did not use diets compatible with the nutritional
and energy needs of males and females separately, we could mask our responses. On
the other hand, in the growing 2 phase, we considered that both sexes had reached the
”plateau” of the growth trajectory, which in turn dispensed these adjustments. In this sense,
in the growing 2 phase, males and females were fed the same diets (Table 2).

Samples of corn silage were collected three times per week; ort samples were collected
daily, and concentrated representative samples were collected after every ration mixture
confection in the feed factory. All samples were stored at −20◦C until analyses. Heifers
and steers had free access to water and were fed twice daily (at 7:00 a.m. and 1:00 p.m.).

From the 43 progeny used in this experiment, 2 were born extremely weak and died
before 7 days of age, both being RES males. Moreover, after weaning, one female from the
RES group died due to a factor unrelated to the experiment. Thus, the data presented from
the cow–calf phase are from results obtained from 41 animals, while data from weaning to
the end of the experimental period are from 40 animals.
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Table 2. Ingredients and chemical composition of the feedstuffs used in the feedlot.

Backgrounding 1 Growing 1 2
Growing 2 3

Male Female Male Female

Ingredients, g/kg of DM
Corn silage 717 717 650 650 309
Ground corn 129 152 204 232 577
Soybean meal 116 92.5 106 77.0 101
Urea 6.75 6.75 8.10 8.10 2.88
Ammonium sulfate 0.75 0.75 0.90 0.90 0.32
Mineral nucleus 4 30.0 30.0 30.0 30.0 10.0

Chemical composition of experimental diet, g/kg of DM
Concentrate

Dry matter 910 ± 10 900 ± 7 900 ± 16 896 ± 19 918 ± 18
Organic matter 829 ± 73 865.9 ± 21 850 ± 18 890 ± 26 930 ± 24
Crude protein 402 ± 107 401 ± 89 315 ± 22 243 ± 31 220 ± 4
Ash and protein-free neutral detergent fiber 144 ± 24 181 ± 82 151 ± 16 231 ± 24 253 ± 27
Non-fibrous carbohydrate 238 ± 173 263 ± 35 363 ± 50 398 ± 39 427 ± 60
Ether extract 16.4 ± 4 21.3 ± 7 20.6 ± 6 17.9 ± 6 30.9 ± 6

Corn Silage
Dry matter 322 ± 94 347 ± 138 329 ± 92
Organic matter 949 ± 7 883 ± 84 905 ± 80
Crude protein 92.7 ± 14 72.0 ± 18 80.3 ± 20
Ash and protein-free neutral detergent fiber 558 ± 77 547 ± 81 554 ± 77
Non-fibrous carbohydrates 275 ± 79 245 ± 141 249 ± 105
Ether extract 25.4 ± 7 20.0 ± 4 24.9 ± 6

1 Backgrounding phase = 255–320 days, 2 growing 1 phase = 321–381 days, 3 growing 2 = 382–445 days, 4 Nutron-
beef Maxima Marathon (Cargill Animal Nutrition, Itapira, SP, Brazil). Assurance levels per kilogram of product
were: 220 g Ca (max); 200 g Ca (min); 10 mg Co (min); 500 mg Cu (min); 6.60 mg Cr (min); 24 g S (min); 333 mg Fe
(min); 18 g P (min); 17 mg I (min); 1500 mg Mn (min); 835 mg monensin; 6.60 mg Se (min); 50 g Na (min); 100,000
UI vitamin A; 13,300 UI vitamin D3; 233 UI vitamin E; 2333 MG Zn (min). Dietary composition in both replicates
of the experiment is expressed in the table as the mean ± standard deviation.

2.2. Measurements
2.2.1. Body Weight Measurements

The maternal body weight measurements were performed at 100 (beginning of treat-
ment application), 200 (end of supplementation period), and 270 (pre-parturition) days
of gestation, in the morning and after 16 h fasting. During the same gestational periods,
the body condition scores (BCS) were taken by three trained evaluators using a scale from
1 to 9 points (in which 1 = emaciated and 9 = obese cow). The final score was defined as
the average values obtained from each evaluator. In the cow–calf phase, the body weight
measurements were taken with calves in fasting. Before the BW determination, calves were
isolated from their dams for 12 h. At the feedlot, the animals were weighed before the
morning feeding.

2.2.2. Intake, Digestibility Trials, and Feed Efficiency

In the cow–calf phase, calves were subject to two digestibility trials at 120 and 210 days
of age. For estimation of forage and supplement intake and fecal production quantification,
the indigestible neutral detergent fiber (NDFi) [34–37], chromium oxide (CrO2) [37,38],
and titanium dioxide (TiO2) [37,39,40] were used as indicators. The titanium dioxide
was provided one time per day in the morning (0700 h) wrapped in paper cartridges in
doses of 10 g of TiO2 per animal administered using an esophagus probe. The chromium
oxide was provided mixed in the calves’ supplement at a concentration of 0.5% of the
supplement consumed during the digestibility trials. Both indicators were provided for
10 consecutive days, and the fecal samples were collected by spot technique in the morning
(7:00 a.m.) and afternoon (6:30 p.m.) of the last four days of indicator supply. Pasture
samples were obtained on days 6, 7, 8, and 9 of the digestibility period through the manual
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grazing simulation technique. For pasture sample collection, the total area (70,000 m2) was
subdivided into 5 parts to ensure a representative sample collection.

The fecal production (FP), the supplement dry matter intake (DMIsup), and the forage
dry matter intake (DMIforage) were estimated according to Equations (1)–(3), respectively:

FP(kg/day) =
Isupplied

I f eces
(1)

where FP = fecal production, Isupplied = concentration of indicator supplied to the animal
(kg/day), and Ifeces = concentration of indicator in the feces (kg/kg).

DMIsup(kg/day) =

(
FP × I f eces

)
Isup

(2)

where FP = fecal production (kg/day), Ifeces = indicator concentration in the feces (kg/kg),
and Isup = indicator concentration in the supplement (kg/kg).

DMI f orage(kg/day) =
FP × I f eces

NDFi f orage
(3)

where FP = fecal production (kg/day), NDFifeces = concentration of NDFi in the feces
(kg/kg), and NDFiforage = concentration of NDF in roughage (kg/kg).

The milk intake was calculated as the product between the daily milk production
and milk DM content. During each offspring digestibility trial performed, the cows were
hand-milked once to determine milk intake by calves, and calves were isolated from their
dams for approximately 12 h before each procedure. Milk letdown was stimulated by
injection of 2 mL of oxytocin (Ocitocina Forte UCB, Uzinas Chimicas Brasileiras S/A,
Jaboticabal, Brazil) in the morning (0600 h). Then, the milk was weighed, and milk samples
were collected in sterile vials containing a bronopol tablet (D & F Control Systems Inc.,
San Ramon, CA, USA). Tubes were kept at 4 ◦C until analysis. Daily milk yield (MY) was
calculated as follows:

MY(kg/day) =
MYmorning(kg/day)
(Time1 + 1)− Time2

(4)

where MY = milk yield, Time1 = hour of milk procedure ending, and Time2 = hour of calf
isolation of dams [41].

In the post-weaning phase, there was one digestibility trial per phase during the
feedlot period. Trials were performed at 310, 370, and 425 days of age in the backgrounding,
growing 1, and growing 2 phases, respectively. Fecal samples were collected by hand grab
technique directly from the rectum, for 5 consecutive days at different times at each day
(day 1 = 0600 h, day 2 = 0900 h, day 3 = 1200 h, day 4 = 1500 h, and day 5 = 1800 h). Fecal
sampling was performed over different daily periods to ensure a representative composite
sample for each animal throughout the daytime during the digestibility trial. The orts
were recorded daily before the morning feeding, and DMI was estimated for each animal.
Throughout the trials, daily samples of corn silage and orts were collected, along with
representative samples of concentrate used in each phase. Samples were stored at −20 ◦C
until analyses. The NDFi was used as an indicator to measure fecal production, which was
estimated using Equation (1).

During cow–calf and post-weaning phases, the apparent total tract digestibility of DM,
organic matter (OM), CP, and NDF expressed in g/kg of nutrients was determined by the
difference between intake and the content in feces divided by intake. Feed efficiency for
gain was obtained as the ratio between the average daily gain (ADG) and the DMI.
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2.2.3. Chemical Analyses

All samples (feed, ort, and fecal samples) were individually dried in a forced dry
oven (65 ◦C) for 72 h and ground (Wiley mill; A. H. Thomas, Philadelphia, PA, USA) in
1 and 2 mm bolters. Samples were chemically analyzed following AOAC [42] methods
(CP, 984.13; ash, 119 942.05; EE, 920.39; moisture, 934.01). The neutral detergent fiber
(NDF) content was analyzed according to Van Soest et al. [43] using heat-stable α-amylase.
Non-fibrous carbohydrates (NFCs) were calculated according to Detmann and Valadares
Filho [44]. Total digestible nutrients (TDNs) were calculated as: TDN = % digestible CP + %
digestible NDF + % NFC digestible + 2.25% digestible EE [45]. The quantification of Cr2O
and TiO2 was performed using atomic absorption spectrophotometry and colorimetric
determination, according to Kimura et al. [38] and Myers et al. [39], respectively. The NDFi
quantification was performed according to Valente et al. [34], via in situ incubation. Milk
samples were analyzed for composition determination in a commercial laboratory using an
infrared analyzer (Bentley2000, Bently Instruments, Chasca, MN, USA).

2.2.4. Feeding Behavior

The feeding behavior trials were performed at 100 and 210 days of age in the cow–calf
phase and in the middle of the feedlot period (360 days of age) in the growing 1 phase. In
each trial, the feeding behavior was monitored for 48 h uninterrupted (day and night on
two consecutive days) by human observation (at least three observers per hour). To judge
the activities performed by each animal, each observer was assigned to a group of animals
(~1/3 of the animals per observer) for evaluation. During the trials, each observer was
positioned in a place where they could observe the animal without affecting its natural
behavior. During the night periods, the installations’ artificial lights were kept off, and
the feeding behavior evaluations were performed with the aid of flashlights. Calves were
monitored for frequency and time of milk and supplement intake. Grazing, rumination,
idleness, or other activities (locomotion or water intake) were evaluated every 10 min in
the weaning phase. At 360 days of age, steers and heifers were monitored for the time
of rumination, voluntary intake, idleness, or other activities (locomotion or water intake),
also at intervals of 10 min. Feeding behavior measurements were converted to continuous
time through the product between the frequency of the respective activity (during 48 h)
and the time interval of 10 min. Subsequently, we obtained the time spent on each activity
expressed in minutes per day, dividing the value obtained by 2880 (which represents the
total minutes within two days).

2.3. Statistical Analysis

All data analyses were performed using SAS 9.2 (Statistical Analysis System Institute,
Inc., Cary, NC, USA). In the statistical analysis of the cow–calf phase and growing 2 data,
the maternal dietary treatment (2 levels) and offspring sex (2 levels) were considered fixed
effects. Due to the dietetic differences for males and females in the backgrounding and
growing 1 phases, only the maternal dietary treatment was considered a fixed effect in the
statistical model for this data analysis. Therefore, in these periods, the data were analyzed
separately for males and females (i.e., RES male vs. CON male, RES female vs. CON female).
The period in which the experiment was performed (year 1 and year 2) and the parents’
index of genetic merit expected for growth traits (GEN) were considered random effects.
The GEN was calculated using the data available on the Tabapuã Genetical Enhancement
Program using the information on expected progeny difference (EPD) from the animal
parents. The EPD parents’ data consisted of weight at weaning, weight at 12 months, and
weight at 18 months. When pertinent (p < 0.05), the dam’s numbers of parturitions, empty
weight at 100 days of gestation, cow size, BSC with 100 days of pregnancy, and gestation
length and the offspring age at the evaluation period and body weight at the evaluation
period were used as covariates. When not pertinent, they were taken from the model.
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Data from the cow–calf and growing 2 phases were analyzed using the follow-
ing model:

Yijkl = µ + Di + Sj + (DS)ij + Tk + Gl + εijkl

where Yijk is the observed measurement; µ is the overall mean; Di is the fixed effect of the
ith level of maternal dietary treatment; Sj is the fixed effect of the jth level of offspring sex;
DSij is the interaction between D and S; Tk is the random effect of the kth period (year of
the experiment); Gl is the random effect of the lth index of dam’s genetic merit expected for
growth traits; and εijkl is the random error associated with Yijkl, with eijkl ~N (0,σe2).

Data from the backgrounding and growing 1 phases were analyzed using the follow-
ing model:

Yijk = µ + Di + Tj + Gk + εijk

where Yijk is the observed measurement; µ is the overall mean; Di is the fixed effect of the
ith level of maternal dietary treatment; Tj is the random effect of the jth period (year of the
experiment); Gk is the random effect of the kth index of dam’s genetic merit expected for
growth traits; and εijk is the random error associated with Yijk, with eijk ~N (0,σe2).

Before the final analyses, studentized residuals were removed when not within ±3 stan-
dard deviations, and normality (p > 0.05) was assessed using the Shapiro–Wilk test. Least-
square means were separated using Fisher’s least significant difference test. When the
interaction between the fixed effects was significant, the least-square means were compared
using Tukey’s method. Results were deemed significant when p ≤ 0.05 and trends when
0.05 < p ≤ 0.10.

3. Results
3.1. Maternal Responses

There was a ~35% additional (p < 0.01) DMI for CON pregnant beef cows at mid-
gestation (day 100 to day 200 of gestation). The average total intake in this period was
6.01 and 7.96 kg (on a DM basis) for RES and CON cows, respectively. In the late gestation
(day 201 of gestation to parturition), CON cows had ~18% greater DMI than RES cows
(p < 0.01; RES = 6.59 and CON = 7.84 kg of DM). The CP (RES = 0.27 and CON = 0.88 kg per
day) and TDN (RES = 2.75 and CON = 4.97 kg per day) intakes were higher (p < 0.01) for
CON cows in the second third of pregnancy. However, in the last third of pregnancy, these
parameters were similar in RES and CON (p ≥ 0.34). No effects of interactions between
maternal protein supplementation and offspring sex were identified on the DM, CP, and
TDN intakes in the mid or late gestation (p ≥ 0.10). The CON average intake was equivalent
to 70% of protein and 50% of energy requirements for RES cows (calculated according to
the Nutrient Requirements of Zebu and Crossbred Cattle—BR-CORTE 3.0 [46]) during
mid-gestation.

At the beginning of the treatment application, the pregnant beef cows’ BW and BCS
were similar between RES and CON groups (p ≥ 0.67; Figures 1 and 2). In contrast, at 200
(end of treatment application) and 270 days (pre-parturition) of gestation, the maternal
body weights were ~17% and ~14% greater for CON than for RES cows, respectively
(p < 0.01; Figure 1). Consistently, CON pregnant beef cows also presented greater BCS at
200 and 270 days of gestation compared to the RES group (p < 0.01; Figure 2). No PS x OS
interactions were verified in the performance parameters of pregnant beef cows (p ≥ 0.34).
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3.2. Offspring Performance

The 120- and 210-day-old CON calves were 12 kg and 17 kg heavier than RES calves
(p ≤ 0.04), respectively. The average BW at 120 days of age was 126 and 138 kg for RES and
CON, and that at 210 days of age was 197 and 214 kg for RES and CON, respectively. In
the backgrounding, RES males were ~22 kg lighter than CON males (RES: 255 and CON:
277 kg, p < 0.001). Within the female group, RES progenies were ~16 kg lighter than CON
progenies (RES: 216 and CON: 232 kg, p = 0.05). In the growing 1 phase, CON males
remained heavier than RES offspring (RES: 329 and CON: 356 kg, p < 0.001), and CON
females remained heavier than RES offspring (RES: 271 and CON: 289 kg, p < 0.01). In
the growing 2 phase, no maternal protein supplementation status effects on the offspring
performance data were found (p = 0.07). The average BW in this period was 359 and 376 kg
for RES and CON offspring, respectively. No PS × OS interaction was detected in the
offspring’s body weight (p ≥ 0.22).

3.3. Milk Yield and Composition

The CON and RES beef cows had similar milk yields at 120 (p = 0.55) and 210 days in
milk (DIM, p = 0.80). At 120 DIM, RES and CON cows produced 9.04 and 9.53 kg of daily
milk. At weaning, the RES and CON daily milk production was 6.70 and 6.54 kg per day,
respectively. No PS × OS interaction was detected for milk production (p ≥ 0.66). Cows
nursing male and female calves also had similar milk yields (p ≥ 0.72). No PS or PS × OS
effects were found on milk component concentrations at 120 (p ≥ 0.44) and 210 (p ≥ 0.38)
DIM. At 120 DIM, the average milk fat, protein, and lactose percentages were 4.14 and



Animals 2022, 12, 2865 10 of 17

4.07%, 3.38% and 3.42%, and 4.83% and 4.75% for RES and CON, respectively. At weaning,
milk fat, protein, and lactose percentages were 4.74% and 4.84%, 3.45% and 3.49%, and
4.61% and 4.63%, respectively.

3.4. Dry Matter Intake and Feed Efficiency

No MN × OS interaction was detected for the feed intake (p > 0.05; Table 3). Male
calves consumed an additional ~0.6 kg DMI at 120 days of age (p = 0.02) compared to fe-
males, without discriminated differences for milk, pasture, and supplement intake (p > 0.05;
Table 3). At weaning, CON offspring tended to have ~11% greater total DMI (p = 0.06)
and 12% higher pasture intake (p = 0.10) compared to the RES group. In the same period,
male calves tended to present ~10% and 13% higher total DMI (p = 0.06) and pasture intake
(p = 0.10), respectively. No effects of maternal protein status on dry matter intake were
detected during the feedlot period (p > 0.05). The 120-day-old male calves presented ~25%
greater (p = 0.01) DMI/BW than females. At weaning, CON calves tended (p = 0.08) to
present ~11% additional DMI/BW compared to RES calves. In the growing 1 phase, within
female groups, CON females had ~1.5 g of additional feed per kg of BW compared to
RES females (Table 3). Maternal protein dietary status only affected the offspring’s feed
efficiency for gain at the backgrounding (Table 3). Within female groups, RES offspring
were more efficient (RES females: 0.182 vs. CON females: 0.174 g/day of BW per kg of
DMI/day, p = 0.01). In contrast, within male groups, CON offspring demonstrated greater
efficiency for body gain (RES males: 0.210 vs. CON males: 0.214 g/day of BW per kg of
DMI/day, p = 0.05).

Table 3. Effects of maternal protein supplementation status (PS) and offspring sex (OS) on the intake
and DMI/kg of BW during the cow–calf and feedlot phases.

Item

Males Females

SEM

p-Value

RES CON RES CON
PS

OS PS × OS
Males Females General

Intake, kg of DM/day
120 days
Total DMI 2.47 2.19 1.72 1.74 0.35 - - 0.45 0.02 0.35
Milk intake 1.44 1.21 1.20 1.22 0.11 - - 0.32 0.25 0.18
Pasture intake 0.91 0.91 0.61 0.74 0.15 - - 0.61 0.11 0.58
Supplement intake 0.10 0.23 0.20 0.12 0.07 - - - - 0.10
210 days
Total DMI 4.13 4.65 3.80 4.18 0.45 - - 0.06 0.10 0.77
Milk intake 0.85 0.71 0.90 0.91 0.15 - - 0.53 0.24 0.43
Pasture intake 2.88 3.07 2.40 2.86 0.38 - - 0.10 0.09 0.49
Supplement intake 0.40 0.72 0.42 0.43 0.12 - - 0.14 0.22 0.19
Backgrounding 5.63 5.50 5.41 5.67 0.77 0.83 0.91 - - -
Growing 1 7.25 6.96 7.15 7.60 1.36 0.55 0.12 - - -
Growing 2 8.43 8.53 7.86 8.11 0.39 - - 0.53 0.16 0.79

DMI/BW, g of DM/kg of BW
120 days 19.9 18.2 14.93 15.5 1.34 - - 0.59 0.01 0.30
210 days 19.9 21.5 17.8 20.5 2.02 - - 0.08 0.22 0.64
Backgrounding 22.8 22.5 22.1 22.9 2.99 0.78 0.88 - - -
Growing 1 22.8 22.2 23.1 24.6 4.16 0.21 <0.01 - - -
Growing 2 23.2 23.8 22.1 22.9 1.04 - - 0.34 0.24 0.92

Feed efficiency for gain, g/day of BW per kg of DMI/day
120 days 0.323 0.360 0.388 0.397 0.03 - - 0.34 0.12 0.55
210 days 0.235 0.239 0.269 0.228 0.02 - - 0.33 0.22 0.56
Backgrounding 0.210 0.214 0.182 0.174 0.01 0.05 0.01 - - -
Growing 1 0.151 0.153 0.141 0.138 0.03 0.21 0.11 - - -
Growing 2 0.130 0.134 0.132 0.125 0.02 - - 0.91 0.77 0.61

Abbreviations: RES (restricted) = offspring from unsupplemented cows; CON (supplemented) = offspring from
supplemented cows from 102 ± 5 to 208 ± 6 days of gestation.
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3.5. Components of Diet Intake and Apparent Total-Tract Digestibility

The 120-day-old males had an additional intake of ~75 g/day of CP (p = 0.05), while
at weaning, they presented an additional intake of OM ~595 g/day compared to females
(p = 0.01; Table 4). At weaning, the maternal protein dietary status tended to affect the
OM and affected the CP intake, with additional intake of ~420 and ~100 g/day for CON
compared to RES animals (p ≤ 0.08; Table 5), respectively. During the digestibility trial
performed in the backgrounding, no effects of maternal protein supplementation were
found on the DM or nutrient intake (p ≤ 0.55). In the growing 1 phase, within the male
groups, CON males had ~3% greater OM and CP intake compared to RES males (p ≤ 0.05).
In the same phase, within the female groups, CON females tended to present 9% additional
OM intake (p = 0.08) and greater (p ≤ 0.04) CP and NDF intake than RES females (Table 5).
In the growing 2 phase, males consumed ~655 g/day of OM more than females. Moreover,
in the same period, an PS × OS interaction was observed for TDN intake, where RES
females and CON males had the lowest daily intake (p ≤ 0.001; Figure 3).

Table 4. Effects of maternal protein supplementation status (PS) and offspring sex (OS) on the calves’
feeding behavior.

Item
Males Females

SEM

p-Value

PS
OS PS × OS

RES CON RES CON Males Females General

100 days, min/day
Suckling 24.5 26.7 15.2 22.6 6.57 - - 0.20 0.09 0.48
Eating supplement 20.3 29.9 12.8 20.5 4.98 - - 0.05 0.06 0.83
Grazing 240 234 244 233 28.1 - - 0.34 0.79 0.85
Ruminating 231 219 196 243 32.6 - - 0.28 0.75 0.07
Idleness 773 782 862 815 58.3 - - 0.45 0.03 0.26
Other activities 143 159 107 113 29.6 - - 0.58 0.04 0.81

210 days, min/day
Suckling 26.4 23.6 25.3 25.0 4.36 - - 0.68 0.97 0.74
Eating supplement 37.1 41.6 29.7 27.5 8.05 - - 0.87 0.13 0.63
Grazing 368 386 400 454 67.0 - - 0.29 0.16 0.59
Ruminating 239 234 187 238 28.7 - - 0.21 0.21 0.15
Idleness 698 646 748 591 45.5 - - <0.01 0.95 0.13
Other activities 136 171 115 220 57.7 - - 0.02 0.65 0.21

360 days, min/day
Eating 198 186 206 199 11.6 0.23 0.94 - - -
Ruminating 395 410 342 420 28.9 0.01 0.27 - - -
Idleness 739 709 729 728 74.1 0.68 0.77 - - -
Other activities 106 119 126 91 78.5 0.80 0.50 - - -

Abbreviations: RES (restricted) = offspring from unsupplemented cows; CON (supplemented) = offspring from
supplemented cows from 102 ± 5 to 208 ± 6 days of gestation.
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Table 5. Effects of maternal protein supplementation status (PS) and offspring sex (OS) on diet
component intake during the digestibility trials, expressed in kg/day.

Item
Males Females

SEM

p-Value

PS
OS PS × OS

RES CON RES CON Males Females General

120 days
OM 1.07 1.24 0.93 1.06 0.18 - - 0.34 0.42 0.91
CP 0.54 0.53 0.47 0.45 0.03 - - 0.63 0.05 0.89
NDF 0.70 0.71 0.51 0.59 0.13 - - 0.68 0.24 0.68

210 days
OM 2.64 3.04 2.03 2.46 0.24 - - 0.08 0.01 0.95
CP 0.69 0.78 0.63 0.73 0.05 - - 0.04 0.18 0.85
NDF 2.32 2.51 1.96 2.32 0.37 - - 0.14 0.16 0.66

310 days—Backgrounding Phase
DM 6.08 6.30 6.06 6.11 1.00 0.96 0.67 - - -
OM 6.09 5.96 5.94 6.09 0.94 0.97 0.99 - - -
CP 1.21 1.12 1.11 1.16 0.30 0.94 0.63 - - -
NDF 2.63 2.53 2.66 2.68 0.18 0.55 0.73 - - -
TDN 4.24 4.25 4.37 4.22 0.89 0.81 0.93 - - -

370 days—Growing 1 Phase
DM 7.55 7.76 7.40 7.88 1.68 0.43 0.29 - - -
OM 7.28 7.52 7.21 7.85 1.62 0.50 0.08 - - -
CP 1.19 1.23 1.02 1.04 0.26 <0.01 <0.01 - - -
NDF 3.05 3.13 3.15 3.33 0.39 0.91 0.04 - - -
TDN 4.49 4.68 4.41 4.91 1.65 0.63 0.24 - - -

425 days—Growing 2 Phase
DM 9.57 9.61 9.06 9.51 0.83 - - 0.62 0.62 0.65
OM 9.22 9.19 8.65 8.45 0.55 - - 0.72 0.05 0.79
CP 1.81 1.86 1.70 1.72 0.16 - - 0.71 0.16 0.83
EE 0.28 0.28 0.29 0.29 0.02 - - 0.97 0.55 0.88
NDF 3.35 3.44 3.09 3.24 0.28 - - 0.38 0.12 0.85
TDN 5.58 4.35 4.55 5.56 0.48 - - - - <0.001

Abbreviations: RES (restricted) = offspring from unsupplemented cows; CON (supplemented) = offspring from
supplemented cows from 102 ± 5 to 208 ± 6 days of gestation.

Regarding apparent digestibility parameters, at 210 days of age, the CON offspring
had ~3.5% greater NDF digestibility (p = 0.01). In this period, a tendency of PS × OS
interaction was detected (p = 0.07) for OM digestibility (Figure 4). In the backgrounding
and growing 1 phases, all total-tract digestibility parameters were similar between RES
and CON offspring within the male (p ≥ 0.20) and female (p ≥ 0.15) groups (Figure 4).
Interaction between maternal nutrition and offspring sex was verified for digestibility of
major nutrients during the growing 2 phase (p ≤ 0.02; Figure 4). Overall, lower digestibility
coefficients were found for CON males compared to RES males.
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3.6. Feeding Behavior

The 100-day-old calves from CON cows spent ~8.7 additional minutes per day eating
the supplement (p = 0.05). A trend of interaction between maternal nutrition and offspring
sex (p = 0.07) was observed for rumination time in this same period, where RES females
spent less time per day in this activity than the CON females.

At weaning, the offspring from the RES group spent ~1:45 additional hours per day
in idleness and ~1:10 h less per day in other activities (p ≤ 0.02; Table 4). At 360 days of
age, within the male groups, CON males spent and tended to spend ~15 and 13 additional
minutes per day ruminating (p = 0.01) and in other activities (p = 0.08) than RES males,
respectively. In contrast, in the same period, the RES females spent 35 min more per day in
other activities than CON females (Table 4).

4. Discussion

The effectiveness of the maternal nutritional treatment application was demonstrated
by the responses verified on the maternal body weight and body condition score during
pregnancy. Our study demonstrated that maternal protein supplementation during mid-
gestation causes changes in the feed intake pattern of the offspring. According to the
theory of the thriftiness genotype proposed by Hales and Barker [47], sons of mothers who
faced nutritional insults during pregnancy are more efficient in nutrient acquisition and
storage. Indeed, studies have indicated that offspring from dams in such conditions may
present hyperphagia in later life [15,21,48]. A study using ewes as a model has shown
that nutritional restriction of energy and protein during early to mid-gestation resulted
in hyperphagic lambs with greater feed efficiency [49]. In contrast with these findings,
our responses showed a different pattern from those reported in the current literature,
where the highest intake was verified in offspring from well-nourished dams, especially in
the cow–calf phase. Moreover, our data interestingly showed that the feed efficiency for
gain as a function of maternal protein status during the most accentuated phase of lean
mass growth in beef cattle (the period before puberty) happened in different patterns for
males and females. In the growing 1 phase, females exposed to nutritional insults during
intrauterine development were more efficient in converting the feed intake into animal
products, in accordance with the thriftiness genotype theory. In contrast, within male
groups, CON offspring presented greater feed efficiency for gain than RES. Therefore, this
is further evidence that fetal programming responses are sex-dependent.

Our performance data showed that protein supplementation for pregnant beef cows
fed low-quality forage improved the BW of CON offspring over their growth trajectory.
This is consistent with previous studies with beef cattle, in which strategic supplementation
for pregnant cows improved their offspring growth parameters [6,50]. Mid-gestation
(when treatments were applied) is the intrauterine development window in which fetal
myogenesis occurs [51]. Furthermore, it is well documented in the scientific literature
that feeding strategies such as protein supplementation may act as a key modulator of
muscle fiber hyperplasia [8,10], which in turn increases the offspring’s growth potential
in post-natal life [11,52]. This could lead to greater nutritional requirements for offspring
from well-nourished dams [13], increasing their intake level proportional to their growth
potential, which explains the greater DMI for CON offspring.

We have also observed that maternal protein supplementation at mid-gestation affects
the nutrient digestibility in the offspring, and these effects were sex-dependent. Interest-
ingly our results demonstrated that the nutrient digestibility of young males from RES
dams was reduced during weaning. Moreover, when males from supplemented dams
received high-concentrate diets in the growing 2 phase, the digestibility of all nutrients
was reduced. This pattern suggested a compensatory mechanism in the digestion and
absorption of high-energy diets in RES males in the long term. Consistent with our findings,
a recent study has shown that small intestine mass per kg of BW, organ length, villus length,
and permeability increase in offspring from dams that were nutritionally restricted during
gestation [23,53]. Thus, these reports show a greater absorptive capacity in animals from
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undernourished dams. Furthermore, Cruz et al. [24] demonstrated that changes promoted
by prenatal diet involving the small intestine persist in adult life. These authors showed
that males from restricted zebu beef cows without protein supplementation from mid-
gestation had a greater intestine length and also a greater expression of key genes related
to glucose and fatty acid absorption in the small intestine. Although the expression of key
genes related to nutrient absorption was not measured in this study, our observations agree
with these responses. Furthermore, the effects of protein supplementation of the dams
during mid-gestation on nutrient digestibility in females were more discreet. Therefore,
our findings suggest that females seem to be less susceptible to changes in digestibility
than males.

When milk production of the dam is not sufficient to meet the demand of the offspring,
calves try to compensate for this condition by spending more time grazing [54]. In this
study, milk production and composition did not change between RES and CON cows. Thus,
this point agrees with the absence of maternal nutrition effects on the suckling and grazing
times of calves during the cow–calf phase. At 100 days of age, CON calves spent more
time eating supplements than RES calves. Yet, from a practical point of view, this change
was small, which corroborates the lack of maternal nutrition effects on supplement intake
verified in the digestibility trial performed at 120 days of age. Moreover, at 100 days, there
was a trend of interaction between maternal nutrition and offspring sex for ruminating
time, showing that females from dams supplemented during mid-gestation spent more
time ruminating than females from unsupplemented dams. Nevertheless, these effects on
rumination time were not persistent in the long term for females; no effect was detected
on the feeding behavior trial performed at 360 days for female groups. However, within
the male groups, the CON males fed diets with high concentrate levels (during growing 2)
showed higher time in rumination activity than RES males, which is favorable from the
production point of view. Consistently, the greater time in idleness for the RES group and
the greater time in other activities for the CON group at weaning show that offspring from
dams supplemented during mid-gestation exhibit a feeding pattern more compatible with
achieving production goals.

Regarding sexual dimorphism’s effects on feeding behavior, this work showed that
young calves exhibit sex-specific differences. Although males and female dams did not
differ in their daily milk production at the points evaluated, 100-day-old males spent more
time per day sucking than females. Similar behavior was verified by Costa et al. [55], who
reported that this response occurs due to the higher demand for milk for males than for
females once they are heavier. It is possible that the greater time eating supplement verified
for males and the greater time in idleness for females at 100 days were also a reflection of
the higher growth potential of males.

5. Conclusions

Our results demonstrated that fetal programming responses occur in a sex-dependent
manner. Protein supplementation for pregnant beef cows fed low-quality forage results in
greater offspring performance and carryover effects on their intake pattern. The maternal
dietary protein status during mid-gestation reprograms the male offspring’s nutrient use
later in life, promoting compensatory responses in their nutrient digestibility to improve
tissues’ nutrient access. However, this evolutionary strategy is not enough to promote
performance compensation. In summary, this study demonstrates the importance of
maternal nutrition during the gestational period.
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