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Simple Summary: This study explored the use of mobile phone sensors to accurately classify the
gaits of five-gaited horses. The data were collected from horses and riders using a mobile phone in
the rider’s pocket and an existing multi-sensor gait classification system. A machine learning model
was then trained to classify the gaits using input from the phone’s accelerometer and gyroscope,
achieving an accuracy of 94.4%. This research demonstrates that mobile phones can be used to gather
data on horse gaits, reducing the cost of large-scale studies. This efficient method for acquiring
labelled data will be invaluable for ongoing research into horse riding activities.

Abstract: Automated gait classification has traditionally been studied using horse-mounted sensors.
However, smartphone-based sensors are more accessible, but the performance of gait classification
models using data from such sensors has not been widely known or accessible. In this study, we
performed horse gait classification using deep learning models and data from mobile phone sensors
located in the rider’s pocket. We gathered data from 17 horses and 14 riders. The data were gathered
simultaneously from movement sensors in a mobile phone located in the rider’s pocket and a gait
classification system based on four wearable sensors attached to the horse’s limbs. With this efficient
approach to acquire labelled data, we trained a Bi-LSTM model for gait classification. The only input
to the model was a 50 Hz signal from the phone’s accelerometer and gyroscope that was rotated to
the horse’s frame of reference. We demonstrate that sensor data from mobile phones can be used to
classify the five gaits of the Icelandic horse with up to 94.4% accuracy. The result suggests that horse
riding activities can be studied at a large scale using mobile phones to gather data on gaits. While our
study showed that mobile phone sensors could be effective for gait classification, there are still some
limitations that need to be addressed in future research. For example, further studies could explore
the effects of different riding styles or equipment on gait classification accuracy or investigate ways
to minimize the influence of factors such as phone placement. By addressing these questions, we can
continue to improve our understanding of horse gait and its role in horse riding activities.

Keywords: horse; smartphone sensors; inertial measurement unit; gait classification; machine learning

1. Introduction

Mobile devices have become an accepted part of our everyday lives, and with the
rapid pace of technological progress, their applications are constantly evolving. With so-
phisticated built-in motion sensors, users expect their devices to be able to perform human
activity recognition. However, the devices are not only limited to the classification of human
activities, since they can also be used for animal activity classification. Gait classification has
been implemented in commercial smartphone apps such as Equilab (https://equilab.horse,
accessed on 1 May 2022), which can recognize four gaits (walk, trot, canter, and tölt).
The work of this paper was performed in collaboration with Horseday ehf., who are work-
ing on an app that can perform equine gait classification for five-gaited Icelandic horses,
i.e., it can recognize flying pace in addition to the four other gaits.
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Published work on equine gait classification dates back to the landmark work by
Hildebrand in 1965 [1]. In that work, he described a standard for the task, using variables
derived from limb movements and step placement. Since then, specially designed motion
sensor systems for horses have been used to collect data for gait events and classification.
Such data have been used to predict the timing of hoof contact [2,3], to monitor lameness [4],
to analyse equestrian show jumping and dressage training movements [5], and to detect
indications of fatigue during training [6]. Furthermore, machine learning models using data
from horse-mounted sensors for gait classification have been tested [7], and the accuracy
of the gait classification models on such sensor data reached 97% in a recent study by
Bragança et al. [8]. Furthermore, mobile phone sensors have been shown to have a good
agreement with validated specialist IMUs when both devices are attached to the horse [9].

Moreover, Bragança et al. [8] showed that a long short-term memory (LSTM) model [10]
that received the raw sensor data as the input performed only slightly worse than the model
using Hildebrand’s variables. Similarly, convolutional networks have been used to classify
raw accelerometer data from sensors strapped to the horses [11]. Although the models
reach good accuracy using inputs from horse-mounted sensors, they still require the rider
to explicitly attach sensors to the horse’s limbs and body. This inconvenience leads us
to the question of what accuracy can be reached using wearable human sensors carried
in the rider’s pocket. Studies on three-gaited horses (walk, trot, canter) show that gait
classification can be performed using their sensor recordings [12,13]. However, it is not clear
to what extent this would apply to the five-gaited Icelandic horse using smartphone sensors.

In this paper, we studied the accuracy of gait classification for all five gaits of the
Icelandic horse using models trained on data from mobile phones in the rider’s pocket.
We specifically studied the Icelandic horse, which can perform two additional gaits, tölt
and flying pace, on top of the three standard ones, walk, canter, and trot, due to a gene
mutation [14]. We used the TöltSense (https://toltsense.com, accessed on 1 May 2022)
system (TS) to label the training data. In previous studies, gait labelling was performed
by recording the horse with a camera in a controlled environment and labelling the gait
by watching the recording [8] or by timing gait switches using a stopwatch [13]. The
TS automates the gait labelling process, which makes data acquisition significantly more
accessible. The system further makes the labelling process objective and feasible in a diverse
and natural environment.

Our study aims to answer the following research question: What accuracy of gait
classification for all five gaits of the Icelandic horse can be reached using models trained on
data from mobile phones in the rider’s pocket? Our two objectives were to evaluate the
accuracy of gait classification using the TS system and to evaluate the gait classification
accuracy of models trained using the rotated sensor signals from mobile phones and TS
gait labels. Our hypothesis was that models trained using TS labels and the rotated sensor
signals from mobile phones will perform well in gait classification of Icelandic horses.

2. Materials and Methods

For both the mobile phone sensor model and TöltSense validation studies, the local
Ethics Committee (The Icelandic Food and Veterinary Authority and the Ethics Review
Board at the Royal College of Veterinary Surgeons) waived the need for a formal review and
approval. It was concluded that the study is outwith the European Directive 2010/63/EU
as it does not meet the threshold for causing any pain, distress, suffering or lasting harm.
All the methods in each individual study were carried out in accordance with the approved
guidelines and regulations. Informed consent was obtained from the owner of the animals
and riders in a written manner when needed. Informed consent for publication was
obtained from the rider in Figure 1.

https://toltsense.com
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Figure 1. Data labelling with the TS application. The left panel shows the location of the sensors.
The TöltSense sensors are strapped to the lateral aspect of the metacarpal/metatarsal bone, and the
phone is placed in the rider’s pocket. The right panel shows the data from the mobile sensor after
rotation to a given frame of reference (world-frame) and the gait labels as a horse switches from walk
to tölt. The X and Y curves correspond to variations in the acceleration and gyroscope signal in the
horizontal plane, and the Z curve corresponds to variations on the vertical axis. The sign of the signal
on a given axis corresponds to the direction of the signal on that axis. The highlighted segment shows
an example of the input we used for the Bi-LSTM model.

2.1. The TöltSense System

To acquire labels for our training set, we used the TöltSense system (TS). The TS is
a training tool designed to classify and analyse the quality of Icelandic horse gaits and
provide feedback to the rider in real-time. The system is composed of motion sensors
and a mobile app to report analysis results to the user. The four wireless motion sensors
were attached to the horse’s lower limbs, and they were kept synchronized to within 8ms
of each other. The cross-platform mobile app processes the signals and generates gait
labels (see Figure 1) with up to 99.7% accuracy (see the Results Section). The TS is not
based on machine learning, but on the definitions of the gaits [15] by the International
Federation of Icelandic Horse Associations (FEIF). The TS is based on the principle that a
handcrafted algorithm can determine gaits if the hoof-on and hoof-off timings are measured
with sufficient accuracy.

2.2. Dataset and Labelling—TöltSense Validation

Eight Icelandic horses of varying levels of training and ability were ridden and filmed
while wearing the TS equipment at a horse farm in the U.K. Some of the sessions were
captured during warm-up for an oval track competition in an indoor arena. The rest were
captured during a training day on an oval track.

At the beginning of each session, the press of the TS app’s “START” button was
recorded (see Figure 2). This button press initiated the creation of a log file of gait classifica-
tions and timestamps, and recording it provided a reference point to line up the video with
the TS log. Each video was trimmed to start exactly when the “START” button was pressed
so that the times in the video would correspond to the times in the app log.
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Figure 2. Töltsense interface and an example frame from a video of how the starting event was filmed
with the press of the START button.

A panel of 4 qualified Icelandic sport judges independently suggested gait labels
while watching the videos, using a custom-made web application (see Figure 3). For each
video, a continuous observation window of 4–5 min was defined so as to include as many
transitions and gaits as possible and to avoid judges having to watch unnecessary footage.
At no point were the classifications of the TS revealed to the judges.

Figure 3. The web application used by the judges to assign gait labels to video segments.

A gait was determined every 250 ms by choosing the most-common label suggested
during the given time interval. Such a majority vote was applied throughout the obser-
vation window, and a new data point was created whenever the majority gait changed.
This processing step resulted in a series that defined the gait at any given moment during
the observation window. We refer to this time series as aggregate judge classifications.
An illustration of this time series is shown for a single example in Figure 4, and the speed of
one horse with TS gait labels is shown in Figure 5. The values in the time series correspond
to the gaits according to Table 1.
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Figure 4. Plot of aggregate judge classifications against time, showing initial unclassified period (−1)
and three periods of dispute (−2). The y-axis corresponds to the chosen label as defined in Table 1.

Figure 5. Plot of speed vs. time colour coded by gait from the TöltSense session overview screen.

Table 1. Gait labels used by judges. The table shows the gait labels from the TöltSense system that
the judges used to label the video segments.

TöltSense Label Number

No majority/disputed −2
Not classified −1

Halt 0
Walk 1
Trot 2
Tölt 3

Left Canter 4
Right Canter 5

Pace 6

The category “No majority/disputed” was required because there were occasions
where the judges did not agree on the gait. Mostly, these were brief periods around gait
transitions. However, Icelandic horses often display movements that are “between gaits”
(e.g., pacey tölt, or 4-beat trot), and in these cases, it is not clear which gait is being shown.
If qualified observers do not agree on the gait, there is no ground truth to compare the
TS against, so periods labelled as −2 were excluded from the assessment. “Not classified”
appears once at the very start of each session before any classification has been given; such
periods were also excluded. The other labels are self-explanatory, but note that the left and
right canter are included as separate gaits because it is important to demonstrate that the
TS can distinguish between them.

The TS calculates the gait label every time a hoof-on event is registered from any leg.
Hence, the gait labels are produced at a variable rate from about 4 Hz to 10 Hz, depending
on the horse’s activity. A sliding window of 1 s length with a step of 0.5 s was used to
produce a timeline for analysis. For each window, all gait labels falling within that window
were collected, and the most-frequent gait label was taken and paired with the timestamp
from the middle of the window. The timestamp of the first sample in the log was subtracted
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from all windows, which resulted in a timeline of gaits starting at 0 s and progressing
forward at 0.5 s intervals for the whole session.

With the two time series acquired, the series from the TS should be regarded as the
“predicted value” set, and the series aggregated from the judges is the “true value” set.
For each video, an observation window was defined, where we have both a TS prediction
and the ground truth labels generated by judges. We took the timestamp from the predicted
value and retrieved the ground truth value at that given time to make a prediction–truth
pair, or “test case”.

As mentioned above, when aggregate judge classifications resulted in −2 or −1,
the test case was discarded. In addition, it was appropriate to discard test cases that were
very close to transitions (as defined by the TöltSense or judges). In other words, leeway
should be allowed for both the TS and judges when it comes to identifying and registering
the moment of a transition. There are several reasons for this. First, there was always a
delay between the horse making the transition, the judge recognising the transition has
occurred, and then, again, a delay before the gait button is clicked in the web application.
The TS may already have correctly recorded the transition when the judge clicks the button,
so a false negative will be produced. Second, in cases of momentary loss or the change of
gait (for example, a few steps of trotty tölt in the middle of a section of trot going straight
back to trot), a judge is unlikely to react fast enough to register the gait change. If he/she
does, it is likely to be registered late.

On the other hand, the TS is very likely to register the momentary gait change, and so,
again, a false positive or false negative may be produced. There are also cases where the
human eye (and hand) is quicker to register the gait change than the TS. The main example
is the transition to walk, where the stride frequency is low, and it takes longer for the TS to
build a buffer of steps to analyse as opposed to when going into a fast tölt, for example.
In such cases, the judges may log a transition before the TS does, which results in a false
negative. For these reasons, we applied a 1 s exclusion period for transitions (as identified
by either the TS or the judges) as a fair degree of leeway. Any test cases falling within these
exclusion periods were removed from the analysis.

2.3. Dataset and Labelling—Gait Glassification with a Mobile Phone

The mobile phone sensor data were collected and labelled between May and August
2021 using the TöltSense (TS, https://toltsense.com/, accessed on 1 May 2022) system
(see Figure 1). The data were collected on a horse farm in southern England and across
various horse farms and training centres in Iceland. Seventeen different Icelandic horses
and fourteen different riders were used for the measurements, and the phone was placed
in a pocket on the rider’s clothing, chosen by the rider. The phone location varied between
riders with the phone placed in pockets on either trousers or jackets. The horses were
ridden on different surfaces outdoors, on a track, sandy arena, or a trail. In this manner,
5.8 h of labelled data were collected, which corresponded to thousands of short segments
for each gait.

The sensors from the TS system were attached to the lateral aspect of the metacarpal or
metatarsal bone and set to a sampling frequency of 125 Hz, an acceleration range of ±16 g,
and an angular velocity of 2000 deg/s. The TS system was responsible for synchronization
between sensors and data processing, as well as capturing the phone sensor data into
a log file and appending a gait label to each sample. It performs limb stride parameter
calculations by detecting hoof-on/-off times using a built-in algorithm. The results of these
calculations are then used to generate the gait labels. The TS system outputs 10 different
labels, as can be seen in Table 2. The gait labels were the only data used from the TS system
in this study, and they were generated whenever a hoof struck the ground, which was up to
ten times a second for a fast tölt, i.e., four times per stride with up to 2.5 strides per second.

https://toltsense.com/
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Table 2. Mapping from the TöltSense labels to the ones used in this study.

TöltSense Label Label

Standing Not Used
Walk Walk
Trot Trot
Tölt Tölt

L Canter Canter
R Canter Canter

L Cross Canter Canter
R Cross Canter Canter

Flying Pace Flying Pace

The phone models used for this study were different models of Samsung phones
and iPhones. The data logged from the iPhones were sampled at a 50 Hz rate, whereas
the data from the Samsungs were sampled at a higher rate, ranging from 100–1200 Hz,
depending on the model. The data consisted of measurements from the accelerometer and
gyroscope, which were subsequently rotated to a given frame of reference. One rotation
was to the world-frame using a quaternion generated by the phone. We note that rotating
the movement signal to the world-frame is standard practice and has been suggested by
earlier studies on equine gait analysis [9,16]. Furthermore, such a rotation makes the signal
more interpretable since it isolates acceleration in the vertical axis to a single dimension
in the input signal. However, the world-frame does not give a clear indication of how the
signal is varying in the lateral dimensions with respect to the horse. For that reason, we also
studied a rotation to the horse’s frame of reference. We used the 1 Hz GPS signal to acquire
the horse’s running direction in the x-y plane as an angle in the range [0, 360) by comparing
two consecutive longitude and latitude measurements. To determine the direction, we used
a smoothed version of the horse’s direction in the x-y plane, where we averaged the degree
in which it was moving over a 1 s window. To compute a circular average, we unwrapped
the signal by changing elements that had an absolute difference from their predecessor of
more than 180 degrees to their period-complementary value. After averaging, we wrapped
the signal again to obtain a direction in the range [0, 360). The direction and speed were
obtained using the Android/iOS location APIs.

For the sake of clarity, we note that the model receives six dimensions as the input,
acceleration around the x-, y-, and z-axis and angular velocity along the same axes in the
given frame of reference. We also explored the variations of the input signal, by adding
speed as a dimension in the input signal or only including data from the accelerometer
or gyroscope.

2.4. Pre-Processing of Signals from Mobile Phone Sensors

The data were pre-processed using common libraries for Python: NumPy, Pandas,
and PyTorch. The rides that were sampled at more than 50 Hz were downsampled to
50 Hz. It may be noted that previous results indicate that downsampling to 50 Hz does not
have a large impact on gait classification performance [11] or vertical movement symmetry
measures in trot [17].

We split the data into a training set and a test set to measure generalization perfor-
mance. The test set contained data from four horses that were not observed in the training
set and a rider/horse combination that was not in the training set (see Table 3). We split the
data into segments, as is illustrated with the blue rectangle in Figure 1. When generating
the segments, we selected a segment such that it overlapped with the previous segment
by 90%. We chose a fixed proportional overlap between segments instead of an absolute
segment shift to reduce overfitting when studying longer intervals. For this reason, we had
less training and test data for longer intervals. However, since relatively little flying pace
data were present, we generated segments every 20 milliseconds for the flying pace for
every window size.
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As in the validation of the TS, segments were discarded that were within a 2 s period
of a gait switch (here, a gait switch occurs when the Töltsense labels change) to leave out
periods where the horse is in transition as such transitions might not have a reliable label.
This discarding further eliminated transient labelling errors that may arise due to latency
in the classification from the TS.

The ten labels from the TS system were mapped to a set of five labels representing the
five gaits of the Icelandic horse (Table 2). Note that the cross canter is typically a result of
rider error when transitioning to canter or flying pace (incidentally, pace horses often wear
special over-reach boots to protect against strike injuries made more likely by cross canter).
The two cross canters were mapped to canter, but no examples of it were actually collected
in the training data. The distribution of the gaits in the training set can be seen in Figure 6.

Table 3. Overview of the horses used for the study. The total time of labelled data sums up to 5.4 h.
Note that only the horses in the 2nd, 10th, and 11th row are five-gaited.

Horse No. Location Rides Walk Trot Tölt Canter Flying Pace Total Time

1 England 1 1026 s 212 s 376 s 190 s 0 s 30 min
2 England 2 1488 s 98 s 253 s 39 s 85 s 33 min
3 England 2 767 s 427 s 973 s 154 s 0 s 39 min
4 Iceland 3 470 s 416 s 935 s 42 s 0 s 31 min
5 Iceland 2 394 s 121 s 710 s 0 s 0 s 20 min
6 Iceland 4 1394 s 628 s 2275 s 88 s 0 s 73 min
7 Iceland 2 1319 s 712 s 1161 s 257 s 0 s 57 min
8 Iceland 1 354 s 192 s 496 s 63 s 0 s 18 min
9 Iceland 1 157 s 120 s 212 s 32 s 0 s 8 min

10 Iceland 2 0 s 0 s 0 s 0 s 28 s 0.5 min
11 Iceland 1 0 s 0 s 0 s 0 s 27 s 0.5 min
12 England 1 155 s 55 s 67 s 40 s 0 s 5 min
13 England 1 144 s 0 s 338 s 0 s 0 s 8 min
14 England 1 141 s 90 s 144 s 102 s 0 s 8 min
15 England 1 124 s 61 s 100 s 14 s 0 s 5 min
16 England 1 117 s 41 s 80 s 24 s 0 s 4 min
17 England 1 134 s 80 s 134 s 38 s 0 s 6 min

Figure 6. The distribution of horse gaits in the dataset for 1.5 s segments.

The training set was split into a training and validation with an 85/15 split, and the
samples were shuffled for training. The leave-one-outtest set contained rides from Horse
Nos. 1, 2, 8, 9, and 11 while the rest were used for training. Rides from Subject No. 2
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were used in both sets, but the rides had different riders. However, the rides contained a
different phone model and a different rider.

2.5. The Gait Classification Model

The main model used for gait classification in this study was a recurrent neural
network (RNN), namely, a long short-term memory (LSTM), an architecture widely used
for time series classification and regression tasks [10]. Other similar RNN architectures
were also tested such as a gated recurrent unit (GRU, [18]) and a bidirectional LSTM [19].
A 1-dimensional convolutional neural network was also tested.

The LSTM model contained a single LSTM layer with 200 units; the Bi-LSTM model
had 400 units; the GRU model had 200 units. For the 1-dimensional CNN model, we had
four layers with a kernel size of 3. The layer dilation rates were 12, 8, 4, and 1; the number of
inputs was ni, 16, 32, and 64, where ni is the number of input features used; the number of
outputs was 16, 32, 64, and 128. In all models, the final layer added was a 128-dimensional
linear layer (see Figure 7 for the LSTM model). The models were trained for 20 epochs with
a batch size of 64 using the ADAM optimizer [20] and early stopping monitoring the loss
of the validation set. All models were trained using cross-entropy as the loss function.

Figure 7. The model architecture used in this study.

The model’s input was the output of the mobile sensors rotated to a given frame of
reference where one axis (z) represents the vertical dimension and the others (x and y) rep-
resent the horizontal dimensions. In the world-frame, the horizontal axes correspond to the
south–north and east–west directions. In the horse-frame, they correspond to the front–back
and left–right directions. We also studied the effect of adding speed as an additional input
feature, where the speed was calculated based on the GPS coordinates. The acceleration
signal had three dimensions; the gyroscope signal had three dimensions; the speed signal
had one dimension.

2.6. Smoothing Classifier Output

The model prediction only took in a segment of mobile sensor data and output a
label. Due to the training approach, the model might make mistakes, which can be easily
corrected on sequential data. As an example, because the model is not given its output
for the last segment, it can claim that a horse is performing tölt and then brief walking for
100 milliseconds and then tölt again. Intuitively, horses do not perform such a switch from
one gait to another and back within a 100-millisecond time period.

For this reason, two post-processing methods were used for smoothing the classifier
output that could be applied to the leave-one-outtest datasets since they were in sequential
order. The former method makes use of the linear layer of the network, which outputs a
probability vector of the labels. The vector output of the softmax layer is updated with
respect to the vectors preceding it in time using the exponential weight decay defined as:
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z0 = h0, and zt =
zt−1 + ht

2
. (1)

The vector h denotes the output from the LSTM and z the refined vector after using
exponential decay. This method ameliorates the problem to some extent, but does not fix it
completely. To further refine the result, we applied a majority vote window of size 7, which
we slid over the gaits as determined by the zt vectors (for an illustration, see Figure 8).
Concretely, we define

gt = arg max zt (2)

as the gait chosen at time t through the largest component of zt. We then define g′t as the
most common gait in the set

{gt−3, gt−2, gt−1, gt, gt+1, gt+2, gt+3}

where ties are broken by using gt. The sequence g′t represents the output of our method
after the two post-processing steps.

Figure 8. Sliding window majority vote. Here, gt represents the chosen gait after the first pre-
processing step and g′t represents the chosen gait after the majority vote. MCV is an abbreviation for
“Most-Common Value”, and the curly brackets represent the window on which the most-common
value is selected.

By applying the post-processing step, the prediction depends not only on past predic-
tions, but also on future predictions, smoothing the signal.

2.7. Performance Measures

To measure the performance of the model across all gaits, we used the micro-averaged
classification accuracy defined as

number of correctly classified examples
total number of examples

, (3)

which corresponds to the sum of the diagonal in a confusion matrix divided by the sum of
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all entries. For the accuracy of particular gaits, we report the one-vs.-all accuracy, i.e., where
the classification is viewed as a binary classification problem with the gait in one class and
all other gaits in the other class. We further report the macro-averaged gait classification
accuracy where we averaged single gait classification accuracies over the gaits.

3. Results
3.1. Validation of TöltSense Labels

A total of 4421 one-second windows were generated from the TS logs, which included
179 gait transitions. Excluding cases that were subsequently marked as −2 or −1 and with-
out exclusion periods, 4371 valid test cases were generated. Factoring in transition exclusion
periods reduces the number of valid test cases (see the table below). The accuracy of the TS
predictions was calculated simply as the total number of correct predictions divided by the
total number of valid test cases.

In Table 4, we show how the calculated accuracy varied when we altered the exclusion
period for both judge-identified and TS-identified transitions.

Table 4. Gait classification accuracy for different sizes of exclusion windows.

TS Excl (ms) Judge Excl (ms) Test Cases Accuracy

2000 2000 3358 99.73%
1000 1000 3757 98.86%
1000 0 3909 97.95%

0 1000 3990 96.62%
0 0 4371 93.89%

The exclusion period was varied from 0 s to 2 s, and it was found that the longer the
period, the greater the accuracy was. Without any exclusion periods, the micro-averaged
accuracy was 93.89%, and with 2 s for each, the micro-averaged accuracy was 99.73%.
The gait distribution is shown in Figure 9, and the confusion matrix for the case where both
the TS and judge exclusion period was 1000ms is shown in Figure 10. The confusion matrix
without any exclusion periods is shown in Figure 11.

Figure 9. Distribution of gaits as identified by the judges. We note that pace is under-represented.
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Figure 10. A confusion matrix for the case where both the TS and judge exclusion period was 1000 ms.

Figure 11. A confusion matrix for the case where both the TS and Judge exclusion period was 0 ms.

3.2. Comparing Sequence Models on Mobile Phone Sensor Data

The results of the mobile phone sensor study were based on data collected from
17 horses (see the Methods Section). When comparing sequence models, cross-validation
was used where each horse was left out. For other experiments, we used a separate test
set. Four of the horses were left out from the training data to measure the test performance.
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Since only a few horses were able to perform flying pace, we had one horse both in the
training and test data, but the rider was different in each set.

We compared several models in the gait classification task using cross-validation,
where each horse was left out separately. The micro-averaged classification accuracy,
averaged over the horses, is shown in Table 5. All models had accuracy scores exceeding
90%, with the Bi-LSTM model reaching the highest at 94.4%.

For each horse, detailed results based on the Bi-LSTM model are shown in Table 6.
We observed the highest accuracy for walking at 97%. Canter was at 94%, flying pace at
93%, tölt at 89%, and trot at 82%. However, for four horses, the micro-averaged accuracy
was worse (see the Discussion Section). The model performed well, as we hypothesized.
Specifically, the model did not confuse the gaits of the Icelandic horse, tölt and flying pace.

Table 5. The average micro-averaged gait classification accuracy was computed for each horse using
cross-validation, where the horse was left out for evaluation. The cross-validation was repeated five
times for each model, and the results were averaged.

Model Macro avg.

Bi-LSTM 94.4
GRU 91.2
LSTM 93.3

1D CNN 93.9

Table 6. We performed cross-validation where each horse was left out. For each horse, we ran the
evaluation with five different initializations of the Bi-LSTM model and report the micro average for
each gait. The macro average over all the gaits is 0.91. The amount of training data for each horse can
be found in Table 3.

Horse ID. Walk Trot Tölt Canter Flying Pace Micro avg.

1 1.0 1.0 1.0 1.0 - 1.0
2 0.98 0.72 0.82 1.0 0.87 0.95
3 1.0 0.97 0.99 1.0 - 0.99
4 0.83 0.82 0.96 0.61 - 0.89
5 0.99 0.68 0.94 - - 0.94
6 0.99 0.97 0.99 0.69 - 0.98
7 1.0 0.88 0.92 0.99 - 0.95
8 0.95 0.92 1.0 1.0 - 0.97
9 0.93 0.88 1.0 1.0 - 0.96

10 - - - - 0.95 0.95
11 - - - - 0.9 0.9
12 0.98 0.44 0.74 0.96 - 0.87
13 0.97 0.0 0.98 - - 0.97
14 1.0 1.0 1.0 1.0 - 1.0
15 1.0 0.57 0.61 1.0 - 0.82
16 0.97 0.66 0.5 1.0 - 0.74
17 1.0 0.95 0.93 0.99 - 0.94

Macro avg. 0.97 0.82 0.89 0.94 0.93 0.94

3.3. Using the Horse’s Frame of Reference Improves Classification Performance

Using the world-frame as a frame of reference isolates vertical variations in accelera-
tion to a single axis. However, rotations to the horse-frame can further isolate variations in
acceleration along the left–right axis and the front–back axis. We thus hypothesized that
rotation to the horse-frame could lead to better classification performance. We trained an
LSTM network with 200 units on 1.5 s-long segments of accelerometer and gyroscope mea-
surements from 17 horses (see Table 3 for information about the horses). The distribution
of the collected segments is shown in Figure 6. The dataset was quite imbalanced, but with
the data acquisition approach, we managed to collect thousands of segments for each gait.
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We evaluated the model on data left out from five rides, and it reached an average
accuracy of 96.1% when training on the signal rotated to the horse’s frame of reference (see
Figure 12 for the best run) compared to an average accuracy of 93.9% for a signal rotated to
the world-frame (see Figure 13 for the best run).

Figure 12. Confusion matrix for the gait classification model on the test set with 98.0% accuracy (best
out of 9 random seeds with average accuracy at 96.1% and median accuracy at 95.8%). We use an
input interval of length 1.5 s, where the input signal is aligned to the horse’s frame of reference.

Figure 13. Confusion matrix for the gait classification model on the test set with 96.1% accuracy (best
out of 9 random seeds with average accuracy at 93.9% and median accuracy at 92.7%). We use an
input interval of length 1.5 s, where the input signal is aligned to the world-frame.

3.4. The Model Is Robust to Choice of Interval Length

Achieving a good performance with short intervals or less data can make predictions
more responsive in an interactive environment since the model needs less time to react to
gait changes. For recurrent models such as LSTMs, a shorter input can further reduce the
computational cost of the inference task, which is ideal for mobile devices. For an LSTM
model, the performance does not seem to depend strongly on the interval length in the
range of 0.5–4 s (see Figure 14). The maximum accuracy on the test set was achieved for a
3 s interval, but the mean accuracy was highest for a 4 s interval. For an interval of length
1.5 s, the accuracy of the model averaged around 96% over nine evaluations on the test set
where the model was trained each time using a different random seed. It may be noted
that the variation in the test accuracy also increased with longer intervals. This can to some
extent be attributed to the decreased size of the training and test sets for longer interval
lengths, which leads to larger relative deviations in measures of performance on the test set.



Animals 2023, 13, 183 15 of 20

Figure 14. Accuracy over all gaits for each interval length (in seconds) using a rotation to the horse’s
frame of reference. The blue and red lines show the result of post-processing the classification result
to achieve a higher accuracy score. The shaded area is bounded by the highest and lowest reported
accuracy for each interval after post-processing. The accuracy is averaged over 9 evaluations on the
test set, where the model was trained using a different random seed each time.

3.5. Performance Comparison for Input Signal Variations

We further studied the effect of varying sampling rates and what signals we trained
the model on for 1.5-s intervals when the signals had been rotated to the horse’s frame
of reference. These variations reflect that not all mobile devices have a gyroscope and an
accelerometer and the sampling rates vary significantly. In addition, we studied the effect
that the speed had on the classification performance. The speed was derived from the GPS
data on the phone’s placement and not from the accelerometer. Table 7 shows the result.

Table 7. Classification accuracy on the test set for different signal combinations and rates for 1.5 s
segments and a rotation to the horse-frame with the best performance for each rate in bold. The num-
bers reported are the median micro-averaged accuracy over 9 random seeds (a different random seed
was used each time the model was trained and evaluated on the test set). G stands for Gyroscope
only, A for Accelerometer only and G+A for Gyroscope and Accelerometer.

without Speed with Speed

Rate G A G+A G A G+A

10 Hz 80.8 96.9 92.2 76.7 95.7 91.1
15 Hz 91.4 97.4 96.8 92.4 96.1 96.0
25 Hz 92.3 97.8 97.1 92.5 97.1 96.6
50 Hz 92.6 96.8 96.4 90.7 97.3 95.8

The result suggests that acceleration is the most-important input signal for gait classi-
fication. From the evaluation, we cannot conclude that the addition of gyroscope signals or
speed consistently improved the model accuracy. Since acceleration reflects variations in
speed, the speed signal might not be providing additional information that the model can
benefit from. Furthermore, the speed signal might not be available indoors or in situations
where the GPS is not reliable.

Regarding sampling rates, we did not observe a large drop in performance when they
were lowered with only acceleration as the input. However, we saw a big difference in
performance for 10 Hz and 15 Hz when the input from the gyroscope was used. The perfor-
mance also did not clearly increase with a higher sampling rate, since we observed the best
performance for 25 Hz, but not for 50 Hz.
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4. Discussion

In this article, we presented the gait classification performance of the first phone-based
classifier that recognizes all five gaits of the Icelandic horse, including flying pace. We
showed that the gait classification for five-gaited horses can reach 94.4% accuracy with the
model receiving only raw mobile sensor data from the accelerometer and gyroscope rotated
to the horse-frame based on measurements from the magnetometer and a GPS signal. That
is, specific feature engineering was not required. Instead of labelling the data by hand, we
used a novel efficient approach to label the data by simultaneously collecting data from
smartphones and the TS gait labelling system. That system generates a gait label based on
four IMU sensors attached to a horse’s limbs, and thus, the gait label is based on a signal
for the limb movements. The kind of information that the TS can generate would normally
require an expert eye on the ground or an in-depth frame-by-frame analysis of video. Such
circumstances inevitably incur costs and are restrictive in terms of environment, such as
being confined to a riding hall, or good lighting, or fair weather. Moreover, the volume and
utility of information gathered manually is limited. By contrast, the TS is a cost-effective
way to collect gait labels without any external assistance or environmental restrictions.

Through cross-validation, the method achieved accuracy scores above or equal to 0.9
for all gaits except trot (0.82) and tölt (0.89). In that regard, the most-common confusion in
the model was between tölt and trot. It is conceivable that more training data from different
horses and riders would improve the performance on trot since the performance on the
training set was better than on the test set, which can indicate mild overfitting.

Tölt is characterized by a four-beat gait in which the horse lifts its hooves off the ground
in a diagonal sequence. It has half-suspension in both the front and hind. In contrast, trot is
a two-beat gait in which the horse lifts its hooves off the ground in a diagonal sequence,
but with a moment of suspension. Tölt is considered to be the gait between trot and flying
pace. We note that tölt can be ridden at different variations, speeds, and quality [15], some
of which can be hard to differentiate from trot. Experienced human observers might even
disagree on trotty tölt and tölty trot, especially at higher speeds, where they might be
harder to tell apart [21]. Furthermore, trot can be ridden using three main riding techniques:
sitting, rising, and a two-point seat where the rider stands in the stirrups. These techniques
influence how the rider moves along with the horse, and they can also influence the horse’s
motion pattern [22]. We speculate that different riding techniques could make the mobile
sensor movements more similar to other gaits. Together, these differences might explain the
confusion in the model. To improve the performance of models relying on mobile phone
sensors, it could be worthwhile to study whether different combinations of riding styles
and gaits can be distinguished in mobile sensor recordings.

On the test set, the model reached a median classification accuracy of 96.9% with
sampling rates down to 10 Hz. We observed a higher accuracy for 25 Hz signals than
50 Hz signals when comparing signal combinations. In principle, performance can in-
crease by lowering the sampling rate since it translates to shorter input sequences for
the model. A recurrent neural network such as an LSTM model might handle shorter
inputs better [23,24]. However, lowering the sampling rate too much can cause the signal
to contain less information about the underlying gait, which possibly explains the perfor-
mance drop for the 15 Hz and 10 Hz signals. When exploring signal combinations, we also
observed that speed did not lead to improved accuracy, in agreement with prior work [8].

To ensure the reliability of our measurements with respect to TS labels, we further
validated TS accuracy in a separate study. We demonstrated a very high level of agreement
between the TS and qualified sport judges when classifying the gait of Icelandic horses.
The use of exclusion periods around transitions can take the agreement to over 99%, but the
agreement was around 94% even without any exclusion. We earlier framed this in terms of
“accuracy” by considering the judge classifications as the ground truth. In reality, we are
assessing the agreement between two different measuring approaches, and it is valid to
question whether the TS is more accurate than human observers in some circumstances.
There are often areas where the judges disagree about the gait. For example, a very pacey
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tölt coming out of canter may be classed as pace by some and tölt by others. There are
also cases on the boundary between walk and tölt and between tölt and trot. It may be
interesting to analyse these disagreements as a project in itself. The main shortcoming of
the validation study is the lack of flying pace segments.

We acknowledge that this study is limited to Icelandic horses. However, the methods
we have applied to collect the data can be used to collect data for a large population of
different horse breeds in diverse environments using various wearable sensors. More test
data would further allow us to better measure the generalization performance. That would
be especially beneficial for flying pace, the gait for which we had the fewest measure-
ments [25]. To improve the results further, we note that it is known that sensor placement
can affect model performance [9,26], and we hypothesize that phone placement could have
an effect, which would explain the worse classification performance for some horse–rider
pairs. We speculate that our results could be improved by making sure that factors such
as the phone’s placement, phone model, riding surface, and clothing (loose vs. tight) are
standardized. To mitigate the phone’s placement problem, a model could be trained that
takes the placement into account, which could improve overall performance. Furthermore,
to improve the user experience of an app, a model could be trained to automatically infer
the phone’s placement (and possibly even the type of riding surface) such that a user
would not need to assign it himself/herself. Further improvements could be achieved with
better mobile phone sensors. For example, we used a 1Hz GPS signal to estimate direction,
but a higher sampling rate could allow for more detailed estimates of direction and other
important parameters. For example, Pfau et al. managed to estimate essential stride pa-
rameters using a 10 Hz GPS signal [27]. Another improvement could be achieved by using
several mobile sensors, such as jointly from a smartwatch and a smartphone. Estimating
speed has been shown to be better with more than a single horse-mounted sensor [28],
and it thus is reasonable to ask whether several human-attached sensors improve gait
classification performance.

Recordings based on mobile phones open up a variety of possibilities in horse-related
activity tasks. For example, it makes it feasible to study horse behaviour at a large scale
through volunteer participation. Such data can be used to classify horses, define pheno-
types, and possibly relate their behaviour to genomic data. Furthermore, data obtained
from mobile phone sensors have been used for lameness detection [9,29], but such stud-
ies could benefit from the labelling approach we used here. Sensors attached to a horse
have been used to identify lameness [30–32], and commercial products have been devel-
oped for that task (see, for example, https://equisense.com/ accessed on 1 May 2022 and
https://equinosis.com/ accessed on 1 May 2022).

Traditionally, the human eye has been considered the gold standard for gait classifica-
tion. Bragança et al. [8] claimed based on their results that human visual and subjective
assessment is not optimal. Furthermore, results on lameness detection using human ob-
servers have reported low intraobserver agreement [33,34]. Therefore, when models can
exceed human performance for tasks such as lameness detection, then they will possi-
bly be better suited for data labelling. Similar to our labelling approach, data could be
captured simultaneously from mobile phone sensors attached to the horse and a label
from a well-performing model (we acknowledge that commercial products can be difficult
to trust due to too rarely disclosed accuracies). That dataset can then be used to train
a model for lameness detection. Alternatively, there is also the possibility of applying
unsupervised approaches such as anomaly detection methods to detect unusual recordings
at a large scale.

5. Conclusions

In this paper, we investigated the feasibility of using mobile phone sensors for gait
classification in Icelandic horses, a breed known for its ability to perform five gaits: walk,
trot, canter, tölt, and flying pace. We used the TöltSense (TS) system to label our training
data and evaluated the accuracy of different machine learning models on these data. Our

https://equisense.com/
https://equinosis.com/
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results showed that it is possible to achieve high accuracy in gait classification using mobile
phone sensors, with the best-performing model reaching an accuracy of 94.4%.

These findings have significant implications for the field of gait classification. Mobile
phones are widely available and portable devices that are often carried by individuals,
making them a convenient and accessible option for gait classification. Our results suggest
that mobile phone sensors can be used as a reliable alternative to sensors attached to
the animal, offering a more practical and convenient solution for gait classification in
certain contexts.

However, it is important to note that the accuracy of gait classification can be influ-
enced by various factors, such as the environment in which the data are collected and the
quality of the sensors. Further research is needed to fully understand the limitations and
potential of mobile phone sensors for gait classification in different contexts and with
different types of animals.

In conclusion, our study demonstrated the feasibility of using mobile phone sensors
for gait classification in Icelandic horses, offering a convenient and accessible alternative
to traditional methods. These findings have the potential to broaden the scope of gait
classification research and to facilitate the development of mobile-phone-based applications
for gait classification.
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