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Simple Summary: Knowing the species and numbers of birds in nature reserves is essential to
achieving the goals of bird conservation. However, it still relies on inefficient and inaccurate manual
monitoring methods, such as point counts conducted by researchers and ornithologists in the field.
To address this difficulty, this paper explores the feasibility of using computer vision technology
for wetland bird monitoring. To this end, we build a dataset of manually labeled wetland birds for
species detection and implement taxonomic counts of ten wetland bird species using a deep neural
network model with multiple improvements. This tool can improve the accuracy and efficiency of
monitoring, providing more precise data for scientists, policymakers, and nature reserve managers
to take targeted conservation measures in protecting endangered birds and maintaining ecological
balance. The algorithm performance evaluation demonstrates that the artificial intelligence method
proposed in this paper is a feasible and efficient method for bird monitoring, opening up a new
perspective for bird conservation and serving as a reference for the conservation of other animals.

Abstract: To protect birds, it is crucial to identify their species and determine their population across
different regions. However, currently, bird monitoring methods mainly rely on manual techniques,
such as point counts conducted by researchers and ornithologists in the field. This method can
sometimes be inefficient, prone to errors, and have limitations, which may not always be conducive to
bird conservation efforts. In this paper, we propose an efficient method for wetland bird monitoring
based on object detection and multi-object tracking networks. First, we construct a manually anno-
tated dataset for bird species detection, annotating the entire body and head of each bird separately,
comprising 3737 bird images. We also built a new dataset containing 11,139 complete, individual
bird images for the multi-object tracking task. Second, we perform comparative experiments using a
state-of-the-art batch of object detection networks, and the results demonstrated that the YOLOv7
network, trained with a dataset labeling the entire body of the bird, was the most effective method.
To enhance YOLOv7 performance, we added three GAM modules on the head side of the YOLOv7 to
minimize information diffusion and amplify global interaction representations and utilized Alpha-
IoU loss to achieve more accurate bounding box regression. The experimental results revealed that
the improved method offers greater accuracy, with mAP@0.5 improving to 0.951 and mAP@0.5:0.95
improving to 0.815. Then, we send the detection information to DeepSORT for bird tracking and
classification counting. Finally, we use the area counting method to count according to the species of
birds to obtain information about flock distribution. The method described in this paper effectively
addresses the monitoring challenges in bird conservation.

Keywords: object detection; multi-object tracking; computer vision; YOLOv7; attention mechanism;
bird conservation; bird monitoring
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1. Introduction

The global ecological environment is under severe threat due to rapid social and
economic development [1,2], leading to the endangerment of many bird species [3]. Conse-
quently, the protection and conservation of endangered organisms have emerged as one of
humanity’s most pressing concerns. Numerous countries worldwide have implemented
various measures to help protect birds, ensuring their reproduction and survival. Typically,
monitoring stations are established in protected areas for wildlife monitoring and man-
agement. The data on bird species and populations collected through monitoring allow
reserve managers to better understand bird survival and distribution patterns, enabling
the development of the most effective measures for bird protection. Therefore, efficient
monitoring of birds is one of the keys to addressing bird conservation issues.

Nevertheless, currently, bird monitoring methods mainly rely on manual techniques,
such as point counts conducted by researchers and ornithologists in the field [4–8], utilizing
equipment such as binoculars, high-powered cameras, and telephoto lenses to conduct
fixed-point observations in areas where birds congregate. This approach is not only time-
consuming and labor-intensive, but it also suffers from limited coverage, and the data
obtained are often untimely, inaccurate, and incomplete. This is particularly true for near-
threatened and endangered species, which may not be observed due to their low occurrence
and population numbers [9]. This outdated method significantly impedes bird conservation
efforts. As a result, there is an urgent need to develop efficient methods to enhance bird
monitoring efficiency.

In recent years, bird monitoring technology has experienced significant advancements.
For instance, Zheng Fa et al., conducted a sample line survey at field sample sites using
a telephoto lens SLR digital camera and monocular and binoculars [10]. Sun Ruolei
et al., employed bird songs, photographs, and professional resources, such as the “Field
Manual of Chinese Birds” for identification [11]. Liu Jian et al., utilized biological foot
ring sensors [12]. In addition, some scholars have also employed methods such as aerial
photography, unmanned aerial vehicle (UAV) surveys [13–19], and the use of bioacoustics
for bird monitoring [20–23]. Compared with traditional manual monitoring methods,
these methods can improve the efficiency of bird monitoring and avoid unnecessary time
waste. However, they rely heavily on manual labor and experience accumulation to
manage bird monitoring, which is vulnerable to factors such as small bird objects, high
shading, high density, harsh field environments, and heavy manual workload. Despite
these improvements, the monitoring efficiency is still not high enough. Therefore, there is
an urgent need for intelligent and modern methods to promote bird conservation in the
direction of precision and automation.

The development of artificial intelligence has expanded from a single application
area to a wide range of applications [24,25], and computer vision technology is one of
them. The application of computer vision to animal protection is one of the hot spots of
research among scholars all over the world [26,27]. Juha Niemi et al., investigated bird
identification through a bird radar system combined with an object-tracking algorithm [28].
They applied convolutional neural networks trained by deep learning algorithms to image
classification, demonstrating the need for an automatic bird identification system suitable
for real-world applications. In a breakthrough in this research area, scientists from research
teams at CNRS, the University of Montpellier, and the University of Porto, Portugal, have
developed the first artificial intelligence model capable of identifying individual birds [29],
and their system is capable of automatically identifying individual animals with no external
markers at all, without human intervention, and without harming the animals. However,
the system has some limitations; it can only identify birds in the database and cannot
cope with changes in appearance, such as feather changes. Lyu Xiuli and colleagues from
Northeast Petroleum University utilized a convolutional neural network to identify and
locate red-crowned cranes [30] and established a recognition model specifically for this
species that showed good identification performance for red-crowned crane populations.
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However, they did not develop a multi-classification and comprehensively systematic
method, which can only identify red-crowned cranes and is largely impractical.

Reviewing the related works in recent years, it has been found that although many
effective works have been carried out in the field of bird monitoring and protection, they
still have some shortcomings, such as the fact that the practicality needs to be improved,
the models are not stable enough, and the accuracy is low. In addition, there are many
species of birds, which are numerous and difficult to identify. No algorithm can accurately
classify birds and record their numbers in precise species. Therefore, it is necessary to
study a highly efficient method with good classification performance and species counting
capability to monitor birds, deepen the research on the intelligence and automation of bird
conservation, and promote the conservation of biodiversity.

This study selects ten priority-protected bird species, including the Ruddy Shelduck
(Tadorna ferruginea), Whooper Swan (Cygnus cygnus), Red-crowned Crane (Grus japonensis),
Black Stork (Ciconia nigra), Little Grebe (Tachybaptus ruficollis), Mallard (Anas platyrhynchos),
Pheasant-tailed Jacana (Hydrophasianus chirurgus), Demoiselle Crane (Anthropoides virgo),
Mandarin Duck (Aix galericulata), and the Scaly-sided Merganser (Mergus squamatus), as
research objects. These species are under protection due to their declining population
numbers and are of great conservation concern. Monitoring bird populations is a crucial
tool for protecting bird species. To better monitor these protected bird species, we propose
an efficient and automated bird monitoring method based on the latest object detection
and multi-object tracking technologies, which is capable of achieving precise monitoring
for these ten bird species and offering a new perspective on bird monitoring. Firstly, we
detect and locate the birds by object detection and obtain the species information of the
birds; then, we use the multi-object tracking algorithm to assign a unique ID to each object
to ensure the accuracy of counting and avoid duplicate counting or missed counting due
to occlusion; and finally, we combine the detection results with the ID information to
realize the classification counting of the birds. Since the performance of the tracking by
the detection method depends on the quality of the object detection algorithm, we also
target improving the object detection algorithm, aiming to improve the efficiency of bird
monitoring, promote the research of intelligent and automated bird conservation, and
protect biodiversity.

Specifically, the contribution of this paper includes the following points. Firstly, we
propose a new method of bird monitoring based on object detection and multi-object
tracking networks. The method improves the efficiency of bird conservation, and at the
same time, it is highly portable and provides a reference for the conservation of other
animals. Secondly, we improve the object detection part in this paper. In this paper, the
YOLOv7 algorithm is used as the baseline for object detection, and three GAM modules are
added to the head side of YOLOV7 to reduce information dispersion, amplify the global
interaction representation, and replace the loss function with Alpha-IoU loss to obtain more
accurate bounding box regression and object detection. In this regard, the performance of
the YOLOv7 algorithm and the performance of the proposed method for bird monitoring in
this paper are optimized. Thirdly, an ingenious method of sorting and counting is designed.
We make a counting board of the same size as the original image and combine the detection
result and the tracking-assigned ID information to realize the counting of birds by species.
(The specific technical idea of counting will be described in detail in Section 2.4.4 of this
paper.) Finally, a manually annotated bird species detection dataset is constructed in this
paper. It contains ten species of key protected birds, including 3737 images of bird flocks,
and adopts pure-head annotation and whole-body annotation methods for annotation,
respectively. The dataset images have both single bird activities and dense flock activities,
which are inevitably disturbed by natural factors such as vegetation shadows, non-avian
animals, water bodies, and litter. These datasets are derived from various real environments
in wetlands, which makes the trained model more robust and well-suited for practical
use, and the dataset can also be used as a reference for bird species detection studies. We
also build a new dataset for the multi-object tracking task, containing 11,139 complete
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individual bird images and various motion patterns and shooting angles of birds, allowing
the trained model to extract more effective features and be more robust, in addition to
expanding the fine-grained classification dataset of birds (e.g., “CUB-200-2011”).

2. Materials and Methods
2.1. Data Acquisition

Ten types of protected birds in China were selected as the objects of the experiment.
(The names of the ten types of birds are as follows: ”Ruddy Shelduck, Whooper Swan,
Red-crowned Crane, Black Stork, Little Grebe, Mallard, Pheasant-tailed Jacana, Demoiselle
Crane, Mandarin Duck, Scaly-sided Merganser”.)

The dataset for this paper is divided into two sections: (1) the dataset for object
detection and (2) the dataset for a multi-object tracking feature extraction network.

The data used in this paper for object detection come from the internet. In order to
ensure the authenticity and validity of the experiment, we screened the quality of the data
to meet the minimum pixel requirements of more than 1080P, and all of them are authentic
bird images in a wetland environment. The collected data contain a variety of interference
factors, such as overlap, distance change, light and shade change, vegetation shadow,
non-avian animals, and garbage. These interferences can replicate many conditions in real
scenes, enhance the robustness of the algorithm, and improve the generalization ability of
the model to ensure the effectiveness of the method. In addition, considering the occlusion
between birds, this paper not only marks the whole body of the bird but also marks the
head of the bird separately.

The dataset used in the multi-target tracking feature extraction network in this paper
comes from the dataset of object detection. We extract the complete image of each bird from
the dataset of object detection, including multiple angles and actions of birds. The dataset
can also be used to expand the fine-grained classification dataset of birds. The preview of
the above two parts of the dataset is shown in Figure 1.

Figure 1. A preview image of the dataset. (a) The preview shows the dataset for object detection;
(b) the preview shows the dataset for the multi-object tracking feature extraction network.

All datasets in this paper are divided into a training set, a validation set, and a test
set according to a ratio of 85/10/5 , which can be accessed and downloaded online at the
following link: “https://www.kaggle.com/datasets/dieselcx/birds-chenxian (accessed on
12 May 2023)”. The division of the datasets is shown in Tables 1 and 2.

https://www.kaggle.com/datasets/dieselcx/birds-chenxian
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Table 1. Partitioning of the datasets for object detection.

Annotation
Method Name Proportion Number of

Pictures
Number of

Birds

Whole Body
Annotation

training set 85% 3176 11,322
validation set 10% 373 1543

test set 5% 188 863

Head
Annotation

training set 85% 2782 10,085
validation set 10% 327 1217

test set 5% 164 681

Total
Whole Body
Annotation 100% 3737 13,728

Head
Annotation 100% 3273 11,983

Head annotation means that only the bird’s head is annotated, whereas whole body annotation means that the
bird’s entire body, including the head, is annotated.

Table 2. Partitioning of the datasets for multi-target tracking feature extraction networks.

Partition Name Proportion Number of Pictures

training set 85% 9468
validation set 10% 1114

test set 5% 557

Total 100% 11,139

2.2. Data Preprocessing
2.2.1. Mosaic Data Enhancement

Mosaic is a data enhancement method proposed in YOLOv4 [31]. The method focuses
on randomly selecting four images and splicing them into a new image as training data
after transforming them by random scaling, random cropping, and random lining up.

Mosaic data enhancement has two main advantages. (1) Expanding the dataset: In
addition to enriching the background of the detection dataset, random scaling also adds
many small targets, making the model more robust. (2) Reducing GPU memory: In batch
normalization, the data of four images are computed simultaneously, which can reduce the
dependence on batch size, and a single GPU can complete the training. The workflow for
Mosaic’s data augmentation operation is shown in Figure 2.

2.2.2. Mixup Data Enhancement

Mixup [32] is an algorithm for mixing classes of augmentation of images in computer
vision. It is based on the principle of neighborhood risk minimization and uses linear
interpolation to mix images between different classes to construct new training samples
and labels, which expand the training dataset. The image processing formula for the mixup
data enhancement is as follows:

x̃ = λxi + (1− λ)xj (1)

ỹ = λyi + (1− λ)yj (2)

(xi, yi) and
(

xj, yj
)

are two randomly selected samples and corresponding labels from
the same batch, which are randomly sampled numbers from the beta distribution. λ is a
parameter that follows the distribution of β,λ ∈ [0, 1]. Figure 3 shows several images after
the mixup data enhancement process.
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Figure 2. Mosaic data augmentation. First, from the dataset of birds, a batch of image data was ran-
domly extracted. Then, four images were randomly selected, randomly scaled, randomly distributed,
and spliced into new images, and the above operations were repeated for batch size times. Finally,
the neural network was trained using the Mosaic data augmentation data.

Figure 3. Images after the mixup augmentation processing.

2.2.3. HSV Data Enhancement

HSV is a color space created based on the intuitive properties of color. H stands for hue,
S for saturation, and V for value. Hue, which means color, is measured in degrees in a range
of [0◦, 360◦]. We can change its color by changing the size of the angle. Saturation indicates
how close a color is to a spectral color. A color can be seen as the result of mixing a certain
spectral color with white. If we adjust the spectral color so that its proportion increases,
then the closer the color is to the spectral color, the higher the saturation is. The range of
saturation is [0, 1]. The value indicates the color’s degree of brightness. The brightness
value is related to the luminosity of the luminous body. If we increase luminosity, the color
will be brighter, and the range of the value is [0, 1]. Figure 4 shows several images after the
HSV data enhancement process.
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Figure 4. Images after HSV augmentation processing.

2.3. Related Networks
2.3.1. Object Detection: YOLOv7

YOLOv7 [33] is the work of the YOLO (You Only Look Once) series and is one of the
most advanced object detection models available. YOLOv1 [34] was proposed in 2015 and
was the debut of a single-stage detection algorithm, which emerged to effectively address
the drawback of slow inference in two-stage detection networks while maintaining good
detection accuracy. Subsequently, the authors proposed an improved YOLOv2 [35] based
on YOLOv1, which used a joint training method of detection and classification, enabling
the model to detect more than 9000 classes of objects. Next, YOLOv3 [36] was proposed as
an improved version of the previous work. Its most significant feature is the introduction of
the residual module Darknet-53 and the FPN architecture, which allows object prediction
and multiscale fusion at three different scales. In addition, this version also adds new
tricks, such as batch normalization and the mish activation function, to further improve
the detection accuracy of the YOLO series. Based on this, YOLOv4 and YOLOv5 were
introduced, which added many tricks to YOLOv3. YOLOv4 introduced modules such as
CSPDarknet53, SPP [37], and PAN [38], which enhanced the perceptual field and feature
representation of the network. In addition, it adopts new tricks, such as the Mosaic data
enhancement trick and DropBlock [39] regularization trick, to further improve detection
accuracy. YOLOv5, on the other hand, adopts a large number of design tricks such as the
focus structure, improved CSP module, adaptive anchor frame calculation, and adaptive
image scaling, which means the model has a qualitative leap in speed and accuracy.

Finally, YOLOv7 came out in 2022 with the network architecture shown in Figure 5.
Based on its predecessor, it innovatively proposes the extended ELAN architecture, which
can improve the self-learning capability of the network without destroying the original
gradient path. In addition, it employs a cascade-based model scaling method so that a
model of the appropriate scale can be generated for the actual task to meet the detection
requirements. The introduction of these new tricks and architectures further improves the
performance and effectiveness of the YOLO series networks. In this paper, we take the
YOLOv7 network as a baseline and further enhance it.

2.3.2. Introducing Attention Mechanism into YOLOv7: GAM

The attention mechanism [40] is a signal-processing mechanism that was discovered
by some scientists in the 1990s while studying human vision. Practitioners in artificial
intelligence have introduced this mechanism into some models with success. Currently, the
attention mechanism has become one of the most widely used “components” in the field of
deep learning, especially in the field of natural language processing. Models or structures
such as BERT [41], GPT [42], Transformer [43], etc., which have received much exposure
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in the past two years, all use the attention mechanism. It simulates the phenomenon
that humans selectively pay attention to some visible information and ignore others to
rationalize the limited visual processing resources. Specifically, the information redundancy
problem is mainly solved by selecting only a part of the input information or assigning
different weights to different parts of the input information.

Figure 5. The network architecture diagram of YOLOv7.

In the process of exploring the application of attention mechanisms in computer vision,
many excellent works have emerged, although they also have some drawbacks. For exam-
ple, SENet [44] also brings the problem of low efficiency when suppressing unimportant
pixels, CBAM [45] performs channel and spatial attention operations sequentially, while
BAM [46] does them in parallel, but they both ignore the channel–space interaction, thus
losing the cross-dimensional information. Considering the importance of cross-dimensional
interactions, TAM [47] improves efficiency by exploiting the attention weights between
each pair of 3D channels, spatial width and spatial height. However, the attention operation
is still applied to two dimensions at a time, instead of all three dimensions. Therefore,
to amplify cross-dimensional interactions, GAM [48] proposes an attention mechanism
capable of capturing important features in all three dimensions, which is able to amplify
global dimensional interaction features even with reduced information dispersion. The
authors use a sequential channel–space attention mechanism and redesign the CBAM
submodule. The whole process is shown in Figure 6, and the definitions are stated in
Equations (3) and (4). Given an input feature map F1 ∈ RC×H×W , the intermediate state
F2 and the output F3 are defined as follows: MC and MS are the channel attention map
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and the spatial attention map, respectively, and ⊗ denotes the multiplication operation by
the elements.

F2 = MC(F1)⊗ F1 (3)

F3 = MS(F2)⊗ F2 (4)

Figure 6. The overview of GAM.

1. Channel Attention Sub-module

The channel attention submodule uses a three-dimensional arrangement to retain
information in three dimensions. Then, it uses a two-layer MLP (Multilayer Perceptron) to
amplify the cross-dimensional channel–space dependence. (MLP is an encoder–decoder
structure, the same as BAM, and its compression ratio is r); the channel attention submodule
is shown in Figure 7.

Figure 7. Channel attention submodule.

2. Spatial Attention Sub-module

In the spatial attention submodule, in order to focus on spatial information, two
convolutional layers are used for spatial information fusion, and the same reduction ratio
r as BAM is used from the channel attention submodule. At the same time, since the
maximum pooling operation reduces the use of information and has a negative impact, the
pooling operation is deleted to further preserve feature mapping.

In order to increase the precision of object detection, GAM is added to the YOLOv7
network in this study. The modified network structure is shown in Figure 8. There
are two primary uses for the GAM module. First, it can lessen information dispersion,
allowing the network to focus more on the properties of the target object and enhance
detection performance. Second, it can expand the global interactive representation, increase
the sufficiency of information exchange between various components, and improve the
accuracy of detection. When attention mechanisms are added to the backbone network,
some of the original weights of the backbone network are destroyed, which causes errors in
the prediction results of the network. In this case, we decided to keep the original network
features intact while incorporating the attention mechanism into the enhanced feature
network extraction.
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Figure 8. The network structure after adding GAM in YOLOv7.

2.3.3. Introducing Alpha-IoU into YOLOv7

Object detection is used to locate the object in the image by bounding box regression. In
early object detection work, IoU was used as the localization loss [49]. However, when the
prediction box does not overlap with the ground truth, the IoU loss will cause the problem
of gradient disappearance, resulting in a slower convergence speed and an inaccurate
detector. To solve this problem, researchers have proposed several improved IoU-based
loss designs, including GIoU [50], DIoU [51], and CIoU [52]. Among them, GIoU introduces
a penalty term in the IoU loss to alleviate the gradient disappearance problem, while DIoU
and CIoU consider the center point distance and aspect ratio between the prediction box
and the ground truth in the penalty term.

Alpha-IoU [53] generalizes the existing IoU-based losses into a new series of power
IoU losses, which has a power IoU term and an additional power regularization term.
First, the Box-Cox transform is applied to the IoU loss, and it is generalized to power
IoU loss, denoted by α, and finally extended to a more general form by adding a power
regularization term. In simple terms, it is a power operation in the IoU and the penalty
term expression. The calculation is shown in Equation (5).

LIoU = 1− IoU ⇒ Lα·IoU = 1− IoUα (5)

The Alpha-IoU loss function can generalize the existing IoU-based losses, including
GIoU and DIoU, to a new power IoU loss function to achieve more accurate bounding
box regression and object detection. For example, based on GIOU and DIOU, the formula
changed to the corresponding Alpha-IoU is shown in Equations (6) and (7).

LGIoU = 1− IoU +

∣∣C r
(

B ∪ Bgt)∣∣
|C| ⇒ Lα·GIoU = 1− IoUα +

(∣∣C r
(

B ∪ Bgt)∣∣
|C| 1 + x

)a

(6)

LDIoU = 1− IoU +
ρ2(b, bgt)

c2 ⇒ Lα·DIoU = 1− IoUα +
ρ2α(b, bgt)

c2α (7)

The YOLOv7 network is given an upgrade in this paper with the introduction of
Alpha-IoU, which can outperform the IoU-based loss with clear performance benefits and
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give the detector more flexibility by adjusting to achieve various levels of bbox regression
accuracy. Additionally, it is more resistant to our datasets and noise bboxes, strengthening
the model’s resistance to complex situations.

2.3.4. Multi-Object Tracking: DeepSORT

The multi-object tracking task is to detect and assign IDs to multi-objects in the video
for trajectory tracking without prior knowledge of the number of objects, where each
object has a different ID to enable subsequent trajectory prediction, precision finding,
etc. DeepSORT [54] is the most popular algorithm for multi-object tracking tasks and an
improved algorithm based on the ideas of SORT [55].

The SORT algorithm uses a simple Kalman filter [56] to process the correlation of frame-
by-frame data and a Hungarian algorithm for the correlation metric, a simple algorithm
that achieves good performance at high frame rates. However, as SORT ignores the surface
features of the object being inspected, it is only accurate when the uncertainty in the
estimation of the object’s state is low. In DeepSORT, appearance information is added, the
ReID domain model is borrowed to extract appearance features, the number of ID switches
is reduced, a more reliable metric is used instead of the association metric, and a CNN
network is used to extract features to increase the robustness of the network to misses
and obstacles.

The tracking scene of the DeepSORT algorithm is defined on an eight-dimensional
state space

(
u, v,γ, h,

.
x,

.
y,

.
γ,

.
h
)

, where (u, v) are the coordinates of the detection frame
centroid, γ is the aspect ratio, and γ is the height of the detection frame and their respective
velocities in image coordinates. Then, a homogeneous model and a linear observational
model Kalman filter are used with the observed variables (u, v,γ, h) to forecast updates.
For each trajectory k, the number of matched frames is counted from the moment of the last
first match ak; the count is incremented if a match is made during Kalman prediction and
reset to 0 if the trajectory is associated with a new prediction. Additionally, set a lifetime
threshold of Amax, after which no match of time is considered to have left the tracking area
and is removed from the track (in layman’s terms, an object that has not matched for a long
time beyond Amax is considered to have left the tracking area). Since each newly detected
object may become a new trajectory or if they are directly classified as a trajectory, then false
detection will occur frequently. DeepSORT marks the new test result as“tentative,” which is
followed by a few frames (usually three) and then “confirmed” if the next three consecutive
frames match; it is confirmed as a new track. Otherwise, it is marked as ‘deleted’ and is no
longer considered to be a track. Figure 9 shows the bird tracking process.

Figure 9. The flowchart of bird tracking.

The original DeepSORT’s output is not intuitive enough to display the detected species.
To improve the presentation, the source code is modified in this paper to add the display of
species, making the output more intuitive. Figure 10 shows the results of the bird tracks.
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Figure 10. (a,b) The results of bird tracking.

2.4. Monitoring Methods

This paper proposes a computer vision-based bird monitoring method for detecting
birds in nature reserves and counting them by analogy. By combining the information from
the monitoring points, bird surveyors will have information on the distribution of bird
populations and migration routes so that they can develop more effective ways to protect
birds. The algorithm is divided into three steps: first, using an object detection algorithm
to detect the species of birds and locate the object; then, using multi-object tracking to
track the birds, each bird object is assigned a unique ID for subsequent data processing
and analysis; and finally, the birds are counted by species using a counting method that
combines the species, location, and ID information. To better illustrate the methodology of
this paper, further details of the above will be added below.

2.4.1. Different Labelling Methods

In object detection, if only the bird’s body is considered for annotation, it may lead to
more overlapping parts between the annotation frame and the background, thus causing
too much background noise and affecting the accuracy and reliability of object detection. A
bird’s head has different structural forms, which can accurately identify birds. In complex
scenes, such as those with object overlap and occlusion, the annotation of a bird’s head
can help to better distinguish different birds and reduce the probability of misjudgment.
Therefore, in this paper, not only the bird’s body but also the bird’s head is labeled, and the
two labeling methods form a set of comparative experiments to find the optimal model.

2.4.2. Obtaining the Best Algorithmic Model

The dominant multi-object tracking method is based on detection to track. Therefore,
the method’s effectiveness depends on object detection. To achieve better results, we need
an excellent object detection model.

First, we selected a group of current mainstream object detection networks to form a
set of comparative experiments, selected the network with the best results, and continued
to improve the object detection part to obtain the best model, with the following ideas for
improvement. (1) Data augmentation: expanding the dataset and increasing the diversity
of the data by rotating, flipping, cropping, and scaling the data to improve the robustness
and generalization of the model. (2) Algorithm optimization: optimization of the object
detection algorithm, e.g., improving the loss function, network structure, optimizer, etc.,
to improve the training efficiency and detection accuracy of the model. (3) Feature fusion:
using multiple feature maps for object detection and fusing features at different levels and
scales to improve the model’s ability to perceive and recognize objects.

The above measures will improve the accuracy and precision of bird monitoring,
providing more accurate data to support bird research and conservation work.
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2.4.3. Multi-Object Tracking

Multiple detected objects are given unique identifiers, and trajectory tracking is carried
out. Each object has a different ID to enable subsequent counting, accurate searching, and
so on.

2.4.4. Implementation of the Counting Area

To count the different species of birds separately and more accurately, a new method is
proposed in this paper. The method uses an area that covers 95% of the image for counting,
which ensures a more accurate count of the birds. Specifically, when a bird enters the
counting area, we read information about the bird’s species and ID, which is fed back using
the computer vision method described above. If the ID is a first occurrence, we record the
ID and increase the number of birds in that species; if the ID has already been recorded, we
leave the number of birds recorded for that species unchanged. In this way, we can more
accurately count birds by species and, therefore, obtain a more accurate count.

For the logical implementation of the counting area, this paper first makes a matrix of
the same size as the image and fills it with 1 to form the counting area. Next, we replace
the value of the area we’re counting with a 0 and reassign the detected bird’s position
information passed back to the corresponding position on our matrix to 1 to mark the
presence of the bird in that area. Finally, we judge whether to count according to whether
there is a 1 in the counting area. The counting method realized by this logic can effectively
record the number of birds. The overall logical implementation diagram of the counting
method is shown in Figure 11, which clearly shows the counting process of the method.

Figure 11. The logic diagram for bird counting.

3. Results
3.1. Experimental Environment

Table 3 below shows the basic equipment information of the software and hardware
used in this paper.

Table 3. Software and hardware experimental equipment.

Name Type/Version

Operating system Ubuntu 20.04
Python version Python 3.8

Versions of the library Torch1.9.0 + cu111
Integrated Development Environment Pycharm 2021.3.3

Central Processing Unit AMD EPYC 7543 32-Core Processor
Graphics Processing Unit A40(48 GB) × 2

3.2. Training Parameters

Table 4 shows the training parameters of the training process used in the experiment.
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Table 4. Parameter configuration for training neural networks.

Parameter Value Parameter Value

Initial Learning Rate 0.01 Weight Decay 0.0005
Momentum 0.937 Batch Size 32
Image Size 640 × 640 Epochs 200

3.3. Evaluation Metrics

In this paper, we use mainstream evaluation metrics such as precision, recall, F1 score,
mAP, and FPS to evaluate the effect of the model. Before introducing each evaluation
metric, we briefly present the confusion matrix, whose parameters are defined in Table 5.

Table 5. Parameter definitions.

Confusion Matrix
Predicted Results

Positive Negative

Real Results
True TP1 FN2

False FP3 TN4

TP1 (True Positive): It predicts positive classes as positive classes. FN2 (False Negative): It predicts positive classes
as negative classes. FP3 (False Positive): It predicts negative classes as positive classes. TN4 (True Negative): It
predicts negative classes as negative classes.

Precision indicates the proportion of samples that the model correctly identifies as
belonging to positive classes. It reflects the ability of the model to distinguish positive class
samples. Equation (8) listed below calculates precision.

precision =
TP

TP + FP
(8)

Recall represents the ratio of the number of samples that the model correctly identified
as positive classes to the total number of positive samples. Equation (9) listed below
calculates recall.

recall =
TP

TP + FN
(9)

The F1 score is a measure of the classification problem. Precision and recall are
contradictory metrics. When the value of precision is high, the value of recall is often low.
Therefore, we need to consider both metrics together to evaluate the effect of the model,
and the F1 score is the harmonized average of precision and recall. Equation (10) calculates
the F1 score, where P represents precision and R represents recall.

F1 =
2PR

P + R
=

2TP
2TP + FP + FN

(10)

Accuracy is the most commonly used classification performance metric. It can be used
to express the accuracy of the model, that is, the ratio of the number of samples that the
model properly identified as positive classes to the total number of samples. Accuracy can
be calculated using Equation (11).

accuracy =
TP + TN

TP + FN + FP + TN
(11)

IoU (Intersection over Union) is often used to measure the degree of overlap between
the predicted box and the ground truth box to evaluate the accuracy of the target detection
algorithm. In this paper, IoU is used to measure the ratio of intersection to union set
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between the bounding boxes of predicted birds and the bounding boxes of real birds.
Equation (12) below calculates the IoU.

IoU =
A ∩ B
A ∪ B

(12)

AP (Average Precision) refers to the average precision, that is, the precision of each
species is averaged for multi-species prediction, which can measure the effect of the model
on each species. We use the integral to calculate the area enclosed by the P-R curve and
the coordinate axis to find the AP. The P-R curve is plotted according to the precision and
recall of each species. The AP can be calculated using the following Equation (13).

AP =
∫ 1

0
p(t)dt (13)

MAP (Mean Average Precision) refers to the average of the AP across all species. The
mAP is usually used as the final indicator to assess the performance of the metric, measuring
the effectiveness of the model on all species. The mAP is calculated by Equation (14), where
S is the total number of species and the denominator is the sum of the AP under all species.

mAP =
∑S

j=1 AP(j)

S
(14)

FPS (Frames Per Second) is the frame rate per second. Another important metric for
the target detection algorithm is the speed and it measures the number of images that the
network can process per second. The higher the FPS, the better the timeliness.

3.4. Experimental Results
3.4.1. Comparison Experiments of the Most Advanced Methods for Object Detection under
Different Labeling Methods

The method for bird monitoring proposed in this paper needs to have a good-performance
object detection network for bird species detection. At the same time, it is necessary to use
the multi-target tracking network to assign a unique ID to each object to assist the classifi-
cation count. The multi-target tracking adopts the tracking-by-detection method, and its
effect depends on the effectiveness of object detection. Therefore, we need to investigate a
high-precision and high-performance object detection network.

We chose the mainstream object detection networks in recent years for comparison
(Faster-RCNN [57], EfficientDet [58], CenterNet [59], SSD [60], YOLOv4, YOLOv5, YOLOv7,
YOLOv8). Considering the occlusion between birds and the problem of image noise, we
not only use the dataset labeled on the bird’s body, but also use the dataset labeled only on
the bird’s head to train and test the object detection network, and then combine the experi-
mental results to compare their F1 score, mAP@0.5, FPS and other evaluation indicators.
Figure 12 shows the variation of mAP@0.5 for each target detection network during the
training period. Tables 6 and 7 show the comparative experimental results of the object
detection networks trained using the datasets of the two labeling methods, respectively.
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Figure 12. The variation in mAP@0.5 during training. (a) Training using the dataset labeled only
with the head of the bird; (b) training using the dataset labeled with the body of the bird.

Table 6. A comparison of different object detection algorithms (using the dataset annotated with only
the head).

Model Class Precision Recall F1 Score mAP@0.5 FPS

Faster-
RCNN

All 0.793 0.854 0.82 0.841

25

Ruddy Shelduck 0.697 0.874 0.78 0.855
Whooper Swan 0.686 0.802 0.74 0.775

Red-crowned Crane 0.639 0.860 0.73 0.825
Black Stork 0.806 0.847 0.83 0.824
Little Grebe 0.856 0.897 0.88 0.873

Mallard 0.879 0.855 0.87 0.861
Pheasant-tailed Jacana 0.868 0.869 0.87 0.859

Demoiselle Crane 0.921 0.818 0.87 0.854
Mandarin Duck 0.857 0.865 0.86 0.859

Scaly-sided Merganser 0.725 0.852 0.78 0.824

EfficientDet

All 0.873 0.832 0.85 0.851

12

Ruddy Shelduck 0.887 0.900 0.89 0.895
Whooper Swan 0.820 0.745 0.78 0.807

Red-crowned Crane 0.872 0.737 0.80 0.821
Black Stork 0.838 0.821 0.83 0.834
Little Grebe 0.913 0.892 0.90 0.899

Mallard 0.812 0.869 0.84 0.829
Pheasant-tailed Jacana 0.897 0.857 0.88 0.871

Demoiselle Crane 0.930 0.741 0.82 0.807
Mandarin Duck 0.911 0.883 0.90 0.891

Scaly-sided Merganser 0.854 0.874 0.86 0.861
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Table 6. Cont.

Model Class Precision Recall F1 Score mAP@0.5 FPS

CenterNet

All 0.828 0.611 0.70 0.712

59

Ruddy Shelduck 1.000 0.749 0.86 0.892
Whooper Swan 0.914 0.750 0.82 0.883

Red-crowned Crane 0.956 0.733 0.83 0.840
Black Stork 0.802 0.630 0.71 0.799
Little Grebe 0.644 0.793 0.71 0.636

Mallard 0.892 0.600 0.72 0.793
Pheasant-tailed Jacana 0.802 0.761 0.78 0.792

Demoiselle Crane 0.703 0.612 0.65 0.694
Mandarin Duck 0.802 0.393 0.53 0.611

Scaly-sided Merganser 0.762 0.093 0.17 0.181

SSD

All 0.861 0.768 0.81 0.821

63

Ruddy Shelduck 0.790 0.810 0.80 0.809
Whooper Swan 0.759 0.623 0.68 0.673

Red-crowned Crane 0.854 0.707 0.77 0.811
Black Stork 0.890 0.790 0.84 0.840
Little Grebe 0.934 0.885 0.91 0.892

Mallard 0.867 0.844 0.86 0.866
Pheasant-tailed Jacana 0.926 0.892 0.91 0.917

Demoiselle Crane 0.843 0.586 0.69 0.725
Mandarin Duck 0.859 0.722 0.78 0.796

Scaly-sided Merganser 0.893 0.821 0.86 0.878

YOLOv4

All 0.907 0.679 0.76 0.790

40

Ruddy Shelduck 0.879 0.888 0.88 0.889
Whooper Swan 0.839 0.702 0.76 0.808

Red-crowned Crane 0.777 0.664 0.72 0.767
Black Stork 0.891 0.765 0.82 0.849
Little Grebe 0.962 0.839 0.90 0.933

Mallard 0.894 0.696 0.78 0.790
Pheasant-tailed Jacana 0.985 0.767 0.86 0.900

Demoiselle Crane 0.951 0.656 0.78 0.838
Mandarin Duck 0.906 0.556 0.69 0.801

Scaly-sided Merganser 0.985 0.254 0.40 0.329

YOLOv5

All 0.923 0.847 0.88 0.841

88

Ruddy Shelduck 0.818 0.877 0.85 0.811
Whooper Swan 0.901 0.578 0.70 0.734

Red-crowned Crane 0.942 0.770 0.85 0.675
Black Stork 0.961 0.936 0.95 0.914
Little Grebe 0.855 0.946 0.90 0.876

Mallard 0.940 0.923 0.93 0.918
Pheasant-tailed Jacana 0.960 0.950 0.95 0.862

Demoiselle Crane 0.971 0.796 0.87 0.830
Mandarin Duck 0.917 0.924 0.92 0.914

Scaly-sided Merganser 0.967 0.771 0.86 0.878

YOLOv7

All 0.850 0.836 0.84 0.862

81

Ruddy Shelduck 0.911 0.668 0.77 0.800
Whooper Swan 0.648 0.701 0.67 0.705

Red-crowned Crane 0.851 0.846 0.85 0.876
Black Stork 0.652 0.759 0.70 0.726
Little Grebe 0.968 0.902 0.93 0.968

Mallard 0.841 0.900 0.87 0.915
Pheasant-tailed Jacana 0.749 0.909 0.82 0.773

Demoiselle Crane 0.959 0.784 0.86 0.903
Mandarin Duck 0.960 0.958 0.96 0.989

Scaly-sided Merganser 0.962 0.934 0.95 0.966

YOLOv8

All 0.846 0.800 0.82 0.835

91

Ruddy Shelduck 0.852 0.569 0.68 0.713
Whooper Swan 0.646 0.603 0.62 0.573

Red-crowned Crane 0.790 0.815 0.80 0.834
Black Stork 0.763 0.774 0.77 0.787
Little Grebe 0.954 0.961 0.96 0.970

Mallard 0.902 0.864 0.88 0.896
Pheasant-tailed Jacana 0.749 0.864 0.80 0.791

Demoiselle Crane 0.910 0.768 0.83 0.877
Mandarin Duck 0.961 0.881 0.92 0.938

Scaly-sided Merganser 0.932 0.898 0.91 0.970
FPS stands for Frames Per Second and mAP@0.5 is an abbreviation for Mean Average Precision when the
Intersection over Union (IoU) is set to 0.5.
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Table 7. A comparison of different object detection algorithms (using the dataset annotated with the
whole body).

Model Class Precision Recall F1 Score mAP@0.5 FPS

Faster-
RCNN

All 0.831 0.892 0.86 0.879

26

Ruddy Shelduck 0.735 0.912 0.81 0.893
Whooper Swan 0.724 0.840 0.78 0.813

Red-crowned Crane 0.677 0.898 0.77 0.863
Black Stork 0.844 0.885 0.86 0.862
Little Grebe 0.894 0.935 0.91 0.911

Mallard 0.917 0.893 0.91 0.899
Pheasant-tailed Jacana 0.906 0.907 0.91 0.897

Demoiselle Crane 0.959 0.856 0.90 0.892
Mandarin Duck 0.895 0.903 0.90 0.897

Scaly-sided Merganser 0.763 0.890 0.82 0.862

EfficientDet

All 0.915 0.874 0.89 0.898

14

Ruddy Shelduck 0.932 0.955 0.94 0.945
Whooper Swan 0.860 0.785 0.82 0.857

Red-crowned Crane 0.912 0.777 0.84 0.867
Black Stork 0.893 0.866 0.88 0.884
Little Grebe 0.943 0.937 0.94 0.945

Mallard 0.867 0.899 0.88 0.875
Pheasant-tailed Jacana 0.927 0.912 0.92 0.917

Demoiselle Crane 0.985 0.771 0.86 0.853
Mandarin Duck 0.941 0.938 0.94 0.937

Scaly-sided Merganser 0.894 0.904 0.90 0.897

CenterNet

All 0.968 0.659 0.74 0.796

58

Ruddy Shelduck 1.000 0.977 0.99 0.998
Whooper Swan 0.984 0.750 0.85 0.783

Red-crowned Crane 0.973 0.750 0.85 0.840
Black Stork 1.000 0.851 0.92 0.881
Little Grebe 0.842 0.800 0.82 0.936

Mallard 0.909 0.517 0.66 0.740
Pheasant-tailed Jacana 1.000 0.778 0.88 0.906

Demoiselle Crane 0.971 0.810 0.88 0.862
Mandarin Duck 1.000 0.333 0.50 0.785

Scaly-sided Merganser 1.000 0.023 0.04 0.226

SSD

All 0.901 0.796 0.84 0.858

60

Ruddy Shelduck 0.838 0.838 0.84 0.857
Whooper Swan 0.784 0.661 0.72 0.696

Red-crowned Crane 0.892 0.745 0.81 0.849
Black Stork 0.909 0.805 0.85 0.878
Little Grebe 0.976 0.900 0.94 0.930

Mallard 0.882 0.882 0.88 0.904
Pheasant-tailed Jacana 0.968 0.930 0.95 0.955

Demoiselle Crane 0.910 0.601 0.72 0.763
Mandarin Duck 0.941 0.737 0.83 0.834

Scaly-sided Merganser 0.912 0.859 0.88 0.916

YOLOv4

All 0.924 0.683 0.77 0.811

37

Ruddy Shelduck 0.848 0.907 0.88 0.944
Whooper Swan 0.877 0.713 0.79 0.846

Red-crowned Crane 0.769 0.625 0.69 0.782
Black Stork 0.929 0.776 0.85 0.887
Little Grebe 1.000 0.850 0.92 0.948

Mallard 0.932 0.707 0.80 0.805
Pheasant-tailed Jacana 1.000 0.778 0.88 0.892

Demoiselle Crane 0.966 0.667 0.79 0.853
Mandarin Duck 0.921 0.556 0.69 0.816

Scaly-sided Merganser 1.000 0.250 0.40 0.333

YOLOv5

All 0.865 0.805 0.83 0.920

93

Ruddy Shelduck 0.808 0.824 0.82 0.911
Whooper Swan 0.897 0.678 0.77 0.734

Red-crowned Crane 0.875 0.477 0.62 0.875
Black Stork 0.911 0.874 0.89 0.984
Little Grebe 0.823 0.894 0.86 0.960

Mallard 0.914 0.909 0.91 0.978
Pheasant-tailed Jacana 0.769 0.912 0.83 0.992

Demoiselle Crane 0.873 0.774 0.82 0.910
Mandarin Duck 0.828 0.912 0.87 0.964

Scaly-sided Merganser 0.954 0.791 0.86 0.889
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Table 7. Cont.

Model Class Precision Recall F1 Score mAP@0.5 FPS

YOLOv7

All 0.942 0.870 0.90 0.932

111

Ruddy Shelduck 0.766 0.896 0.83 0.921
Whooper Swan 0.929 0.601 0.73 0.760

Red-crowned Crane 0.975 0.809 0.88 0.915
Black Stork 0.984 0.947 0.97 0.980
Little Grebe 0.900 0.973 0.94 0.974

Mallard 0.951 0.939 0.95 0.978
Pheasant-tailed Jacana 1.000 0.987 0.99 0.996

Demoiselle Crane 0.983 0.830 0.90 0.915
Mandarin Duck 0.967 0.930 0.95 0.960

Scaly-sided Merganser 0.966 0.791 0.87 0.921

YOLOv8

All 0.925 0.864 0.89 0.927

97

Ruddy Shelduck 0.846 0.900 0.87 0.929
Whooper Swan 0.892 0.597 0.72 0.759

Red-crowned Crane 0.971 0.799 0.88 0.899
Black Stork 0.953 0.947 0.95 0.976
Little Grebe 0.852 0.946 0.90 0.970

Mallard 0.946 0.937 0.94 0.971
Pheasant-tailed Jacana 1.000 0.975 0.99 0.995

Demoiselle Crane 0.975 0.859 0.91 0.947
Mandarin Duck 0.897 0.930 0.91 0.953

Scaly-sided Merganser 0.954 0.755 0.84 0.875
FPS stands for Frames Per Second and mAP@0.5 is an abbreviation for Mean Average Precision when the
Intersection over Union (IoU) is set to 0.5.

The experimental results show that the YOLOv7 network trained with a dataset
labeling the entire body of the bird is the most effective method. Therefore, we choose
YOLOv7 as the research object of this paper and use the dataset annotating the whole body
of the bird for subsequent experiments.

3.4.2. Ablation Experiment on Data Enhancement

We tried some training tricks based on the original YOLOv7 model, divided the ex-
perimental groups using combining or splitting tricks, and obtained the experimental
results shown in Table 8 below through training and testing. The results of this ablation
experiment show that when we use HSV, Mosaic, and mixup data augmentation simulta-
neously, the method of group 12 has the best experimental effect, the evaluation indexes,
such as mAP and F1 score, improve the most, and the FPS reduces but still meets the
real-time requirement.

3.4.3. Ablation Experiment of Introducing a Series of Improved Strategies for YOLOv7

We reduce information dispersion and amplify the global interaction representation in
this paper by adding three GAM modules to the head side of YOLOv7 and replacing the loss
function with Alpha-IoU loss to achieve more accurate bounding box regression and object
detection. We conducted ablation experiments to validate the method’s effectiveness, and
the results show that our method improved the performance of the original YOLOv7 net-
work. Figure 13 shows the variation of mAP@0.5 for each object detection network during
the training period. Table 9 shows the experimental results of the ablation experiments.
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Table 8. Each experimental group in YOLOv7′s data-enhanced ablation experiments corresponds to
a group of tricks and evaluation metrics. The “X“ indicates that the trick is not used in this group of
experiments and the “7“ indicates that it is used in this group of experiments.

Group HSV Mosaic MixUp FocalLoss Precision Recall F1 Score mAP@0.5 mAP@0.5:0.95 FPS

1 7 7 7 7 0.939 0.870 0.90 0.932 0.807 111
2 X 7 7 7 0.914 0.885 0.90 0.930 0.801 92
3 7 X 7 7 0.933 0.876 0.90 0.931 0.798 89
4 7 7 X 7 0.929 0.878 0.90 0.929 0.798 91
5 7 7 7 X 0.925 0.872 0.90 0.924 0.782 82
6 X X 7 7 0.924 0.885 0.90 0.930 0.801 84
7 X 7 X 7 0.935 0.880 0.91 0.927 0.790 79
8 X 7 7 X 0.913 0.877 0.89 0.929 0.801 83
9 7 X X 7 0.940 0.881 0.91 0.932 0.807 86

10 7 X 7 X 0.916 0.884 0.90 0.929 0.777 77
11 7 7 X X 0.930 0.874 0.90 0.929 0.797 82
12 X X X 7 0.942 0.888 0.91 0.933 0.809 85
13 X X 7 X 0.932 0.876 0.90 0.927 0.783 81
14 X 7 X X 0.933 0.879 0.91 0.927 0.789 81
15 7 X X X 0.945 0.879 0.91 0.931 0.801 80
16 X X X X 0.932 0.875 0.90 0.927 0.788 84

FPS stands for Frames Per Second and mAP@0.5 is an abbreviation for Mean Average Precision when the
Intersection over Union (IoU) is set to 0.5.

Figure 13. The variation in mAP@0.5 during training. (a) Ablation experiments with improved
strategies; (b) a comparison of the original model with our final improved model.
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Table 9. Ablation experiments with improved algorithms. (For the following experiments, mixup,
Mosaic, and HSV data augmentation methods are used by default.)

Model Class Precision Recall F1 Score mAP@0.5 mAP@0.5:0.95 FPS

YOLOv7

All 0.942 0.888 0.91 0.933 0.809

85

Ruddy Shelduck 0.766 0.912 0.83 0.921 0.804
Whooper Swan 0.931 0.669 0.78 0.770 0.536

Red-crowned Crane 0.975 0.819 0.89 0.915 0.757
Black Stork 0.984 0.956 0.97 0.980 0.864
Little Grebe 0.900 0.979 0.94 0.974 0.931

Mallard 0.951 0.939 0.94 0.978 0.878
Pheasant-tailed Jacana 1.000 0.957 0.98 0.996 0.912

Demoiselle Crane 0.983 0.883 0.93 0.915 0.760
Mandarin Duck 0.967 0.934 0.95 0.960 0.852

Scaly-sided Merganser 0.966 0.833 0.89 0.921 0.793

YOLOv7
+

GAM

All 0.929 0.883 0.91 0.938 0.803

101

Ruddy Shelduck 0.750 0.890 0.81 0.917 0.792
Whooper Swan 0.920 0.649 0.76 0.780 0.538

Red-crowned Crane 0.972 0.834 0.90 0.922 0.754
Black Stork 0.956 0.962 0.96 0.979 0.849
Little Grebe 0.818 0.973 0.89 0.982 0.923

Mallard 0.947 0.961 0.95 0.977 0.884
Pheasant-tailed Jacana 1.000 0.987 0.99 0.996 0.889

Demoiselle Crane 0.983 0.834 0.90 0.921 0.752
Mandarin Duck 0.967 0.939 0.95 0.971 0.851

Scaly-sided Merganser 0.978 0.799 0.88 0.931 0.797

YOLOv7
+

Alpha-IoU

All 0.945 0.887 0.92 0.947 0.809

92

Ruddy Shelduck 0.873 0.908 0.89 0.944 0.816
Whooper Swan 0.914 0.684 0.78 0.811 0.549

Red-crowned Crane 0.972 0.825 0.89 0.935 0.747
Black Stork 0.952 0.962 0.96 0.980 0.867
Little Grebe 0.885 0.973 0.93 0.989 0.906

Mallard 0.946 0.947 0.95 0.979 0.879
Pheasant-tailed Jacana 1.000 0.987 0.99 0.995 0.901

Demoiselle Crane 0.972 0.828 0.89 0.920 0.778
Mandarin Duck 0.968 0.943 0.96 0.978 0.854

Scaly-sided Merganser 0.971 0.817 0.89 0.940 0.793

YOLOv7
+

GAM
+

Alpha-IoU
(YOLOv7Birds)

All 0.945 0.898 0.92 0.951 0.815

82

Ruddy Shelduck 0.892 0.904 0.90 0.944 0.803
Whooper Swan 0.922 0.730 0.81 0.825 0.573

Red-crowned Crane 0.984 0.858 0.92 0.935 0.752
Black Stork 0.947 0.962 0.95 0.981 0.857
Little Grebe 0.817 0.973 0.89 0.990 0.919

Mallard 0.956 0.946 0.95 0.983 0.880
Pheasant-tailed Jacana 1.000 0.987 0.99 0.996 0.911

Demoiselle Crane 0.977 0.871 0.92 0.932 0.807
Mandarin Duck 0.975 0.943 0.96 0.985 0.847

Scaly-sided Merganser 0.977 0.808 0.88 0.937 0.797

FPS stands for Frames Per Second and mAP@0.5 is an abbreviation for Mean Average Precision when the
Intersection over Union (IoU) is set to 0.5.

For commonly used deep learning networks (such as CNNs) are generally considered
to be black boxes and not very interpretable. To help better understand and explain the
principle and decision-making process of our improvement work, we introduced Grad-
CAM [61] in the ablation experiment. The class activation mapping image is generated,
which can help us analyze the network’s attention area for a certain species. We can, in turn,
analyze whether the network learns the correct features or information through the area of
network attention. The heat map drawn by Grad-CAM is shown in Figure 14. From the
graph, it can be seen that the improved method proposed in this paper can better mine the
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structural characteristics of our birds, and it is less affected by image noise. This method is
better and more reasonable.

Figure 14. The heat map of various models in the ablation experiment.

3.4.4. Manual Verification of Algorithm Effectiveness

The monitoring method proposed in this paper uses YOLOv7 and DeepSORT networks
to detect and track birds and combines the self-designed counting method to classify and
count birds. The overall process is shown in Figure 15, and Figure 16 shows the interface
design for the bird monitoring system that we proposed based on actual monitoring results.

Figure 15. Flowchart of the processing of the method.

Figure 16. The interface design for the monitoring system.

We manually counted the species and numbers of birds in the counting area of the
video frame to simulate a real-world situation and compared the model’s results of count-
ing birds to those results. The interval of time is neither excessively long nor excessively
short for a better performance compared to the performance of each period. The inter-
val of time chosen by this experiment’s counting results is 15 s. Table 10 presents the
experimental outcomes.
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Table 10. Comparison between quantity in reality and quantity calculated by the model.

Interval of Time 0–15 s 16–30 s 31–45 s 46–60 s

Results of manual count
(“true count”)

Quantity 36 44 65 72
Counting Accuracy (%) 100% 100% 100% 100%

Results of our algorithm Quantity 36 44 65 72
Counting Accuracy (%) 100% 100% 100% 100%

The results of the verification experiment indicate that the used model’s monitoring of
birds is consistent with the actual values. Our method is efficient and feasible, which can as-
sist personnel in understanding the distribution of bird populations and formulate targeted
bird protection strategies, thus significantly improving the efficiency of bird protection.

4. Discussion

In this paper, we have developed an integrated framework based on computer vision
technology for real-time automatic classification and the counting of birds. By using auto-
mated monitoring techniques, such as the computer vision monitoring method proposed
in this study or sound sensors, it is possible to collect information on birds in remote
areas over extended periods of time, thereby increasing the likelihood of discovering rare
species [62,63]. Researchers can combine the location information of monitoring sites to
collect information on the distribution of bird populations and migration routes in order
to develop more effective bird conservation plans. This method plays a certain role in the
field of bird conservation, improving the efficiency and accuracy of bird monitoring and
making bird conservation more effective [64].

The traditional method of using sample points requires human observers to observe at
various sample points within a certain space, which has obvious limitations. For example, in
studies of site occupancy or habitat preference [65,66], these limitations are particularly evi-
dent in species with low detectability. In such cases, increasing the duration of observations
(such as by using automated monitoring techniques) may improve detectability [67–69].
Additionally, birds typically inhabit unique and often remote environments, such as dense
forests and high-altitude mountains [70], and their small size and large numbers make
close observation challenging for researchers. Due to birds’ sensitivity to human distur-
bance, even slight disturbances can cause significant behavioral reactions and potentially
have negative impacts on their survival [71]. In this study, we used deep learning-based
techniques for bird species classification and tracking and developed an automated method
for classification and counting that can help address the above problems.

Budka et al., used a scientometric analysis to examine publication and research
trends [20] and found that in recent years, most publications related to bird monitoring or
classification are related to “deep learning.” This indicates that applying deep learning to
bird monitoring is a rapidly developing research topic, although the overall research quan-
tity is still limited, which confirms the necessity of using deep learning for bird monitoring.
In this paper, we experimented with eight models: Faster-RCNN, EfficientDet, CenterNet,
SSD, YOLOv4, YOLOv5, YOLOv7, and YOLOv8 to investigate suitable computer vision
methods. Among the eight models, YOLOv7 achieved the best performance, and we further
optimized this algorithm. Currently, we have not found scholars who use similar methods
for bird monitoring, so we can only compare our model with articles that use different
methods but similar tasks. Our proposed model achieved an average precision of over
71% [72], 88.1% [73], and 88.7% [74], which validates its effectiveness in identifying bird
categories compared to these methods. Combined with our tracking and counting method,
this opens up new perspectives for bird monitoring.

However, our method still has certain limitations, such as the need to improve recog-
nition accuracy in complex backgrounds and lighting conditions. Future research could
further explore how to optimize deep learning models to address these challenges, as well
as integrate other auxiliary technologies (such as drones, satellite remote sensing, and
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bioacoustics) [13–23] into the bird monitoring system. Additionally, we could add more
negative samples during the training phase and use image datasets generated by GAN [75]
for data augmentation to improve monitoring effectiveness.

5. Conclusions

It is worth mentioning that this study has constructed a bird species detection and
tracking dataset. The dataset includes 3737 images of birds and 11,139 images of the whole
body of individual birds, with manual data annotation of the whole body and head of each
bird. Such a dataset could provide data to support future bird conservation research. This
study proposes a bird monitoring method using computer vision tricks, which uses object
detection and a multi-object tracking network to detect and track birds by species, and
then combines the information from detection and tracking to count birds by species using
an area counting method. We also improved the object detection part by taking YOLOv7,
the current mainstream object detection network, as the baseline and fused GAM to the
head side of YOLOv7 and changed it to Alpha-IoU loss to obtain a more accurate edge
regression and object detection. The improvement resulted in a mAP of 95.1%, which is
probably the best model in the field to date. Our experiments have shown that our method
can be effective in monitoring birds and obtaining their population distribution, which
meets the requirements for practical applications.

In the future, we will continue to optimize the method to achieve better results in more
scenarios. For example, we could try to train the model using more datasets or use more
advanced tricks to analyze the sounds and behavior of birds. We believe that with these
improvements our method will better serve the cause of bird conservation and provide
more help for ornithological research.
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