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Simple Summary: Video recordings enable scientists to estimate species’ presence, richness, abun-
dance, demography, and activity. The increasing popularity of camera traps has led to a growing
interest in developing approaches to more efficiently process images. Advanced artificial intelli-
gence systems can automatically find and identify the species captured in the wild, but they are
hampered by dependence on large samples. However, many species rarely occur, such as endangered
species, and only a few shot samples are available. Building on recent advances in deep learning and
few-shot learning technologies, we developed a multiobject-tracking approach based on a tracking-
by-detection paradigm for wildlife to improve multiobject-tracking performance. We hope that it will
be beneficial to ecology and wildlife biology by speeding up the process of multiobject tracking in
the wild.

Abstract: Camera trapping and video recording are now ubiquitous in the study of animal ecology.
These technologies hold great potential for wildlife tracking, but are limited by current learning
approaches, and are hampered by dependence on large samples. Most species of wildlife are
rarely captured by camera traps, and thus only a few shot samples are available for processing and
subsequent identification. These drawbacks can be overcome in multiobject tracking by combining
wildlife detection and tracking with few-shot learning. This work proposes a multiobject-tracking
approach based on a tracking-by-detection paradigm for wildlife to improve detection and tracking
performance. We used few-shot object detection to localize objects using a camera trap and direct
video recordings that could augment the synthetically generated parts of separate images with spatial
constraints. In addition, we introduced a trajectory reconstruction module for better association. It
could alleviate a few-shot object detector’s missed and false detections; in addition, it could optimize
the target identification between consecutive frames. Our approach produced a fully automated
pipeline for detecting and tracking wildlife from video records. The experimental results aligned with
theoretical anticipation according to various evaluation metrics, and revealed the future potential of
camera traps to address wildlife detection and tracking in behavior and conservation.

Keywords: camera trap; few-shot learning; wildlife management; animal behavior

1. Introduction

Biodiversity is an essential component and a key element in maintaining the stability
of ecosystems. In the face of the current sharp decline in global biodiversity, it is urgent
to take adequate measures to prevent and protect it. Wildlife monitoring and conserva-
tion that determine biodiversity patterns is a cornerstone of ecology, biogeography, and
conservation biology. Therefore, monitoring animal habits and activity patterns during
the rewilding training process is essential. Driven by advances in cheap sensors and
computer-vision technologies for detecting and tracking wildlife, biodiversity research is
rapidly transforming into a data-rich discipline. Video data have become indispensable
in the retrospective analysis and monitoring of endangered animal species’ presence and
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behaviors. However, large-scale research is prohibited by the time and resources needed to
process large data manually.

Recent technological advances in computer vision have led to wildlife scientists realiz-
ing the potential of automated computational methods to monitor wildlife. This ongoing
revolution is facilitated by cost-effective mechanical high-throughput wildlife-tracking
methods that generate massive high-resolution images across scales relevant to the eco-
logical context in which animals perceive, interact with and respond to their environment.
While applying existing tools is tempting, many potential pitfalls must be considered to
ensure the responsible use of these approaches. For example, a large amount of data is
required to train these deep-learning models accurately. However, because many species
rarely occur, only a few shot samples are available; thus, the performance is typically low.

Few-shot learning aims to develop the ability to learn and generalize autonomously
from a small number of samples. It can rapidly generalize to new tasks containing only a
few samples with supervised information. Multiple recent publications have discussed this
approach [1–5]. Generally, the research on multiobject tracking mainly focuses on how to
improve the real-time performance of multiobject monitoring [6,7], how to better model the
appearance information of the target [8–11], and how to associate targets efficiently [12–15].
Multiobject-tracking methods always follow the tracking-by-detection paradigm. In [7],
this method was called separate detection and embedding (SDE). This means that the
MOT system was broken down into two steps: (1) locating the target in single video
frames; and (2) associating detected targets with existing trajectories. Another multi-object
tracking learning paradigm, JDE, was also proposed. JDE jointly learned the detector and
embedding model in a single deep network. In other words, the JDE method used a single
network to output both the detection result and the corresponding appearance embeddings
of the detected boxes. The SDE method used two separate networks to accomplish the
above two tasks. JDE was closer to real-time performance, but the tracking accuracy was
slightly worse than SDE. The small-sample object-detector performance was not as good as
that of YOLO [16–19], Faster R-CNN [20], and other general object detectors [21,22]. In the
object detection of each frame, there will be missed detection, which significantly affects
the effect of the multiobject-tracking task. Therefore, to ensure the performance effect of a
multiobject-tracking model driven by a small amount of data, in addition to selecting the
SDE paradigm, we also proposed a trajectory reconstruction module in the data association
part to further optimize the tracking accuracy, as shown in Figure 1.
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Figure 1. We aimed to obtain a few-shot multiobject-tracking model based on few-shot learning.
In this framework, we used a few-shot object detector as the detector and a classification network
trained based on the few-shot method as the feature extractor. In addition, we also designed a
trajectory-reconstruction module to optimize the tracking result.

The research hotspots of multiobject tracking under the tracking-by-detection paradigm
always have the following two aspects: (1) a more accurate detection of targets in complex
environments; and (2) the ability to deal with long-term occlusion and short-term occlusion
problems and to associate targets more accurately. Some previous works [23–25] showed
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that a multiobject-tracking approach could achieve a state-of-the-art performance when
used together with a robust object detector. They used Kalman filtering to predict and up-
date trajectories [23] and proposed an extension [24]. In addition to considering the motion
features above, the apparent features of the target were also considered. Feichtenhofer
et al. introduced correlation features representing object cooccurrences across time to aid
the ConvNet during tracking. Moreover, they linked the frame-level detections based on
across-frame tracks to produce high-accuracy detections at the video level [25].

The primary purpose of data association is to match multiple targets between frames,
including the appearance of new marks, the disappearance of old targets, and the iden-
tity matching of targets between consecutive frames. Many approaches formulated the
data-association process as various optimization problems [12,13]. The former mapped
the maximum a posteriori (MAP) data-association problem to cost-flow networks with
nonoverlapping constraints on trajectories. A min-cost flow algorithm found the optimal
data association in the network. The latter believed that re-identification only by appear-
ance was not enough, and long-distance object reproduction was also worthy of attention.
They proposed a graph-based formulation that linked and clustered person hypotheses
over time by solving an instance of a minimum cost lifted multicut problem. Some works,
such as [26,27], emphasized improving the features used in data association. They proposed
dual matching attention networks with spatial and temporal attention mechanisms [26].
The spatial attention network generated dual spatial attention maps based on the cross-
similarity between each location of an image pair, making the model more focused on
matching common regions between images. The temporal attention module adaptively
allocated different levels of attention to separate samples in the tracklet to suppress noisy
observations. To obtain a higher precision, they also developed a new training method
with ranking loss and regression loss [27]. The network considered the appearance and the
corresponding temporal frames for data association.

Conceptually, tracking technologies using computer vision permit high-resolution
snapshots of the movement of multiple animals and can track nontagged individuals, but
they are less cost-effective, are usually limited to specific scenarios, and make individual
identification challenging. In contrast, here we provide a fully automated computational
approach to tracking tasks for wildlife by combining few-shot learning with multiobject
tracking to detect, track, and recognize nature. It could represent a step-change in our
use of extensive video data from the wild to speed up the procedure for ethologists to
analyze biodiversity for research and conservation in the wildlife sciences. This approach
represents an automated pipeline for recognizing and tracking species in the wild. Our
main contributions can be summarized as follows:

• We combined few-shot learning with a multiobject-tracking task. To the best of our
knowledge, the multiple automated object-tracking frameworks based on few-shot
learning are being proposed for the first time.

• Our approach effectively merged the richness of deep neural network representations
with few-shot learning that paves the way for robust detection and tracking of wildlife,
which can be adaptive for unknown scenarios by data augmentation.

• A trajectory reconstruction module was proposed to compensate for the shortcomings
of the few-shot object-detection algorithm in the multiobject-tracking tasks, especially
in monitoring wildlife.

2. Materials and Methods
2.1. Architecture Overview

While camera traps have become essential for wildlife monitoring, they generate
enormous amount of data. The fundamental goal of using intelligent frameworks in
wildlife monitoring is automated analyses of behaviors, interactions, and dynamics, both
individual and group. For example, sampling the quantity of species’ complex interactions
for network analysis is a significant methodological challenge. Early approaches require
capturing subjects and are labor-intensive. Their application may be location-specific,
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and the recorded data typically lacks contextual visual information. In this work, we
instead sought to learn the unstrained dynamics and be sensitive to the presence of various
locations and groups. The aim was to propose a cost-effective wildlife-tracking approach
that generated massive high-resolution video records across scales relevant to the ecological
context in which animals perceive, interact with and respond to their environment.

Figure 2 shows the overall design of the proposed MOT framework, called Few-MOT,
which followed the tracking-by-detection paradigm, but without requiring large amounts
of training data. An input video frame first underwent a forward pass through a few-
shot object detector and a few-shot feature extractor to obtain motion and appearance
information. Finally, we followed [24] and made improvements to solve the association
problem for a few-shot setting. The upgrades included two parts: (1) a three-stage matching
process including cascade matching, central-point matching, and IoU matching; and (2) a
trajectory-reconstruction module to compensate for few-shot object detection.
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Figure 2. The architecture of our proposed few-shot tracker framework: Few-MOT. It consisted of a
detection process and a tracking process. The detection process followed a few-shot object detector
that directly regressed the objectness score (def), bounding box location (x,y,w,h), and classifica-
tion score (cls). The tracking process included a few-shot feature-extraction network (Extractor), a
matching module, and a trajectory-reconstruction module. The extractor was responsible for ex-
tracting the features of each object clip. The matching module then performed the association of
targets between frames, and if they met the reconstruction criteria, they were constructed by the
trajectory-reconstruction module. The details of this module will be explained in the methods section.

2.2. Few-Shot Detection Module

Most object-detection approaches rely on extensive training samples. These require-
ments substantially limit their scalability to open-ended accommodation of novel classes
with limited labeled training data. In general, the detection branch of multiobject tracking
is the state-of-the-art of the object-detection field. Given the extreme scarcity of endan-
gered animal scenes, we had very few samples available. This paper addresses these
problems by offering a few-shot object detection with spatial constraints to localize objects
in our multiobject-tracking framework. Few-shot object detection only requires a k-shot
training sample, and its performance is better than that of the general detector under the
same premise.

First, a note that in few-shot learning, we defined a large number of samples as the base,
with their counterparts as the novel. In this paper, the novel class refers to the endangered
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animal class. Our proposed few-shot object-detection method allowed for few-shot learning
in different scenarios with spatial dependencies while adapting to a dynamically changing
environment during the detection process. It exploited a set of objects and environments
that were processed, composed, and affected by each other simultaneously, instead of being
recognized individually. Considering the geographical correlation between species and
environmental factors, we thus proposed spatial constraints during the data augmentation.
The images were first separated from the front and back views using the pretrained saliency
network U2-Net [28]. Then, the pretrained image-inpainting network CR-Fill [29] repaired
the missing parts. Finally, the foreground and background, which were separated, were
blended and combined into a new sample. We used a perceptual hashing algorithm for
spatial constraints during the combinations that did not correspond to the actual situation.
For example, an event with a zero probability, such as a giant panda in the sky, would
be misleading for training the object-detection model. After the above-constrained data
expansion, the samples were learned from each other. The training of the few-shot object-
detection task was performed based on a feature-reweighting method [30].

The perceptual hash algorithm pHash reduced the image frequency by the discrete
cosine transform (DCT) and then matched similar images by calculating the Hamming
distance. The algorithm proceeded as follows: (1) reduce the image to 32 ∗ 32; (2) convert
the image to a grey-scale image; (3) calculate the DCT and DCT mean; (4) perform image
pairing to calculate the Hamming distance. The equations to calculate the DCT and
Hamming distance are shown in Equations (1)–(3) below:

F = A f AT , (1)

A(i, j) = c(i) cos
[
(j + 0.5)π

N
i
]

, (2)

d(x, y) = ∑ x[i]⊕ y[i], (3)

This analysis can be extended toward a graphical representation (Figure 3).
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similar samples to ridding unbalance; (d) selecting the top 60% of reasonable samples, as those that
could be subsequently blended for the front and back views.

2.3. Learning More Robust Appearance Embedding Based on Few-Shot Learning

There is an appearance metric-learning problem in a multiobject-tracking task, and
the aim is to learn an embedding space where instances of the same identity are close while
instances of different identities are far apart. The metric-learning problem is often defined
as a re-identification task in multiobject tracking, mainly aimed at a single category; i.e.,
pedestrians or vehicles. For example, person re-identification aims at searching for persons
across multiple nonoverlapping cameras. The task of Re-ID in this approach shares similar
insights with the Re-ID for persons. When presented with an animal-of-interest (query) in
video records, an animal Re-ID tells whether this animal has been observed in another place
(time). In particular, we tracked nonsingle classes, and each class had very little training
data. Thus, we trained the embedding learning process on the few-shot classification task.

Typically, few-shot classification approaches include optimization-based, model-based,
and metric-based methods. Since our goal was not to classify but to train a feature learner
based on the classification task and its feature map to the target, we performed descriptions
of categories and changes in behavior. Thus, directly using a few-shot classification network
for training was not applicable. We used elastic-distortion data augmentation to ensure
the features had single information. Elastic distortion changed the posture of the target,
allowing changes in behavior to be focused and adapted to our eventual tracking task.
Because the target was moving and the pose of the same target was constantly changing in
the video stream, this variation affected the recognition rate of the target identity during
the tracking process.

Firstly, the affine transformation of the image was performed to obtain a random
displacement field generated by each pixel of the image. Then, we convolved the random
displacement field with N(0, δ), which obeyed the Gaussian distribution, and multiplied
the random displacement field by the control factor α, where δ controlled the smoothness of
the image and α controlled the strength of the image deformation. We set δ to 0.07 and α to
5. The experimental results suggested that these parameter values enriched the target pose
without distorting the image. Figure 4 shows a partial example of the processed image.

We imitated the approach used in [31] in our training process, using self-supervision
and regularization techniques to learn generic representations suitable for few-shot tasks.
Firstly, we used a pretext task called rotation to construct the self-supervised task on the
base classes. In the self-supervised task, the input image was rotated by r degrees and
r ∈ CR = {0◦, 90◦, 180◦, 270◦}. The secondary purpose of the model was to predict the
amount of rotation applied to the image. An auxiliary loss was added to the standard
classification loss in the image classification setting to learn the generic representation.
Secondly, fine-tuning with a manifold mixup was conducted on the base classes and
endangered classes for a few more epochs. The manifold mixup provided a practical way
to flatten a given class of data representations into a compact region. The loss function of
the first stage is given by:

Lrot =
1
|CR|

∗ ∑
x∈Db

∑
r∈CR

L
(
cWr

(
fθ

(
g(x)r)), r

)
, (4)

Lclass = E(x,y)∈Db ,r∈CR

[
L
(

g(x)r, y
)]

, (5)

where Lrot denotes the self-supervision loss, and Lclass denotes the classification loss. The
loss function of the fine-tuning stage is given by:

Lmm = E(x,y)∈Db

[
L
(

Mixλ

(
f l
θ(x), f l

θ

(
x′
))

, Mixλ

(
y, y′

))]
, (6)

Mixλ(a, b) = λ ∗ a + (1− λ) ∗ b , (7)
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In addition, we used the input data x and x′ with corresponding feature representa-
tions at layer l given by f l

θ(x) and f l
θ(x′), respectively.

2.4. Association Module

Considering that the current association modules were all associated with the conven-
tional multiobject-tracking task and were not applied to the multiobject-tracking task with
a few-shot setting, it was inevitable that there were some shortcomings. To fit the Few-
MOT module to the MOT-EA dataset, we made some improvements with the DeepSORT
association algorithm.

2.4.1. Three-Stage Matching

In addition to cascade matching and IoU matching, we added a central-point matching,
which helped to alleviate the mismatched detection boxes and tracks due to an excessive
intersection ratio. The IoU matrix iouj,i was calculated as the intersection-over-union (IoU)
distance between every detection and object pair.

iouj,i =
Area

(
track j

)
∩ Area(deci)

Area
(
track j

)
∪ Area(deci)

, (8)

where Area
(
track j

)
is the area of track j, and Area(deci) represents the area of deci.

The central-point matrix centerj,i was calculated as the central-point distance between
every detection and track pair. Figure 5 illustrates the difference between center-point
matching and IoU matching.

centerj,i = dis
(
center

(
track j

)
, center(deci)

)
, (9)

where center
(
track j

)
and center(deci) are the central-point of the track and detection,

respectively.
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During the experiment, we found that if we only used cascade matching and central-
point matching in the matching stage, it did help to reduce ID switching, but at the same
time, it was accompanied by an increase in missed targets. Thus, we worked together on IoU
matching and central-point matching and designed the following trajectory-reconstruction
module to alleviate this problem. In the MOT-EA dataset, we measured the above two
matching strategies using the two indicators for FN and FP, and found that three-stage
matching was the best matching strategy. A further discussion of the ablation experiment
reveals more details.

2.4.2. Trajectory-Reconstruction Module

We found an excessive amount of missed detection cases in the tracking process given
in the previous section, which damaged the tracking effect. In addition, the performance of
the few-shot detector was not as good as YOLO, Faster R-CNN, and other general object
detectors. The target was then lost in the video stream. However, according to [32], the
tracking accuracy of multiple objects can be written as:

MOTA = 1− FN + FP + IDSW
GT

∈ (−∞, 1], (10)

where FN is false negatives (the sum of missing amounts in the entire video), FP is false
positives (the sum of the number of false positives in the entire video), IDSW is the ID
switch (the total number of ID switches), and GT is the number of the ground truth
objects. The object-detection accuracy significantly affected the tracking accuracy, so we
designed a trajectory-reconstruction module to deal with the above problems. This module
compensated for the lack of a few-shot detector.

First, we specified the central region, as shown in Figure 6 below. Then, if there was
no trajectory and the detection box was successfully matched in frame T, we judged the
central-point position of the track in frame T-1. If the central point of the bounding box in
frame T-1 was located in the central area, we reconstructed the track of frame T-1 to frame
T under the present conditions. We allowed the reconstruction of five consecutive frames
because the object’s position usually changed slightly in five consecutive frames. The box
of frame T-1 could still locate the object’s position in the subsequent four frames.
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3. Results
3.1. Implementation Details

This framework was written in Python with PyTorch support. First, when training the
feature extractor of Few-MOT, we converted the EAOD private object-detection dataset
into an image-classification dataset for training. WRN-28-10 [33] was used as the backbone,
and the elastic-distortion data-augmentation strategy enhanced the feature robustness of
animals in various poses. Then, in the design of the trajectory-reconstruction module, we
found through several experiments that when the allowable reconstruction threshold was
set to less than 5, there were too many missed trajectories. When the setting was greater
than 5, there were too many false trajectories, which reduced the tracking effect. Therefore,
we set the threshold for the maximum number of frames allowed to be continuously
reconstructed to 5.

3.2. Datasets and Evaluation Metrics

1. Datasets: Currently, there is no multiobject-tracking dataset for endangered animals,
so we created the MOT-EA multiobject-tracking dataset in the format of MOT-16 [34].
The dataset included five endangered species: brown-eared pheasant, crested ibis,
giant panda, golden snub-nosed monkey, and tiger. Each video was 10 to 20 s in
length. Details are shown in Table 1 below.

Table 1. Detail of MOT-EA dataset.

Class Duration (s)

Brown-eared pheasant 13:26
Crested ibis 16:24
Giant panda 20:00

Golden snub-nosed monkey 10:21
Tiger 14:29

2. Evaluation Metrics: Following the benchmarks, we evaluated our work using [32].
MOTA and IDF1 are considered the two most important among all metrics. MOTA
is an indicator to measure the accuracy of multiobject tracking. Mostly, it considers
the matching errors of objects in the tracking process. According to FP, FN, and
IDs, MOTA gives a very intuitive measure of the tracker performance, which is
independent of the accuracy of object detection. The IDF1 considers the ID accuracy
rate and the ID recall rate comprehensively, and considers the ID information more
than MOTA. However, IDF1 cannot reflect the phenomenon of ID switch. This is
shown in Equations (10) and (11) below. A robust tracking system should show good
scores for both MOTA and IDF1.

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
, (11)
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3.3. Experimental Results

Here, we evaluated our system using the MOT-EA dataset. Table 2 shows the tracking
performance of our framework on the five endangered categories. Furthermore, we com-
pared the same few-shot object detector with multiple trackers, as shown in the first four
rows of Table 3. On the other hand, the general detector YOLOv4 was used for comparison,
as shown in row 5 of Table 3. The specific performance of the five methods in Table 3 on
the MOT-EA dataset is supplemented in Appendix A Tables A1–A5. The results showed
that our framework outperformed many previous approaches with small data samples.
Both the MOTA and IDF1 scores were in the leading position for MOT-EA. We believe
that the following results were obtained because the general detector could not achieve a
good detection effect with a small amount of data, which significantly affected the tracking.
In addition, the tracker we designed was more suitable for this scenario. It is more robust
to various morphological changes in animals, and more targeted to insufficient learning
caused by a small amount of data.

Table 2. Results of the proposed MOT framework for MOT-EA.

Class IDF1 IDP IDR FP ↓ FN ↓ IDs ↓ MOTA MOTP

Tiger 59.30% 71.7% 50.5% 66 281 2 52.10% 0.287
Golden snub-nosed

monkey 95.50% 99.4% 91.9% 2 28 0 91.40% 0.224

Giant panda 72.10% 83.8% 63.3% 96 295 2 51.50% 0.285
Crested ibis 62.40% 74.1% 53.8% 0 253 7 71.90% 0.278

Brown-eared
pheasant 34.10% 50.7% 25.7% 46 634 12 42.00% 0.273

OVERALL 64.68% 75.94% 57.04% 210 1491 23 61.78% 0.27

↓means the smaller the better.

Table 3. Comparison with the same few-shot detector and YOLOv4.

Class IDF1 IDP IDR FP ↓ FN ↓ IDs ↓ MOTA MOTP

BYTETrack [35] 59.50% 76.38% 49.04% 187 1739 14 53.86% 0.22
SORT [23] 29.26% 45.76% 21.66% 92 2201 85 41.64% 0.211

IoU-tracker [36] 15.70% 23.82% 12.12% 143 2330 210 37.40% 0.215
V-IoU-tracker [37] 38.56% 62.14% 29.24% 80 2192 27 48.34% 0.212

YOLOv4 [19] + DeepSORT [24] 35.80% 57.06% 27.62% 76 2436 76 40.46% 0.227
Ours 64.68% 75.94% 57.04% 210 1491 23 61.78% 0.27

↓means the smaller the better.

Two example trajectories of two tigers using the Few-MOT model are shown in
Figure 7 below. Our model made it possible to track the targets and plot the movements.
We could record the basic trajectories of the endangered animals within the monitoring
area. Furthermore, we could also use the trajectories to analyze the areas where the targets
were active, determine whether they were involved and the interaction between different
targets, etc. In addition, the tracking processes of a giant panda and a golden snub-nosed
monkey are shown in Figures 8 and 9, respectively. The targets were continuously located
during this process and maintained unique identity IDs.
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3.4. Ablation Study and Discussion

Here, we discuss the impact of the three parts of the three-stage matching and elastic-
distortion data-augmentation strategy and the trajectory-reconstruction module. First, we
performed ablation experiments on the MOT-EA dataset for the matching module. The
two stages included cascade matching and central matching. The three stages included
cascade matching, central matching, and IoU matching. As shown in Table 4, the three-stage
matching showed improvement in the cases of false and missed detections.
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Table 4. Performance comparison for the matching module with different methods.

Method FP ↓ FN ↓
Two stages 337 1627

Three stages 210 1491
↓means the smaller the better.

Table 5 shows the impacts of the two parts of the elastic-distortion data-augment
strategy and the trajectory-reconstruction module. The baseline model (row 1 in Table 5)
consisted of a few-shot detector and an unmodified tracker. The other experimental
results in Table 5 shared the same set of few-shot detectors, except for the feature learner’s
training process and the tracker’s association module. The results indicated that the feature
stability brought by the elastic-distortion data-enhancement strategy slightly improved
the MOTA index. However, the more significant effect stemmed from the proposal of the
trajectory-reconstruction module. This module handled both false and missed targets well
in the tracking process. According to Equation (10), it led to a significant improvement in
the MOTA.

Table 5. Effects of using the elastic-distortion data-augmentation strategy and trajectory-
reconstruction module for tracking.

Augment Trajectory Reconstruction IDs ↓ MOTA

- - 30 52.58%√
- 33 52.72%√ √

23 61.78%
↓means the smaller the better.

Figure 10 shows a small segment of the performance of the trajectory reconstruction
module during the tracking process. In comparison, we can find that the target lost in the
30th frame was reconstructed. This module made the trajectory of the target more complete.
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4. Discussion

So-called “big data” approaches are not limited to technical fields because the combi-
nation of large-scale data collection and processing techniques can be applied to various
scientific questions. Meanwhile, it has never been more critical to keep track of biodiversity
than over the past decade, as losses and declines have accelerated with ongoing devel-
opment. However, multiobject tracking is complicated, with experts relying on human
interactions and specialized equipment. While cheap camera sensors have become essential
for capturing wildlife and their movements, they generate enormous amounts of data, and
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have become a prominent research tool for studying nature. Machine- and deep-learning
methods hold promise as efficient tools to scale local studies to a global understanding
of the animal world [38]. However, the detection and tracking of the target animals are
challenging, essentially because the data obtained from wild species are too sparse.

Our deep-learning approach detected and tracked the target animals and produced
spatiotemporal tracks that following multiple objects through few-shot learning to alleviate
instance imbalance and insufficient sample challenges. This study demonstrated how
incorporating track methods, deep learning, and few-shot learning can be a research tool
for studying wild animals. Turning now to its limitations, we note that our approach
heavily relied on the prominent parts’ detection performance, and easily failed to track
infant animals.

5. Conclusions

In this work, we introduced Few-MOT for wildlife to embed uncertainty into design-
ing a multiobject-tracking model by combining the richness of deep neural networks with
few-shot learning, leading to correctable and robust models. The approach systematically
provided a fully automated pipeline framework to integrate the few-shot learning method
with deep neural networks. Instead of a discriminative model, a spatial-constraints model
was created. Furthermore, a trajectory-reconstruction module was also proposed to com-
pensate for the shortcomings of the few-shot object detection. Our model demonstrated the
efficacy of using few-shot architectures for biological application: the automated recogni-
tion and tracking of wildlife. Unlike older, data-rich automation methods, our method was
entirely based on deep learning with few shots. It also improved previous deep-learning
methods by combining few-shot learning with a multiobject-tracking task. It also provided
a rich set of examples by incorporating contextual details of the environment, which can be
valuable for few-shot learning efficiency, especially in wildlife detection and tracking.

The data explosion that has come with the widespread use of camera traps poses
challenges while simultaneously providing opportunities for wildlife monitoring and
conservation [39]. Tracking animals is essential in animal-welfare research, especially
when combined with physical and physiological parameters [40–42]. It is also challenging
to curate datasets large enough to train tracking models. We proposed a deep-learning
framework named Few-MOT to track endangered animals based on a few-shot-learning and
tracking-by-detection paradigm. It could record the daily movements of the target being
tracked, marking areas of frequent activity and other information that could be used for
further analysis. This framework offered a few-shot object detection with spatial constraints
to localize objects and a trajectory-reconstruction module for a better association. The
experimental results showed that our method performed better on the few-shot multiobject-
tracking task. Our new datasets open up many opportunities for further research on
multiobject tracking. There were some limitations to our study, notably that the detector
could detect a nonexistent target in the wrong place when the surroundings were extremely
similar to the target. Future work should investigate how multiple variables, such as the
features of the training dataset and different network architectures, affect performance.
Furthermore, a key driver in the advancement of intelligent video systems for wildlife
conservation will be the increasing availability of datasets for sufficient species, and open-
source datasets should also be proposed in the future.
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Appendix A

Table A1. Results of the same few-shot object detector in our model combined with BYTETrack
tracker on the MOT-EA dataset.

Class IDF1 IDP IDR FP ↓ FN ↓ IDs ↓ MOTA MOTP

Tiger 59.20% 80.8% 46.7% 52 359 1 43.40% 0.189
Golden snub-nosed

monkey 83.70% 97.7% 73.2% 2 89 1 73.50% 0.173

Giant panda 28.70% 36.4% 23.7% 102 385 7 39.10% 0.23
Crested ibis 77.70% 96.9% 64.9% 6 312 1 65.50% 0.255

Brown-eared pheasant 48.20% 70.1% 36.7% 25 594 4 47.80% 0.253

OVERALL 59.50% 76.38% 49.04% 187 1739 14 53.86% 0.22

↓means the smaller the better.

Table A2. Results of the same few-shot object detector in our model combined with SORT tracker on
the MOT-EA dataset.

Class IDF1 IDP IDR FP ↓ FN ↓ IDs ↓ MOTA MOTP

Tiger 28.20% 50.2% 19.6% 25 468 14 30.40% 0.183
Golden snub-nosed

monkey 28.00% 37.9% 22.2% 2 146 14 53.30% 0.174

Giant panda 16.70% 24.9% 12.6% 55 456 21 34.40% 0.214
Crested ibis 30.10% 43.8% 22.9% 1 442 20 49.90% 0.247

Brown-eared pheasant 43.30% 72.0% 31.0% 9 689 16 40.20% 0.237

OVERALL 29.26% 45.76% 21.66% 92 2201 85 41.64% 0.211

↓means the smaller the better.

Table A3. Results of the same few-shot object detector in our model combined with IoU-tracker
tracker on the MOT-EA dataset.

Class IDF1 IDP IDR FP ↓ FN ↓ IDs ↓ MOTA MOTP

Tiger 14.90% 25.4% 10.6% 41 466 47 23.90% 0.197
Golden snub-nosed

monkey 27.30% 32.3% 23.6% 1 94 20 66.90% 0.169

Giant panda 7.70% 10.6% 6.0% 75 424 37 33.90% 0.219
Crested ibis 19.30% 31.0% 14.1% 2 507 50 39.60% 0.251

Brown-eared pheasant 9.50% 19.8% 6.3% 24 839 56 23.00% 0.237

OVERALL 15.70% 23.82% 12.12% 143 2330 210 37.40% 0.215

↓means the smaller the better.

Table A4. Results of the same few-shot object detector in our model combined with V-IoU-tracker
tracker on the MOT-EA dataset.

Class IDF1 IDP IDR FP ↓ FN ↓ IDs ↓ MOTA MOTP

Tiger 44.30% 78.9% 30.8% 0 444 2 38.70% 0.191
Golden snub-nosed

monkey 45.80% 48.4% 43.5% 0 35 3 89.00% 0.172

Giant panda 12.10% 15.9% 9.7% 77 391 14 40.60% 0.22
Crested ibis 45.90% 89.9% 30.8% 1 609 1 33.90% 0.24
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Table A4. Cont.

Class IDF1 IDP IDR FP ↓ FN ↓ IDs ↓ MOTA MOTP

Brown-eared pheasant 44.70% 77.6% 31.4% 2 713 7 39.50% 0.238

OVERALL 38.56% 62.14% 29.24% 80 2192 27 48.34% 0.212

↓means the smaller the better.

Table A5. Results of the YOLOv4 detector combined with DeepSORT tracker on the MOT-EA dataset.

Class IDF1 IDP IDR FP ↓ FN ↓ IDs ↓ MOTA MOTP

Tiger 18.60% 43.4% 11.8% 6 536 17 23.20% 0.233
Golden snub-nosed

monkey 69.40% 80.8% 60.8% 0 86 7 73.20% 0.202

Giant panda 30.90% 41.0% 24.8% 62 383 24 42.20% 0.222
Crested ibis 35.40% 60.3% 25.1% 3 543 5 40.40% 0.213

Brown-eared pheasant 24.70% 59.8% 15.6% 5 888 23 23.30% 0.268

OVERALL 35.80% 57.06% 27.62% 76 2436 76 40.46% 0.227

↓means the smaller the better.

References
1. Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.; Wierstra, D. Matching networks for one shot learning. In Proceedings of

the Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain, 5–10 December 2016; Volume 29.
2. Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for few-shot learning. In Proceedings of the Advances in Neural Information

Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30.
3. Wang, Y.; Yao, Q. Few-shot learning: A survey. arXiv 2019. [CrossRef]
4. Chen, W.-Y.; Liu, Y.-C.; Kira, Z.; Wang, Y.-C.F.; Huang, J.-B. A closer look at few-shot classification. arXiv 2019. [CrossRef]
5. Oreshkin, B.; Rodríguez López, P.; Lacoste, A. Tadam: Task dependent adaptive metric for improved few-shot learning. Adv.

Neural Inf. Processing Syst. 2018, 31, 719–729.
6. Du, Y.; Yan, Y.; Chen, S.; Hua, Y.J.N. Object-adaptive LSTM network for real-time visual tracking with adversarial data augmenta-

tion. Neurocomputing 2020, 384, 67–83. [CrossRef]
7. Wang, Z.; Zheng, L.; Liu, Y.; Li, Y.; Wang, S. Towards real-time multi-object tracking. In Proceedings of the European Conference

on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 107–122.
8. Fan, H.; Ling, H. Siamese cascaded region proposal networks for real-time visual tracking. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7952–7961.
9. Kim, C.; Fuxin, L.; Alotaibi, M.; Rehg, J.M. Discriminative appearance modeling with multi-track pooling for real-time multi-

object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021; pp. 9553–9562.

10. Wang, Q.; Zheng, Y.; Pan, P.; Xu, Y. Multiple object tracking with correlation learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 3876–3886.

11. Pang, J.; Qiu, L.; Li, X.; Chen, H.; Li, Q.; Darrell, T.; Yu, F. Quasi-dense similarity learning for multiple object tracking. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 164–173.

12. Zhang, L.; Li, Y.; Nevatia, R. Global data association for multi-object tracking using network flows. In Proceedings of the 2008
IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.

13. Tang, S.; Andriluka, M.; Andres, B.; Schiele, B. Multiple people tracking by lifted multicut and person re-identification. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3539–3548.

14. Dai, P.; Weng, R.; Choi, W.; Zhang, C.; He, Z.; Ding, W. Learning a proposal classifier for multiple object tracking. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2443–2452.

15. Saleh, F.; Aliakbarian, S.; Rezatofighi, H.; Salzmann, M.; Gould, S. Probabilistic Tracklet Scoring and Inpainting for Multiple
Object Tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021; pp. 14329–14339.

16. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

17. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

18. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018. [CrossRef]
19. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020. [CrossRef]

http://doi.org/10.48550/arXiv.1904.05046
http://doi.org/10.48550/arXiv.1904.04232
http://doi.org/10.1016/j.neucom.2019.12.022
http://doi.org/10.48550/arXiv.1804.02767
http://doi.org/10.48550/arXiv.2004.10934


Animals 2022, 12, 1223 16 of 16

20. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Processing Syst. 2016, 28, 91–99. [CrossRef] [PubMed]

21. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

22. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37.

23. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and real-time tracking. In Proceedings of the 2016 IEEE
International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468.

24. Wojke, N.; Bewley, A.; Paulus, D. Simple online and real-time tracking with a deep association metric. In Proceedings of the 2017
IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649.

25. Feichtenhofer, C.; Pinz, A.; Zisserman, A. Detect to Track and Track to Detect. In Proceedings of the IEEE International Conference
on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3038–3046.

26. Zhu, J.; Yang, H.; Liu, N.; Kim, M.; Zhang, W.; Yang, M.-H. Online multi-object tracking with dual matching attention networks.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 366–382.

27. Son, J.; Baek, M.; Cho, M.; Han, B. Multi-object tracking with quadruplet convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5620–5629.

28. Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jagersand, M. U2-Net: Going deeper with nested U-structure for salient
object detection. Pattern Recognit. 2020, 106, 107404. [CrossRef]

29. Zeng, Y.; Lin, Z.; Lu, H.; Patel, V.M. Cr-fill: Generative image inpainting with auxiliary contextual reconstruction. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 14164–14173.

30. Kang, B.; Liu, Z.; Wang, X.; Yu, F.; Feng, J.; Darrell, T. Few-shot object detection via feature reweighting. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 8420–8429.

31. Mangla, P.; Kumari, N.; Sinha, A.; Singh, M.; Krishnamurthy, B.; Balasubramanian, V.N. Charting the right manifold: Manifold
mixup for few-shot learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass,
CO, USA, 1–5 March 2020; pp. 2218–2227.

32. Bernardin, K.; Stiefelhagen, R. Evaluating multiple object tracking performance: The clear mot metrics. EURASIP J. Image Video
Processing 2008, 2008, 246309. [CrossRef]

33. Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016. [CrossRef]
34. Milan, A.; Leal-Taixé, L.; Reid, I.; Roth, S.; Schindler, K. MOT16: A benchmark for multi-object tracking. arXiv 2016. [CrossRef]
35. Zhang, Y.; Sun, P.; Jiang, Y.; Yu, D.; Yuan, Z.; Luo, P.; Liu, W.; Wang, X. ByteTrack: Multi-Object Tracking by Associating Every

Detection Box. arXiv 2021, 2, 6. [CrossRef]
36. Bochinski, E.; Eiselein, V.; Sikora, T. High-speed tracking-by-detection without using image information. In Proceedings

of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy,
29 August–1 September 2017; pp. 1–6.

37. Bochinski, E.; Senst, T.; Sikora, T. Extending IOU based multi-object tracking by visual information. In Proceedings of the
2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand,
27–30 November 2018; pp. 1–6.

38. Tuia, D.; Kellenberger, B.; Beery, S.; Costelloe, B.R.; Zuffi, S.; Risse, B.; Mathis, A.; Mathis, M.W.; van Langevelde, F.; Burghardt, T.;
et al. Perspectives in machine learning for wildlife conservation. Nat. Commun. 2022, 13, 792. [CrossRef] [PubMed]

39. Feng, J.; Li, J. An Adaptive Embedding Network with Spatial Constraints for the Use of Few-Shot Learning in Endangered-Animal
Detection. ISPRS Int. J. Geo-Inf. 2022, 11, 256. [CrossRef]

40. Hill, S.P.; Broom, D.M. Measuring zoo animal welfare: Theory and practice. Zoo Biol. 2009, 28, 531–544. [CrossRef] [PubMed]
41. Watters, J.; Krebs, B.; Pacheco, E. Measuring welfare through behavioral observation and adjusting it with dynamic environments.

In Scientific Foundations of Zoos and Aquariums: Their Roles in Conservation and Research; Kaufman, A., Bashaw, M., Maples, T., Eds.;
Cambridge University Press: Cambridge, UK, 2019; in press.

42. Skovlund, C.R.; Kirchner, M.K.; Moos, L.W.; Alsted, N.; Manteca, X.; Tallo-Parra, O.; Stelvig, M.; Forkman, B. A critical review of
animal-based welfare indicators for polar bears (Ursus maritimus) in zoos: Identification and evidence of validity. Anim. Welf
2021, 30, 1–18. [CrossRef]

http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1016/j.patcog.2020.107404
http://doi.org/10.1155/2008/246309
http://doi.org/10.48550/arXiv.1605.07146
http://doi.org/10.48550/arXiv.1603.00831
http://doi.org/10.48550/arXiv.2110.06864
http://doi.org/10.1038/s41467-022-27980-y
http://www.ncbi.nlm.nih.gov/pubmed/35140206
http://doi.org/10.3390/ijgi11040256
http://doi.org/10.1002/zoo.20276
http://www.ncbi.nlm.nih.gov/pubmed/19816909
http://doi.org/10.7120/09627286.30.1.001

	Introduction 
	Materials and Methods 
	Architecture Overview 
	Few-Shot Detection Module 
	Learning More Robust Appearance Embedding Based on Few-Shot Learning 
	Association Module 
	Three-Stage Matching 
	Trajectory-Reconstruction Module 


	Results 
	Implementation Details 
	Datasets and Evaluation Metrics 
	Experimental Results 
	Ablation Study and Discussion 

	Discussion 
	Conclusions 
	Appendix A
	References

