Pre-Ride Biomarkers and Endurance Horse Welfare: Analyzing the Impact of the Elimination of Superoxide Dismutase, δ-Aminolevulinic-Dehydratase, Thiobarbituric Acid Reactive Substances, Iron, and Serum Amyloid A Levels in Elite 160 km Endurance Rides
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Methods—Animals
2.2. Materials and Methods—Sampling
2.3. Materials and Methods—Blood Chemical Analysis
2.4. Material and Methods—SOD, TBARS, SAA, Iron, and ALAD Evaluations
2.5. Material and Methods—Statistical Analysis
2.6. Limitations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuckson, P. Exhausted Winner Provokes New Endurance Controversy. 2018. Available online: https://horse-canada.com/horse-news/exhausted-winner-provokes-new-endurance-controversy/ (accessed on 11 April 2023).
- Cuckson, P. FEI Aims for More Transparency Over Endurance Horse Deaths. 2017. Available online: https://horse-canada.com/horse-news/fei-transparency-endurance-horse-deaths/ (accessed on 11 April 2023).
- Balch, O.; Habing, G.; Schott, H., II. Fatalities Associated with American Endurance Ride Conference Sanctioned Endurance Rides (2002–2013). Equine Vet. J. 2014, 46, 11. [Google Scholar] [CrossRef]
- FEI Endurance Reports and Statistics. 2017. Available online: https://inside.fei.org/fei/disc/endurance/report-stats (accessed on 11 April 2023).
- EQUISPORT. Three More Hidden Deaths in UAE Endurance|EQUISPORT. 2017. Available online: https://www.equisport.pt/en/news/three-more-hidden-deaths-in-uae-endurance/ (accessed on 11 April 2023).
- SGI. Statement on Equine Fatality-FEI World Equestrian Games™ Tryon 2018. 2018. Available online: https://inside.fei.org/news/statement-equine-fatality-fei-world-equestrian-games%E2%84%A2-tryon-2018 (accessed on 11 April 2023).
- Di Battista, C.; Conte, M.; Pepe, M.; Petrizzi, L.; Beccati, F. Epidemiology and risk factors for eliminations from Fédération Equestre Internationale endurance rides between 2004–2015 in Italy. Prev. Vet. Med. 2019, 170, 104737. [Google Scholar] [CrossRef]
- Cywinska, A.; Gorecka, R.; Szarska, E.; Witkowski, L.; Dziekan, P.; Schollenberger, A. Serum amyloid A level as a potential indicator of the status of endurance horses. Equine Vet. J. Suppl. 2010, 42, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Machefer, G.; Groussard, C.; Rannou-Bekono, F.; Zouhal, H.; Faure, H.; Vincent, S.; Cillard, J.; Gratas-Delamarche, A. Extreme running competition decreases blood antioxidant defense capacity. J. Am. Coll. Nutr. 2004, 23, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Larsson, J.; Pilborg, P.H.; Johansen, M.; Christophersen, M.T.; Holte, A.; Roepstorff, L.; Olsen, L.H.; Harrison, A.P. Physiological Parameters of Endurance Horses Pre- Compared to Post-Race, Correlated with Performance: A Two Race Study from Scandinavia. ISRN Vet. Sci. 2013, 2013, 684353. [Google Scholar] [CrossRef]
- Ono, K.; Inui, K.; Hasegawa, T.; Matsuki, N.; Watanabe, H.; Takagi, S.; Hasegawa, A.; Tomoda, I. The changes of antioxidative enzyme activities in equine erythrocytes following exercise. Nihon Juigaku Zasshi 1990, 52, 759–765. [Google Scholar] [CrossRef]
- Banerjee, A.K.; Mandal, A.; Chanda, D.; Chakraborti, S. Oxidant, antioxidant and physical exercise. Mol. Cell. Biochem. 2003, 253, 307–312. [Google Scholar] [CrossRef]
- Williams, C.A. The effect of oxidative stress during exercise in the horse. J. Anim. Sci. 2016, 94, 4067–4075. [Google Scholar] [CrossRef]
- Sjödin, B.; Westing, Y.H.; Apple, F.S. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med. 1990, 10, 236–254. [Google Scholar] [CrossRef]
- White, S.H.; Warren, L.K. Submaximal exercise training, more than dietary selenium supplementation, improves antioxidant status and ameliorates exercise-induced oxidative damage to skeletal muscle in young equine athletes. J. Anim. Sci. 2017, 95, 657–670. [Google Scholar] [CrossRef]
- Ceci, R.; Duranti, G.; Di Filippo, E.S.; Bondi, D.; Verratti, V.; Doria, C.; Caporossi, D.; Sabatini, S.; Dimauro, I.; Pietrangelo, T. Endurance training improves plasma superoxide dismutase activity in healthy elderly. Mech. Ageing Dev. 2020, 185, 111190. [Google Scholar] [CrossRef] [PubMed]
- Hitomi, Y.; Watanabe, S.; Kizaki, T.; Sakurai, T.; Takemasa, T.; Haga, S.; Ookawara, T.; Suzuki, K.; Ohno, H. Acute exercise increases expression of extracellular superoxide dismutase in skeletal muscle and the aorta. Redox Rep. 2008, 13, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Ott, E.C.; Cavinder, C.A.; Wang, S.; Smith, T.; Lemley, C.O.; Dinh, T.T.N. Oxidative stress biomarkers and free amino acid concentrations in the blood plasma of moderately exercised horses indicate adaptive response to prolonged exercise training. J. Anim. Sci. 2022, 100, skac086. [Google Scholar] [CrossRef] [PubMed]
- Marlin, D.J.; Fenn, K.; Smith, N.; Deaton, C.D.; Roberts, C.A.; Harris, P.A.; Dunster, C.; Kelly, F.J. Changes in Circulatory Antioxidant Status in Horses during Prolonged Exercise. J. Nutr. 2002, 132, 1622S–1627S. [Google Scholar] [CrossRef] [PubMed]
- Fraipont, A.; Van Erck, E.; Ramery, E.; Richard, E.; Denoix, J.-M.; Lekeux, P.; Art, T. Subclinical diseases underlying poor performance in endurance horses: Diagnostic methods and predictive tests. Vet. Rec. 2011, 169, 154. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, B.J.; Kronfeld, D.S.; Lopes, M.A.; Gay, L.S.; Cooper, W.L.; Waldron, J.N.; Saker, K.E.; Sklan, D.J.; Harris, P.A. Antioxidant status of horses during two 80-km endurance races. J. Nutr. 2002, 132, 1781S–1783S. [Google Scholar] [CrossRef]
- Hargreaves, B.J.; Kronfeld, D.S.; Waldron, J.N.; Lopes, M.A.; Gay, L.S.; Saker, K.E.; Cooper, W.L.; Sklan, D.J.; Harris, P.A. Antioxidant status and muscle cell leakage during endurance exercise. Equine Vet. J. Suppl. 2010, 34, 116–121. [Google Scholar] [CrossRef]
- Kinnunen, S.; Atalay, M.; Hyyppä, S.; Lehmuskero, A.; Hänninen, O.; Oksala, N. Effects of prolonged exercise on oxidative stress and antioxidant defense in endurance horse. J. Sports Sci. Med. 2005, 4, 415–421. [Google Scholar]
- Holbrook, T.C.; McFarlane, D.; Schott, H.C. Neuroendocrine and non-neuroendocrine markers of inflammation associated with performance in endurance horses. Equine Vet. J. Suppl. 2010, 42, 123–128. [Google Scholar] [CrossRef]
- Shemin, D.; Russell, C.S. δ-Aminolevulinic Acid, its role in the biosynthesis of porphyrins and purines. J. Am. Chem. Soc. 1953, 75, 4873–4874. [Google Scholar] [CrossRef]
- Bernard, A.; Lauwerys, R. Metal-induced alterations of delta-aminolevulinic acid dehydratase. Ann. N. Y. Acad. Sci. 1987, 514, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Chiba, M.; Kikuchi, M. Aging and activity of 5-aminolevulinate hydrolyase in the blood of humans and rats. Sangyo Igaku 1976, 18, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Hirano, H.; Omichi, M.; Ohishi, H.; Ishikawa, K. Delta-aminolevulinic acid dehydratase (ALAD) activity in red blood cells in different ages (2nd report). An elucidation of the factors decreasing ALAD activity by aging of rabbit’s red blood cells. Sangyo Igaku. 1983, 25, 503–509. [Google Scholar] [CrossRef]
- Meredith, P.A.; Moore, M.R.; Goldberg, A. Erythrocyte delta-aminolaevulinic acid dehydratase activity and blood protoporphyrin concentrations as indices of lead exposure and altered haem biosynthesis. Clin. Sci. 1979, 56, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, D.; Kudo, H.; Inohaya, K.; Yokoi, H.; Narita, T.; Naruse, K.; Mitani, H.; Araki, K.; Shima, A.; Ishikawa, Y.; et al. A mutation in the gene for delta-aminolevulinic acid dehydratase (ALAD) causes hypochromic anemia in the medaka, Oryzias latipes. Mech. Dev. 2004, 121, 747–752. [Google Scholar] [CrossRef]
- Golding, J.P.; Kemp-Symonds, J.G.; Dobson, J.M. Glycolysis inhibition improves photodynamic therapy response rates for equine sarcoids. Vet. Comp. Oncol. 2017, 15, 1543–1552. [Google Scholar] [CrossRef]
- de Moraes Meine, B.; Franceschi, T.S.; Bona, N.P.; Spohr, L.; Pedra, N.S.; Spanevello, R.M.; de Aguiar, M.S.S.; Stefanello, F.M. Chemical hypermethioninemia in young mice: Oxidative damage and reduction of antioxidant enzyme activity in brain, kidney, and liver. Metab. Brain Dis. 2022, 38, 223–232. [Google Scholar] [CrossRef]
- Kirschvink, N.; de Moffarts, B.; Farnir, F.; Pincemail, J.; Lekeux, P. Investigation of blood oxidant/antioxidant markers in healthy competition horses of different breeds. Equine Vet. J. Suppl. 2006, 38, 239–244. [Google Scholar] [CrossRef]
- de Moffarts, B.; Kirschvink, N.; Art, T.; Pincemail, J.; Lekeux, P. Effect of oral antioxidant supplementation on blood antioxidant status in trained thoroughbred horses. Vet. J. 2005, 169, 65–74. [Google Scholar] [CrossRef]
- Górecka, R.; Sitarska, E.; Kluciński, W. Antioxidant parameters of horses according to age, sex, breed and environment. Pol. J. Vet. Sci. 2002, 5, 209–216. [Google Scholar]
- Kurhaluk, N.; Lukash, O.; Tkachenko, H. Photoperiod-dependent changes in oxidative stress markers in the blood of Shetland pony mares and stallions involved in recreational horseback riding. Chronobiol. Int. 2022, 39, 1419–1434. [Google Scholar] [CrossRef] [PubMed]
- Bażanów, B.A.; Chełmecka, E.; Romuk, E.; Stygar, D.M. Basic Studies on the Oxidative Stress Markers in Two Types of Horse Breed: Semi-isolated Population of Huculs Is Different from Commercially Used Arabian Horses. Biomed Res. Int. 2020, 2020, 7542384. [Google Scholar] [CrossRef] [PubMed]
- Notin, C.; Vallon, L.; Desbordes, F.; Leleu, C. Oral supplementation with superoxide dismutase in Standardbred trotters in training: A double-blind placebo-controlled study. Equine Vet. J. Suppl. 2010, 42, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Mélo, S.K.M.; Diniz, A.I.A.; de Lira, V.L.; De Oliveira Muniz, S.K.; da Silva, G.R.; Manso, H.E.; Manso Filho, H.C. Antioxidant and haematological biomarkers in different groups of horses supplemented with polyunsaturated oil and vitamin E. J. Anim. Physiol. Anim. Nutr. 2016, 100, 852–859. [Google Scholar] [CrossRef]
- Shirvani, H.; Bazgir, B.; Shamsoddini, A.; Saeidi, A.; Tayebi, S.M.; Escobar, K.A.; Laher, I.; VanDusseldorp, T.A.; Weiss, K.; Knechtle, B.; et al. Oregano (Origanum vulgare) Consumption Reduces Oxidative Stress and Markers of Muscle Damage after Combat Readiness Tests in Soldiers. Nutrients 2022, 15, 137. [Google Scholar] [CrossRef]
- Soares, M.S.P.; Oliveira, P.S.; Debom, G.N.; da Silveira Mattos, B.; Polachini, C.R.; Baldissarelli, J.; Morsch, V.M.; Schetinger, M.R.C.; Tavares, R.G.; Stefanello, F.M.; et al. Chronic administration of methionine and/or methionine sulfoxide alters oxidative stress parameters and ALA-D activity in liver and kidney of young rats. Amino Acids 2016, 49, 129–138. [Google Scholar] [CrossRef]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2010, 73, 3–36. [Google Scholar] [CrossRef]
- Textor, J.; van der Zander, B.; Gilthorpe, M.S.; Liśkiewicz, M.; Ellison, G.T. Robust causal inference using directed acyclic graphs: The R package ‘dagitty’. Int. J. Epidemiol. 2017, 45, 1887–1894. [Google Scholar] [CrossRef]
- Nagy, A.; Murray, J.; Dyson, S.J. Horse-, rider-, venue- and environment-related risk factors for elimination from Fédération Equestre Internationale endurance rides due to lameness and metabolic reasons. Equine Vet. J. 2013, 46, 294–299. [Google Scholar] [CrossRef]
- FEI Championships in Endurance-Past Editions. 2012. Available online: https://inside.fei.org/fei/events/championships/endurance-past (accessed on 11 April 2023).
- Jacobsen, S.; Andersen, P.H. The acute phase protein serum amyloid A (SAA) as a marker of inflammation in horses. Equine Vet. Educ. 2010, 19, 38–46. [Google Scholar] [CrossRef]
- Cywińska, A.; Szarska, E.; Górecka, R.; Witkowski, L.; Hecold, M.; Bereznowski, A.; Schollenberger, A.; Winnicka, A. Acute phase protein concentrations after limited distance and long distance endurance rides in horses. Res. Vet. Sci. 2012, 93, 1402–1406. [Google Scholar] [CrossRef] [PubMed]
- Cywińska, A.; Witkowski, L.; Szarska, E.; Schollenberger, A.; Winnicka, A. Serum amyloid A (SAA) concentration after training sessions in Arabian race and endurance horses. BMC Vet. Res. 2013, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Witkowska-Piłaszewicz, O.; Bąska, P.; Czopowicz, M.; Żmigrodzka, M.; Szczepaniak, J.; Szarska, E.; Winnicka, A.; Cywińska, A. Changes in Serum Amyloid A (SAA) Concentration in Arabian Endurance Horses During First Training Season. Animals 2019, 9, 330. [Google Scholar] [CrossRef]
- Witkowska-Piłaszewicz, O.; Bąska, P.; Czopowicz, M.; Żmigrodzka, M.; Szarska, E.; Szczepaniak, J.; Nowak, Z.; Winnicka, A.; Cywińska, A. Anti-Inflammatory State in Arabian Horses Introduced to the Endurance Training. Animals 2019, 9, 616. [Google Scholar] [CrossRef] [PubMed]
- Witkowska-Piłaszewicz, O.; Pingwara, R.; Winnicka, A. The Effect of Physical Training on Peripheral Blood Mononuclear Cell Ex Vivo Proliferation, Differentiation, Activity, and Reactive Oxygen Species Production in Racehorses. Antioxidants 2020, 9, 1155. [Google Scholar] [CrossRef] [PubMed]
- Mattusch, F.; Dufaux, B.; Heine, O.; Mertens, I.; Rost, R. Reduction of the plasma concentration of C-reactive protein following nine months of endurance training. Int. J. Sports Med. 2000, 21, 21–24. [Google Scholar] [CrossRef] [PubMed]
- FEI. FEI 2016 World Endurance Championships Qualification Criteria. 2016. Available online: https://inside.fei.org/system/files/QualCrit_Samorin_CH-M-E%202016_0.pdf (accessed on 11 April 2023).
- Robert, C.; Goachet, A.; Fraipont, A.; Votion, D.; Van Erck, E.; Leclerc, J. Hydration and electrolyte balance in horses during an endurance season. Equine Vet. J. Suppl. 2010, 42, 98–104. [Google Scholar] [CrossRef]
- McKeever, K.H.; Schurg, W.A.; Jarrett, S.H.; Convertino, V.A. Exercise training-induced hypervolemia in the horse. Med. Sci. Sport. Exerc. 1987, 19, 21–27. [Google Scholar] [CrossRef]
- Bollinger, L.; Bartel, A.; Küper, A.; Weber, C.; Gehlen, H. Age and Hydration of Competing Horses Influence the Outcome of Elite 160 km Endurance Rides. Front. Vet. Sci. 2021, 8, 668650. [Google Scholar] [CrossRef]
- Foreman, J.H. The Exhausted Horse Syndrome. Vet. Clin. N. Am. Equine Pract. 1998, 14, 205–219. [Google Scholar] [CrossRef]
- Padalino, B.; Raidal, S.L.; Carter, N.; Celi, P.; Muscatello, G.; Jeffcott, L.; de Silva, K. Immunological, clinical, haematological and oxidative responses to long distance transportation in horses. Res. Vet. Sci. 2017, 115, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Don, B.R.; Kaysen, G. Serum albumin: Relationship to inflammation and nutrition. Semin. Dial. 2004, 17, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Crisman, M.V.; Scarratt, W.K.; Zimmerman, K.L. Blood proteins and inflammation in the horse. Vet. Clin. N. Am. Equine Pract. 2008, 24, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Rose, R.J.; Purdue, R.A.; Hensley, W. Plasma biochemistry alterations in horses during an endurance ride. Equine Vet. J. 1977, 9, 122–126. [Google Scholar] [CrossRef]
- Assunção, P.; Barbosa, T.; Yonezawa, L.; Barbosa, L.; Watanabe, M.; Kohayagawa, A.; Schmidt, E. Acute-phase protein profile in horses subjected to different exercise protocols. Can. J. Vet. Res. 2019, 83, 272–278. [Google Scholar]
- Osbaldiston, G.W.; Griffith, P.R. Serum iron levels in normal and anemic horses. Can. Vet. J. La Rev. Vet. Can. 1972, 13, 105–108. [Google Scholar]
- DellaValle, D.M. Iron supplementation for female athletes: Effects on iron status and performance outcomes. Curr. Sports Med. Rep. 2013, 12, 234–239. [Google Scholar] [CrossRef]
- Clénin, G.; Cordes, M.; Huber, A.; Schumacher, Y.O.; Noack, P.; Scales, J.; Kriemler, S. Iron deficiency in sports–definition, influence on performance and therapy. Swiss Med. Wkly. 2015, 145, w14196. [Google Scholar] [CrossRef]
- Zoller, H.; Vogel, W. Iron supplementation in athletes—First do no harm. Nutrition 2004, 20, 615–619. [Google Scholar] [CrossRef]
- Smith, J.E.; Cipriano, J.E.; Debowes, R.; Moore, K. Iron deficiency and pseudo-iron deficiency in hospitalized horses. J. Am. Vet. Med. Assoc. 1986, 188, 285–287. [Google Scholar]
- Kristensen, L.; Buhl, R.; Nostell, K.; Bak, L.; Petersen, E.; Lindholm, M.; Jacobsen, S. Acute exercise does not induce an acute phase response (APR) in Standardbred trotters. Can. J. Vet. Res. 2014, 78, 97–102. [Google Scholar] [PubMed]
- Inoue, Y.; Matsui, A.; Asai, Y.; Aoki, F.; Matsui, T.; Yano, H. Effect of Exercise on Iron Metabolism in Horses. Biol. Trace Elem. Res. 2005, 107, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Kłapcińska, B.; Waśkiewicz, Z.; Chrapusta, S.J.; Sadowska-Krępa, E.; Czuba, M.; Langfort, J. Metabolic responses to a 48-h ultra-marathon run in middle-aged male amateur runners. Eur. J. Appl. Physiol. 2013, 113, 2781–2793. [Google Scholar] [CrossRef] [PubMed]
- Brommer, H.; Van Oldruitenborgh-Oosterbaan, M.M.S. Iron Deficiency in Stabled Dutch Warmblood Foals. J. Vet. Intern. Med. 2001, 15, 482–485. [Google Scholar] [CrossRef]
- Smith, J.E.; Cipriano, J.E. Inflammation-induced Changes in Serum Iron Analytes and Ceruloplasmin of Shetland Ponies. Vet. Pathol. 1987, 24, 354–356. [Google Scholar] [CrossRef]
- Brosnahan, M.; Erb, H.; Perkins, G.; Divers, T.; Borges, A.; Osterrieder, N. Serum iron parameters and acute experimental EHV-1 infection in horses. J. Vet. Intern. Med. 2012, 26, 1232–1235. [Google Scholar] [CrossRef]
- Borges, A.S.; Divers, T.J.; Stokol, T.; Mohammed, O.H. Serum Iron and Plasma Fibrinogen Concentrations as Indicators of Systemic Inflammatory Diseases in Horses. J. Vet. Int. Med. 2007, 21, 489–494. [Google Scholar] [CrossRef]
- Mills, P.C.; Smith, N.C.; Casas, I.; Harris, P.; Harris, R.C.; Marlin, D.J. Effects of exercise intensity and environmental stress on indices of oxidative stress and iron homeostasis during exercise in the horse. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 74, 60–66. [Google Scholar] [CrossRef]
- Mullaney, T.P.; Brown, C.M. Iron toxicity in neonatal foals. Equine Vet. J. 1988, 20, 119–124. [Google Scholar] [CrossRef]
- Pearson, E.G.; Andreasen, C.B. Effect of oral administration of excessive iron in adult ponies. J. Am. Vet. Med. Assoc. 2001, 218, 400–404. [Google Scholar] [CrossRef]
- Fielding, C.L.; Meier, C.A.; Balch, O.K.; Kass, P.H. Risk factors for the elimination of endurance horses from competition. J. Am. Vet. Med. Assoc. 2011, 239, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Trigo, P.; Castejon, F.; Riber, C.; Muñoz, A. Use of biochemical parameters to predict metabolic elimination in endurance rides. Equine Vet. J. Suppl. 2010, 42, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Bennet, E.; Parkin, T. Fédération Equestre Internationale (FEI) endurance events: Riding speeds as a risk factor for failure to qualify outcomes (2012–2015). Vet. J. 2018, 236, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Bennet, E.; Parkin, T. Fédération Equestre Internationale endurance events: Risk factors for failure to qualify outcomes at the level of the horse, ride and rider (2010–2015). Vet. J. 2018, 236, 44–48. [Google Scholar] [CrossRef]
- Marlin, D.; Williams, J. Equine Endurance Race Pacing Strategy and Performance in 120-km Single-Day Races. J. Equine Vet. Sci. 2018, 67, 87–90. [Google Scholar] [CrossRef]
- Gonçalves, T.L.; Benvegnú, D.M.; Bonfanti, G.; Frediani, A.V.; Rocha, J.B.T. δ-ALA-D activity is a reliable marker for oxidative stress in bone marrow transplant patients. BMC Cancer 2009, 9, 138. [Google Scholar] [CrossRef]
- de Lucca, L.; Rodrigues, F.; Jantsch, L.B.; Kober, H.; Neme, W.S.; Gallarreta, F.M.; Gonçalves, T.L. Delta-aminolevulinate dehydratase activity and oxidative stress markers in preeclampsia. Biomed. Pharmacother. 2016, 84, 224–229. [Google Scholar] [CrossRef]
- Balogh, N.; Gaál, T.; Ribiczeyné, P.S.; Petri, A. Biochemical and antioxidant changes in plasma and erythrocytes of pentathlon horses before and after exercise. Vet. Clin. Pathol. 2001, 30, 214–218. [Google Scholar] [CrossRef]
- Ferraresso, R.L.P.; De Oliveira, R.B.; Macedo, D.V.; Nunes, L.A.S.; Brenzikofer, R.; Damas, D.; Hohl, R. Interaction between overtraining and the interindividual variability may (not) trigger muscle oxidative stress and cardiomyocyte apoptosis in rats. Oxidative Med. Cell. Longev. 2012, 2012, 935483. [Google Scholar] [CrossRef]
Finished | Lameness | Metabolic | Missing | |||
---|---|---|---|---|---|---|
n | 18 | 20 | 11 | |||
Sex (%) | ||||||
Male | 8 (44.4) | 11 (55.0) | 7 (63.6) | 0% | ||
Female | 10 (55.6) | 9 (45.0) | 4 (36.4) | |||
Age (median [range]) | years | 12.0 [9.0, 16.0] | 11.0 [8.0, 17.0] | 11.0 [8.0, 17.0] | 0% | |
Weight (median [range]) | kg | 405.0 [345.0, 440.0] | 402.0 [350.0, 450.0] | 408.0 [380.0, 450.0] | 0% | |
Time between blood sampling and race (mean [SD]) | days | 2.8 (1.1) | 2.7 (0.9) | 3.0 (0.8) | 0% | |
Breed (%) | ||||||
Purebred Arabians | 8 (44.4) | 10 (50.0) | 6 (54.5) | 0% | ||
Anglo-Arabians | 2 (11.1) | 5 (25.0) | 0 (0.0) | |||
Shagya-Arabians | 2 (11.1) | 2 (10.0) | 0 (0.0) | |||
Partbred Arabian | 1 (5.6) | 0 (0.0) | 3 (27.3) | |||
Other | 2 (11.1) | 1 (5.0) | 1 (9.1) | |||
Unknown | 3 (16.7) | 2 (10.0) | 1 (9.1) | |||
Median [range] | ||||||
ALAD | ng/mL | 4.1 [2.1, 31.0] | 3.6 [1.9, 33.6] | 4.0 [2.1, 16.0] | 12.2% | |
ALB | 100 mg/dL | 33.0 [30.0, 35.0] | 32.5 [29.0, 38.0] | 34.0 [31.0, 39.0] | 0% | |
AST | U/L | 294.0 [198.0, 623.0] | 307.5 [204.0, 520.0] | 283.0 [185.0, 357.0] | 2% | |
BUN | mg/dL | 14.0 [10.0, 16.0] | 14.5 [10.0, 22.0] | 13.0 [11.0, 17.0] | 0% | |
CRE | mg/dL | 1.0 [0.6, 4.2] | 1.1 [0.8, 1.2] | 1.1 [0.6, 1.4] | 0% | |
GGT | U/L | 18.0 [11.0, 63.0] | 16.5 [12.0, 43.0] | 16.0 [11.0, 23.0] | 0% | |
GLO2 | g/dL | 3.6 [2.3, 4.8] | 3.4 [3.3, 4.9] | 3.5 [3.0, 4.2] | 0% | |
GLU | mg/dL | 103.0 [81.0, 130.0] | 100.5 [88.0, 135.0] | 105.0 [96.0, 166.0] | 0% | |
Iron | µmol/L | 20.4 [6.4, 31.8] | 19.7 [10.4, 47.2] | 25.4 [11.3, 30.1] | 14.3% | |
SAA | µg/mL | 3.9 [3.5, 39.0] | 3.9 [3.5, 233.7] | 4.4 [3.5, 379.4] | 2% | |
SOD | U/mL | 0.3 [0.1, 1.1] | 0.8 [0.2, 9.0] | 0.6 [0.1, 1.7] | 10.2% | |
TBARSs | µmol/L | 1.1 [0.8, 9.1] | 1.1 [1.0, 3.8] | 1.1 [0.8, 1.9] | 10.2% | |
TBIL | mg/dL | 1.6 [1.2, 3.1] | 1.6 [1.1, 3.2] | 1.7 [1.2, 2.6] | 0% | |
TP | g/dL | 7.0 [5.4, 8.0] | 7.0 [6.3, 8.0] | 6.9 [6.5, 7.6] | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bollinger, L.; Bartel, A.; Weber, C.; Gehlen, H. Pre-Ride Biomarkers and Endurance Horse Welfare: Analyzing the Impact of the Elimination of Superoxide Dismutase, δ-Aminolevulinic-Dehydratase, Thiobarbituric Acid Reactive Substances, Iron, and Serum Amyloid A Levels in Elite 160 km Endurance Rides. Animals 2023, 13, 1670. https://doi.org/10.3390/ani13101670
Bollinger L, Bartel A, Weber C, Gehlen H. Pre-Ride Biomarkers and Endurance Horse Welfare: Analyzing the Impact of the Elimination of Superoxide Dismutase, δ-Aminolevulinic-Dehydratase, Thiobarbituric Acid Reactive Substances, Iron, and Serum Amyloid A Levels in Elite 160 km Endurance Rides. Animals. 2023; 13(10):1670. https://doi.org/10.3390/ani13101670
Chicago/Turabian StyleBollinger, Lena, Alexander Bartel, Corinna Weber, and Heidrun Gehlen. 2023. "Pre-Ride Biomarkers and Endurance Horse Welfare: Analyzing the Impact of the Elimination of Superoxide Dismutase, δ-Aminolevulinic-Dehydratase, Thiobarbituric Acid Reactive Substances, Iron, and Serum Amyloid A Levels in Elite 160 km Endurance Rides" Animals 13, no. 10: 1670. https://doi.org/10.3390/ani13101670
APA StyleBollinger, L., Bartel, A., Weber, C., & Gehlen, H. (2023). Pre-Ride Biomarkers and Endurance Horse Welfare: Analyzing the Impact of the Elimination of Superoxide Dismutase, δ-Aminolevulinic-Dehydratase, Thiobarbituric Acid Reactive Substances, Iron, and Serum Amyloid A Levels in Elite 160 km Endurance Rides. Animals, 13(10), 1670. https://doi.org/10.3390/ani13101670