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Simple Summary: Skates and rays generally have low fecundity, delayed maturation age and slow
growth rates. These life history traits make them very vulnerable to commercial fisheries’ activities,
although they are not usually target species. Understanding age and growth is important for stock
assessment of the long-nose skate. We believe that determining these can be the first step toward
correct management actions. Little is known about the growth characteristics of the long-nose skate
in the Northeastern Mediterranean Sea. Our study aimed at comparing three different growth models
(the von Bertalanffy, the Robertson (logistic), and Gompertz) and also the absolute and relative
growth characteristics of this species. Our results show that the relationship between the age of the
long-nose skate and its total length is adequately explained by the Robertson (logistic) growth model,
with the Gompertz growth model being the second best.

Abstract: This study aims to determine the age and growth characteristics of Dipturus oxyrinchus
living in the Northeastern Mediterranean Sea and to present data that can provide a comparison with
previous studies on the same subject. A total of 255 long-nose skates at a total length of 12.2–93.5 cm
and weight of 8.34–3828 g were collected as non-target species from a commercial fishing boat. The
male−female ratio was determined as 1:1.27. Using the von Bertalanffy equation and the Gompertz or
logistic growth models, the growth parameters of Dipturus oxyrinchus were estimated as L∞ = 154.0,
K = 0.064, t0 = −1.622; L∞ = 104.0, K = 0.35, I = 4.99; L∞ = 128.40, K = 0.19, I = 4.39 for all individuals,
respectively. Maximum absolute growth was calculated as 9.33 cm at 5–6 years of age. Maximum
relative growth at 1–2 years of age was estimated as 36.39%. Both absolute and relative growth were
minimal in the 11–12 age group. The highest condition factor value was estimated as 0.416 in the
8-year-old group. As a result, the growth data of long-nose skates were obtained for the first time in
the Northeastern Mediterranean Sea.

Keywords: age; growth; Dipturus oxyrinchus; long-nosed skate; Northeastern Mediterranean Sea

1. Introduction

The long-nosed skate, Dipturus oxyrinchus (L. 1758), is a demersal species that lives
at depths of 70−1230 m on sandy or muddy substrates and, rarely, on rocky and pebbly
grounds; it is usually found at depths of 200−500 m [1–6]. The long-nosed skate ranges
from Norway to Senegal, from the Northeast Atlantic to the Faroe Islands, Skagerrak (the
strait connecting the Baltic Sea to the North Sea), the Canary Islands, the Madeira Islands
and the Mediterranean Sea [3] and has little commercial value [4]. Sizes between 60 and
100 cm are common, but the largest recorded individual was 150 cm [1]. Dipturus oxyrinchus
is globally recognized as a Near Threatened (NT) species by the International Union for
Conservation of Nature (IUCN) [7]. Long-nosed skates have been studied satisfactorily
by researchers during recent years in other parts of the Mediterranean Sea in terms of
age, growth, distribution, systematics, length–weight relationships (LWR) and feeding
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habits. However, no data on growth parameters are available for this species in the
Northeastern Mediterranean Sea [8–12]. The presence of juveniles and mature males of
the long-nosed skate was previously reported by Başusta and Başusta [13] from the same
region. Griffiths et al. [14] concluded that Mediterranean long-nosed skates may have been
genetically isolated from other stocks (e.g., Atlantic). This study aimed to determine the
growth characteristics of long-nosed skates living in the Northeastern Mediterranean Sea
and compare them with the data reported in other studies conducted in the same region.

2. Materials and Methods
2.1. Collecting of Samples

The long-nosed skate individuals were caught by a commercial trawler (F/V NIHAT
BABA/31-A-1463) in Iskenderun Bay (Figure 1; 36◦29′200′′ N; 35◦05′973′′ E–36◦07′052′′ N;
35◦17′936′′ E–36◦07′148′′ N; 35◦17′978′′ E–36◦13′720′′ N; 35◦22′998′′ E–36◦13′650′′ N;
35◦23′032′′ N–36◦16′622′′ E; 35◦18′509′′ N) between May 2015 and June 2016. The
samples were collected monthly. The bottom trawl gear used was equipped with a
42 mm stretched-mesh size net at the cod-end. Each hauling lasted three hours, with
a trawling speed of 2.2–2.9 knots. Approximate sampling depths ranged between
100–150 m, 150–200 m and 200–400 m. After fishing, all samples were transported with
ice to the laboratory of the Fisheries Faculty, Firat University. Total length (L) was measured
as a straight line from the tip of the rostrum to the end of the tail to the nearest mm and
body mass (W) was weighed with a 1 g accuracy for each individual.
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Figure 1. Red dots indicate out of Iskenderun Bay, Turkey, where Dipturus oxyrinchus specimens
were collected.

2.2. Processing of Vertebral Centra

A section of 10–12 vertebral centra was removed from the widest portion of the body
of 255 long-nosed skate specimens (143 females and 112 males) and subsequently labeled,
frozen and stored until further processing. Vertebrae were later thawed and cleaned of
excess tissue, rinsed in tap water and then stored in a 70% ethanol solution. Three random
vertebrae from each sample were removed from the ethanol and air-dried [15,16]. Smaller
centra of less than 5 mm were fixed to a clear glass slide using resin (Crystol bond 509™)
and were sanded with a Dremel™ tool to replicate a sagittal cut [17–19]. Vertebral sections
(0.6 mm thick) were taken using a Ray Tech™ (Littleton, CO, USA) gam saw for large
centra >5 mm in diameter [20]. Vertebral cross-sections were mounted on microscope slides
using clear resin (Cytoseal 60; Fisher Scientific, Pittsburgh, PA, USA) [21].
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2.3. Age Assessment and Verification

Vertebral cross-sections were examined under a Leica S8 APO™ (Singapore) micro-
scope using LAS software (Version 4.8.0, Leica Microsystems Limited, Heerbrugg, Switzer-
land). One growth band was defined as an opaque and translucent band pair that traversed
the intermedialia and clearly extended into the corpus calcareum (Figure 2) [22–24].
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Figure 2. A vertebral cross-section of an estimated 12-year-old Dipturus oxyrinchus (total length = 93.5 cm,
female) (BM, Birth Mark). White dots indicate opaque bands.

Each vertebral cross section was examined by two readers (reader 1 = NB and
reader 2 = FVO). Reader 1 made two nonconsecutive band-counts of sampled vertebral
cross-sections without prior information of the long-nosed skate’s length or former counts.
Reader 2 made two consecutive counts from 50 randomly selected vertebrae sections. Ver-
tebral cross-sections that had an instability of more than two years between each reading
were eliminated from further analyses. Count reproducibility was compared by the percent
agreement (%PA) and coefficient of variation (%CV) [25], as well as the index of average
percent error between the readers (%IAPE) [26]. All were determined using the following
mathematical equations:

PA =
No. agreed
No. read

× 100 (1)

CV j = 100×

√
∑R

i=1
(Xij−Xj)

2

R−1

xj
(2)

IAPE =
1
R ∑R

i=1

∣∣xij − xj
∣∣

xj
× 100 (3)

where R is the number of readings; Xij is the count from the jth fish at the ith reading and
Xj is the mean age calculated for the jth fish from i readings.

Pair-wise age-reader comparisons were independently generated by the two readers
by making nonconsecutive band counts from a random sample of 50 vertebral sections [27].
All statistical tests were performed with R software version 4.1 [28], with a significance
level set at 5%.
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2.4. Total Length–Weight Relationship and Growth Modeling

The total length–weight relationship parameters of long-nosed skate were estimated
according to the equation given below [29]:

W = aLb (4)

where L = total length (cm); W = body mass (g); a is a constant of proportionality and
b is the allometric factor. The deviance of the estimated b values for long-nosed skate
from the hypothetical value of 3 (i.e., isometric growth) was tested by a t-test at the 0.01
significance level [29,30].

The absolute length growth (ALG) and the relative length growth (RLG) of long-nosed
skate were calculated as:

ALG = (Lt + ∆t− Lt)/∆t (5)

RLG = (Lt + ∆t− Lt/Lt)× 100 (6)

where Lt is total length at the start of the time interval and Lt+∆t is total length at the end of
the time interval (∆t) [30,31].

The values of condition factor were obtained with the formula:

Kn =

(
W
Lb

)
× 100 (7)

where W, L and b are as defined above [32].
The observed length-at-age data of the long-nosed skate were used as the dependent

variable and the age as the independent variable, with the three most-used models to
describe the growth of fish. The first model employed was the von Bertalanffy [33] growth
equation (VBGM). The VBGM was formulated by Beverton and Holt [34] as:

Lt = L∞

(
1− e−K(t−t0)

)
, (8)

where Lt is the expected total length at age t years; L∞ is the asymptotic total length; K
is the growth coefficient or curvature parameter indicating the rate at which long-nosed
skates grow toward their L∞ and t0 is the theoretical age at zero total length.

The second growth model used was that of Gompertz [35], an S-shaped growth model
(GGM) [36–38]:

Lt = L∞e−e−G(t−ti) , (9)

where t, Lt and L∞ are the same as in the VBGM; ti is the age at the inflection point of the
growth curve, i.e., the age at which the absolute growth rate starts to decrease and G is the
instantaneous growth rate coefficient at age ti, where growth becomes asymmetrical.

The Robertson (logistic) model was also used as the last growth model. While t, ti,
Lt and L∞ are the same as in the previous models, K is a parameter that affects the rate of
exponential growth:

Lt =
L∞

(1 + e(−K(t− ti)))
(10)

Akaike’s information criterion (AIC) was used to compare the different growth models. A
smaller value of the AIC indicates that the observed data are closer to the fitted model [29,39].
The AIC is defined as −2 times the maximum value of the log likelihood (L̂) plus 2 times the
number of parameters (p) in the model including the estimated variance [40]:

AIC = −2 ln(L̂) + 2p (11)
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3. Results
3.1. Sample Composition, Sex and Vertebral Analysis

A total of 255 long-nosed skates ranging from 12.2 to 93.5 cm in total length and
8.34–3828 g in weight were collected as bycatch or discard species from a commercial fishing
vessel between May 2015 and June 2016 (Table 1). The sex ratio (M/F) was determined as
1:1.27. The ratio of females to males was not statistically different from the expected 1:1
ratio between sexes (p > 0.05). The size frequency based on total length and age group is
presented in Figure 3.

Table 1. Descriptive statistics for Dipturus oxyrinchus inhabiting the Northeastern Mediterranean Sea.

Group n
Total Weight (g) Total Length (TL, cm)

Mean SE Min–Max Mean SE Min–Max

Female 143 1000.28 ± 902.78 8.50–3828.00 57.38 ± 22.05 12.20–93.50
Male 112 825.44 ± 666.55 8.34–2234.00 53.97± 19.24 14.60–80.10

SE: Standard Error; Min: Minimum; Max: Maximum.
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3.2. Age Estimation, Reading Precision and Age Bias

In this study, estimated ages ranged from 0 to 12 for females and from 0 to 9 for
males. Age estimation for males and females by two independent readers did not show a
considerable variation (Figure 4a,b). The highest PA with lowest IAPE and CV were found
for males than female (Table 2).
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Figure 4. (a) Age bias graphs for Dipturus oxyrinchus inhabiting the Northeastern Mediterranean
Sea. (b) Age bias plots for two readers for aging Dipturus oxyrinchus inhabiting the Northeastern
Mediterranean Sea. Plots illustrate reference reader’s age estimates on the x-axis; the mean difference
(circles) and distribution of the differences between corresponding ages (vertical lines) are represented
on the y-axis.
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Table 2. Summary statistics for the coefficient of variation (CV), percentage of agreement (%PA)
and index of average percentage error (IAPE) to determine the precision of age readings of Dipturus
oxyrinchus inhabiting the Northeastern Mediterranean Sea.

Group Readers n R CV PA

Overall Reader 1 vs. Reader 2 255 2 0.75 90.98
Female Reader 1 vs. Reader 2 143 2 1.27 84.62
Male Reader 1 vs. Reader 2 112 2 0.74 99.11

n = sample size and R = number of readings.

3.3. Length–Weight Relationships, Growth Patterns and Condition Factor
3.3.1. Length–Weight Relationships

The total length–weight relationships of Dipturus oxyrinchus for female, male and
overall are presented in Figure 5. According to these results, positive allometric growth
(b > 3) was demonstrated for the overall category. Regression results showed that the
length and weight of the long-nosed skate was predicted significantly (r = 0.987, r2 = 0.974,
F1,242 = 9092.525 p < 0.001) in all sexes. It is possible to state that 97% of the increase is due
to that of the size of Dipturus oxyrinchus in all individuals for the present study. In addition,
when t-test results related to the significance of the regression coefficients were analyzed
(t-test = 95.355 p < 0.01), the proportion of the individual’s length to weight was found to
be important.
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3.3.2. Growth Characteristics

The growth parameters were estimated for overall and each sex separately from the
VBGM, the Robertson (logistic) and Gompertz growth model using nonlinear regression
analysis, as presented in Table 3 and Figure 6. The relationship between total length
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and age was adequately described by the Robertson (logistic) growth model followed by
the Gompertz growth model. The von Bertalanffy model performed relatively weakly
compared to other growth models based on AIC values.

Table 3. The growth parameters for Dipturus oxyrinchus inhabiting the Northeastern Mediterranean
Sea derived from different growth models.

Group Growth
Models L∞ (cm) K (year−1) t0 (year) I (year) AIC

Overall von Bertalanffy 154.01 0.06 −1.62 1401.60
Logistic 104.14 0.35 4.99 1350.69
Gompertz 128.40 0.19 4.39 1363.98

Female von Bertalanffy 152.55 0.06 −1.62 788.90
Logistic 103.54 0.36 4.91 751.83
Gompertz 124.73 0.19 4.19 761.12

Male von Bertalanffy 161.73 0.06 −1.63 788.90
Logistic 103.23 0.35 4.98 595.02
Gompertz 141.44 0.17 5.02 598.61

L∞ = the asymptotic length (cm); K = the growth rate (year−1); t0 = the time when L = 0 (year); I = the age at the
inflection point; and AIC = Akaike Information Criterion.

3.3.3. The Relative and Absolute Growth Rates and Condition Factor

The maximum absolute growth was estimated as 9.33 cm with 5–6 years of age. The
maximum relative growth was calculated as 36.39% with 1–2 years of age. Both in absolute
and relative growth were observed as minimum in the 11–12 age group (Table 4). Average
condition factor value of population was estimated as 0.363. The highest and lowest
condition factor values were estimated as 0.416 in age group 8 and 0.308 in age group 2,
respectively (Table 5).

Table 4. The relative and absolute growth rates of for Dipturus oxyrinchus inhabiting the Northeastern
Mediterranean Sea.

Absolute Growth Rate Relative Growth Rate

Age Group Overall Female Male Overall Female Male

0–1 4.94 5.14 5.22 32.59 33.72 35.17
1–2 7.31 6.74 7.73 36.39 33.06 38.5
2–3 8.86 8.32 9.56 32.3 30.7 34.39
3–4 8.71 9.95 9.13 24.01 28.07 24.42
4–5 9.09 11.53 9.67 20.2 25.4 20.8
5–6 9.33 7.7 9.33 17.26 13.53 16.62
6–7 7.54 6.28 5.48 11.9 9.72 8.36
7–8 5.2 5.39 4.82 7.33 7.6 6.79
8–9 4.23 4.97 3.1 5.56 6.52 4.09

9–10 6.67 5.78 - 8.3 7.11 -
10–11 2.94 2.94 - 3.38 3.38 -
11–12 2.73 2.73 - 3.03 3.03 -
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pared to other growth models based on AIC values. 
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Table 5. The condition factor for Dipturus oxyrinchus inhabiting the Northeastern Mediterranean Sea.

ALL FEMALE MALE

AGE N K N K N K

0 10 0.409 8 0.454 2 0.273
1 15 0.317 4 0.221 11 0.279
2 14 0.308 9 0.377 5 0.267
3 30 0.311 17 0.298 13 0.303
4 20 0.335 5 0.25 15 0.349
5 42 0.36 24 0.268 18 0.38
6 28 0.375 18 0.32 10 0.416
7 45 0.383 24 0.365 21 0.389
8 11 0.416 3 0.404 8 0.418
9 24 0.386 15 0.389 9 0.386

10 9 0.405 9 0.411 - -
11 4 0.351 4 0.322 - -
12 3 0.362 3 0.362 - -

0.363 ± 0.037 0.342 ± 0.060 0.346 ± 0.060

4. Discussion

The overall length ranges recorded in our study were found to be smaller than those
reported by Alkusairy and Saad [11] for the same species in Syrian waters (34.1–100 cm
for females and 34.5–81.6 cm for males). Yigin and Işmen [8] reported a total length
of 14.9–100 cm in females in Saros Bay (the North Aegean Sea), while Bellodi et al. [12]
reported these values as 15.2–86.5 cm in males and 10.4–117.5 cm in females in Sardinian
waters. Finally, Kadri et al. [9] reported 16.5–105 cm in females and 15.5–95 cm in males
in the Gulf of Gabès (Southern Tunisia, Central Mediterranean). These values are very
close to the values we found in our study. The Robertson (logistic) growth model estimates
indicated that the long-nosed skate showed sexual dimorphism with females larger than
males. These observations are consistent with other studies for Dipturus oxyrinchus in the
Mediterranean Sea (e.g., Yigin and Işmen [8] in the North Aegean Sea, Kadri et al. [9]
in Southern Tunisia and Bellodi et al. in Sardinian waters [12]). Sexual dimorphism
appears to be a common feature for the Rajidae (e.g., blonde ray Raja brachyura [41] and
thornback ray Raja clavata [42]). The percentage of females and males for all samples was
56.07% and 43.93%, respectively. This was not statistically different from the expected 1:1
ratio between the genders. All genders were equally distributed confirming the pattern
proposed by Yigin and Işmen [8], Kadri et al. [9] and Bellodi et al. [12]. Growth bands
were highly legible and visible in cross-sections, with an easily recognizable birthmark. No
staining technique was used to determine the age of Dipturus oxyrinchus, with a maximum
age of 12 noted in females and 9 in males. Differences in age determination after age
9 for both sexes are related to the small number of individuals being sampled. The age
estimation process ensured a high level of count repeatability among readers (IAPE = 0.53%;
%CV = 0.75; %PA = 90.98) and no signs sensitive to bias were detected among readers. These
precision values are acceptable [43]. The b parameter of the length–weight relationship
of Dipturus oxyrinchus showed positive allometric growth for both genders in the current
study. The estimated b values for Dipturus oxyrinchus by region are shown in Table 6, which
are very close to our study’s findings. Other b values were reported as 3.539 for the south
coasts of Portugal by Borges et al. [44] and 3.40 for North Aegean Sea by Filiz and Bilge [45].
These values differ from those of our study, which may be due to the small sample size
of the fish or the fact that samples were made in different seasons. Relative and absolute
growth rates and condition factor for Dipturus oxyrinchus were calculated for the first time
in our study and therefore no comparison with other studies could be made. Absolute
growth rates indicate actual growth between two years (ages) in terms of weight or length.
Absolute growth rate decreases with age (t) and provides information about the years (ages)
when growth is highest. The way the absolute growth rate is calculated depends strongly
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on the size the fish has reached. For comparison purposes, the relative growth rate may be
more useful. This is used to determine age-related growth rate in natural populations [30].

Table 6. Length–weight relationship values for Dipturus oxyrinchus from different regions.

Sexes n Lmin-max (cm) Wmin-max (g) a b r2 Researchers

South coasts,
Portugal Σ 8 30.2–55.4 88.0–702.7 0.00048 3.539 0.99 Borges vd. [44]

North Aegean Sea Σ 8 17.9–62.2 10.44–850.48 0.0007 3.40 0.99 Filiz and Bilge [45]
South of Sicily
and South of
Malta

Σ - 23.0–124.0 - 0.00128 3.250 - Geraci et al. [46]

Northwestern
Mediterranean Sea Σ 2 27.4–33.6 58–84 0.0025 3 - Barría et al. [47]

Gulf of Saros,
Turkey Σ 118 10.0–63.2 9.0–4056.0 0.00423 3.291 0.998 Işmen et al. [48]

Sardinian waters,
Italy

♀ 531 10.9–115.5 - 0.0012 3.2498 0.98
Bellodi et al. [12]♂ 448 14.7–101.5 - 0.0009 3.327 0.99

Gulf of Saros,
Turkey

Σ 179 14.9–100.0 8.0–4047.0 0.00083 3.35 0.996
Yigin and Işmen [8]♀ 89 14.9–100.0 8.0–4047.0 0.00077 3.37 0.997

♂ 90 15.2–86.5 8.0–2510.0 0.00088 3.34 0.996
Mersin Bay,
Northeastern
Mediterranean Turkey

Σ 255 12.20–93.50 8.34–3828.0 0.0017 3.187 0.974
In this study♀ 143 12.20–93.50 8.50–3828.0 0.0023 3.106 0.990

♂ 112 14.60–80.10 8.34–2234.0 0.0009 3.340 0.980

n: sample size, Lmin-max: minimum-maximum length, Wmin-max: minimum-maximum weight, a: intercept, b: slope
of the equation, r2: coefficient of determination.

Bellodi et al. [12] emphasized that the Gompertz function provided the best fit among
the four growth models examined. Additionally, Liu et al. [49] stated that multiple model
applications should be tested in elasmobranch age and growth studies. They also indicated
that the Robertson (logistic) and Gompertz models provide the best fit for small-sized
demersal skates/rays living in deep water. In our study, according to the AIC values,
the logistic and Gompertz models were found to be more appropriate in describing the
growth parameters of Dipturus oxyrinchus. These results agree with Liu et al. [49] and
Bellodi et al. [12]. The logistic parameters determined in our study show that females attain
a slightly larger asymptotic TL∞ (103.54 cm) than males (103.23 cm). In addition, the K
values of the long-nosed skate were found to be similar for both genders. These growth
rates appear to be similar with other skate species of similar size in the Mediterranean
Sea. Bellodi et al. [12] suggested that the best growth model was the Gompertz model and
estimated L∞ as 127.55 cm for all genders. This result is very close to the asymptotic value
(L∞ = 128.40 cm) calculated with the Gompertz model for all individuals in our study.
Yigin and Işmen [8] reported that, for both genders, the L∞ was 256.46 cm and the K was
0.04, the t0 value was −1.17 year and the maximum age was 9 years. The above authors [8]
found individuals aged up to 9 years and a total length of up to 100 cm in their study. The
largest individual captured in our study (93.5 cm) was smaller than that reported by the
above researchers, despite being older. This shows that there may be a mistake in reading
the older age rings. This leads to an overcalculation of the asymptotic length. For females,
Kadri et al. [9] reported the L∞ as 123.9 cm, the K as 0.08, the t0 as −1.26 and the maximum
age as 25; for males, the L∞ as 102.1 cm, the K as 0.12, the t0 as −1.18 and the maximum
age as 22. These researchers found that the oldest individual was 105 cm in total length and
25 years old. Again, these values were very high compared to those in our study, which
therefore indicated to us that mistakes might have been made in the reading of the age
rings of the older individuals. These errors may have caused an underestimation of the L∞
value. Considering that the largest Dipturus oxyrinchus caught in nature is 150 cm in TL,
the L∞ value should not be lower than this value.

5. Conclusions

Our work ensured basic growth parameters and the best fit among the three growth
models for the long-nosed skate and that the Robertson (logistic) growth model was the best
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model to describe the species growth. Results of the research showed that the long-nosed
skate has life history features similar to other Rajidae species in the Mediterranean Sea
and are long-lived and slow growing. The present study has provided the first analysis of
growth characteristics and data for Dipturus oxyrinchus for conservative management plans
in the Northeastern Mediterranean Sea.
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