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Simple Summary: The Chinese Red Steppe Cattle (CRS) is a well-known dual-purpose (meat and
milk) cattle breed. Here, the genetic variation and population structure of CRS were studied using
100 K SNP genotyping data. The results show that the genetic structure of CRS is different from other
populations, the level of genetic diversity is high, and the level of inbreeding is low. In conclusion,
our research provides the genetic basis for the prominent characteristics of CRS, which can be used to
improve the breeding program of CRS in the future.

Abstract: Chinese Red Steppe Cattle (CRS), a composite cattle breed, is well known for its milk
production, high slaughter rate, carcass traits, and meat quality. Nowadays, it is widely bred in
Jilin and Hebei Province and the Inner Mongolia Autonomous region. However, the population
structure and the genetic basis of prominent characteristics of CRS are still unknown. In this study,
we systematically describe their population structure, genetic diversity, and selection signature based
on genotyping data from 61 CRS individuals with GGP Bovine 100 K chip. The results showed that
CRS cattle had low inbreeding levels and had formed a unique genetic structure feature. Using two
complementary methods (including comprehensive haplotype score and complex likelihood ratio),
we identified 1291 and 1285 potentially selected genes, respectively. There were 141 genes annotated
in common 106 overlapping genomic regions covered 5.62 Mb, including PLAG1, PRKG2, DGAT1,
PARP10, TONSL, ADCK5, and BMP3, most of which were enriched in pathways related to muscle
growth and differentiation, milk production, and lipid metabolism. This study will contribute to
understanding the genetic mechanism behind artificial selection and give an extensive reference for
subsequent breeding.

Keywords: Chinese Red Steppe Cattle; genetic diversity; population structure; selection signatures;
SNP chip

1. Introduction

Domestication and selective breeding is the process by which wild individuals are bred
in captivity and modified through artificial selection to be phenotypically and genetically
distinct from the original ancestors [1,2]. Modern domesticated cattle can be categorized
into two subspecies: Bos taurus indicus (indicine or zebu) and Bos taurus taurus (taurine),
according to their different morphological characteristics and living habits [3]. With the
expansion of agricultural society and human activities, extensive blending has occurred
between different taurine and indicine populations, so there are more than over 800 live
cattle breeds in the world [4]. Hybridization is a common strategy for the formation of
modern livestock breeds and improving the undesirable performance of some cattle breeds,
which leads to the superiority of a heterozygote over their purebred parental breeds in
one or more traits [5]. In China, breeding specialized breeds through crossbreeding with
commercial breeds has become an important way to improve the production efficiency of
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Chinese indigenous breeds. It is necessary to evaluate the genetic diversity and observe the
development status of these composite breeds.

With the availability of single nucleotide polymorphism (SNP) genotyping data,
genome-wide SNP chips have been widely used to study genetic diversity, population
structure, inbreeding level, effective population size, genome-wide association study, and
selection feature detection in different breeds or populations worldwide [6,7]. At present,
depending on the SNP chips, several studies on the evaluations of genetic relatedness have
been carried out in farm animals such as cattle, pigs, and dogs, and many remarkable
scientific achievements have been achieved [8–10]. In cattle, many studies focused on the
economic traits under the positive selection of commercial breeds and the adaptability of
indigenous breeds [11]. The Bovine HapMap Consortium interrogated 37,470 SNPs in 497
cattle from 19 geographically and biologically diverse breeds and found that domestication
and artificial selection appear to have left detectable signatures of selection within the cattle
genome [12]. Chen. et al. used a 77 K chip to analyze the origin of Qinchuan cattle and
found that it belonged to the mixed origin of taurine and indicine and was accompanied by
a small amount of Javan cattle ancestry [13].

After long-term selection, breeds living in different environmental conditions have
formed a unique adaptive evolutionary system [14]. Differences in genomic structural
features caused by artificial or natural selections are known as selection signals related
to the direction of reproduction and the mechanism of domestication. Therefore, the
detection of selection signals is vital to uncover the genes related to economic traits and
explore the adaptation mechanism of domestication. In recent years, several statistical
methods have been used to detect recent selection footprints in composite populations,
including comprehensive haplotype score (iHS), complex likelihood ratio (CLR), cross-
population extended haplotype homozygosity (XP-EHH), and interpopulation relatively
comprehensive haplotype homozygosity (Rsb) [15,16]. For example, based on the Illumina
BovineLD v2 BeadChip data, van der Nest. et al. identified 10 candidate regions and genes
that are potentially under strong positive selection using the iHS and Rsb methods in an
admixed South African Simbra crossbred population [5]. Ma. et al. identified potentially
selected genes at the genome-wide level in Huaxi cattle, which related to ion binding and
muscle growth and differentiation [15].

Chinese Red Steppe Cattle (CRS), the first composite breed for both milk and meat
purposes since the founding of China, was developed by crossbreeding Shorthorn with
Chinese native Mongolian cattle [17]. The breeding work of CRS started in 1958, and
the new variety was identified by the National Breeding Committee and officially named
in 1985 [18–20]. It is characterized by its excellent production performances, including
high milk production, growth and carcass traits, strong stress resistance, and cold climate
adaptation, and is widely farmed, especially in northeast China [21,22]. Evaluating popula-
tion genetic characteristics and selection signatures can provide important insight into the
genetic relationship and molecular background of special phenotypes among breeds. In
this study, using Illumina GGP Bovine 100 K genotyping data, the population structure,
genetic diversity of CRS, and relationship with other commercial and native breeds were
analyzed. Additionally, selective sweep analysis was carried out to detect candidate regions
and potential genes underlying the carcass and milk characteristics of CRS. Our study will
help to promote the conservation and sustainability of CRS and advance understanding of
the mechanisms underlying the formation of specific traits in CRS.

2. Materials and Methods
2.1. Sample Selection

Blood samples were collected from 61 CRS individuals randomly selected from the
Sanjiazi Cattle Breeding Farm of Tongyu Country, Jilin Province. Cattle blood DNA was
extracted with a kit from Beijing Tiangen Biotechnology. After extraction, the integrity of
genomic DNA was detected with 1.0% agarose gel. The quality and quantity of the DNA
were estimated using a Nanodrop 2000 nucleic acid protein analyzer (Thermo Scientific,
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Wilmington, NC, USA). The obtained DNA bands are neat and clear without trailing, and
the purity of DNA samples (OD260/OD280 = 1.8–2.0) means less degradation and less
protein residue. In addition, the re-sequencing data of 245 individuals from 15 breeds were
downloaded from the NCBI database on 13 October 2022. (https://www.ncbi.nlm.nih.gov/
sra/); its parental ancestors include Shorthorn cattle (SHO, n = 20), Mongolian cattle (MON,
n = 27), and Angus cattle (ANG, n = 22), Hereford cattle (HER, n = 20), Holstein cattle
(HOL, n = 20), Charolais cattle (CHA, n = 23), Limousin cattle (LIM, n = 20), Simmental
cattle (SIM, n = 27), Tibetan cattle (TIB, n = 11), Kazakh cattle (KAZ, n = 11), as well as five
local Chinese populations, Yanbian cattle (YAN, n = 11), Luxi cattle (LUX, n = 7), Lingnan
cattle (LIN, n = 8), Wenling cattle (WEN, n = 11), Zhoushan cattle (ZHO, n = 7). Sample
details are presented in Tables S1 and S2.

2.2. SNP Genotyping and Quality Control

Samples of 61 CRS were genotyped using the GGP Bovine 100 K Chip. All re-
sequencing data of 245 individuals were aligned to the cattle reference genome (ARS-
UCD1.2) using BWA with command ‘bwa mem’, and SNP calling was performed following
the GATK pipeline v4.4.1.0 [23,24]. Then, we obtained the high-quality raw SNPs by us-
ing the module VariantFiltration with the parameters ‘QD < 2.0, FS > 60.0, MQ < 40.0,
MQRankSum < −12.5, ReadPosRankSum < −8.0 and SOR > 3.0′ of GATK. Finally, the
genotyping data of the CRS were merged with the re-sequencing data using the PLINK
v1.9 ‘–merge’ command [25]. Only SNPs located on autosomal were used for subsequent
analysis, and SNP was assessed using PLINK with option ‘--chr 1—29′. To increase the
data processing accuracy, PLINK v1.9 software was adopted for quality control. SNPs were
obtained after the exclusion of those with either call rate ≤95% and minor allele frequency
(MAF) ≤3% using the command ‘--geno 0.05′ and ‘--maf 0.03′. After that, PLINK v1.9
‘--mind 0.1′ command was used to remove samples with genotype loss rate greater than
10%, and the remaining SNPs were used for further analysis.

2.3. Genetic Diversity

In order to assess genetic diversity, the average observed heterozygosity (HO) and ex-
pected heterozygosity (HE) were estimated using PLINK v1.9 with option ‘--hardy’ [26]. The
nucleotide diversity (pi) was estimated using VCFtools with the parameters ‘--window-pi
10,000 --window-pi-step 5000′. In addition, to assess the inbreeding degree, the homozygos-
ity inbreeding coefficient (FHOM) was calculated using PLINK v1.9 command ‘--het’ [25],
and the total length of the ROH fragment was calculated using the “--homozyg” command
setting [27,28]. After that, the runs of the homozygosity-based inbreeding coefficient based
on ROH (FROH) were calculated by the total length of the ROH fragment divided by the
length of the autosomal genome.

2.4. Population Structure Analysis

To ascertain the genetic relationship between CRS and other breeds, PLINK v1.9 was
used to remove those sites with high LD with the parameter ‘-indep-pairwise 50 25 0.2′ [25],
and the remaining 39,814 SNPs were used for population structure analysis. Principal
component analysis (PCA) was performed using GCTA v1.92.3beta3 to discern genetic rela-
tionships among breeds [29]. The graphical representation of PCA was depicted using the
plot function in R3.6.1. In addition, admixture analyses using ADMIXTURE 1.30 software
with the parameters ‘admixture --cv’ were implemented to validate the cluster patterns
among our dataset [30]. The corresponding cross-validation error value for clustering
(K = 2 to 9) was also calculated in ADMIXTURE, and the graphical representation of the
ADMIXTURE results was performed using R script, as suggested by the ADMIXTURE
procedure.

https://www.ncbi.nlm.nih.gov/sra/
https://www.ncbi.nlm.nih.gov/sra/
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2.5. Identification of Selection Signature

In order to detect selection signatures under the recent or ongoing positive selection
in the CRS genome, the selection sweeps were identified based on two complementary
methods: the Integrated Haplotype score (iHS) and composite likelihood ratio (CLR)
approach, respectively. In this study, BEAGLE v5.2 with the parameters ‘beagle gt =
test.vcf out = test.beagle.vcf ne = 306′ was used to impute missing alleles and infer the
haplotype phase for all individuals [31]. The mean iHS value was calculated by 100-kb
non-overlapping window across the autosomes and the norm module of selscan was
applied to normalize the iHS score [32]. The density of signal in each region was evaluated
according to the proportion of SNPs with |iHS| > 2, which essentially reflected unusually
long haplotypes across the genome [33]. Finally, the regions under selection as those with
the top 5% highest average |iHS| score were regarded as candidate regions of positive
selection. The CLR test was calculated for sites in non-overlapping 100-kb windows using
the software SweeD v3.2.1 [34]. To define candidate regions, the maximum CLR value was
used as the test statistic according to previous studies [35], and the top 5% CLR values were
selected as candidate regions in this study. In order to reduce false-positive regions, the
overlap of genomic regions identified by the two methods with outlier signals (top 5%)
was considered as candidate signatures of selection [11].

2.6. Enrichment Analyses of Candidate Genes under Selection

Based on the bovine ARS-UCD1.2 reference genome annotation, we retrieved genes
with candidate significant of SNP loci under selection. Furthermore, gene function was
determined using the National Center for Biotechnology Information database accessed on
14 November 2022 (https://www.ncbi.nlm.nih.gov/). In this study, enrichment analyses
for genes within overlapping significant candidate regions detected using the iHS method
(top 5%) and the CLR method (top 5%) were performed. To gain a better understanding of
the gene functions and signaling pathways of the identified candidate genes, Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway enrichment
analysis were performed using KOBAS [36]. Thus, the significantly enriched pathways
were considered to be significantly enriched only when the corrected p-value was less than
0.05 [37].

2.7. Aligning Core Regions to QTL Database

Moreover, the cattle quantitative trait locus (QTL) database was used to identify the
overlapping regions associated with the most plausible trait-associated selective signatures.
We used the bovine database incorporated in the Animal QTL database to determine the
potential overlap of these regions [38]. The number and function of candidate regions were
determined after annotation.

3. Results
3.1. SNP Genotyping and Genetic Diversity

In total, 245 individuals from 15 breeds were generated and aligned to the B.taurus
reference genome ARS-UCD1.2, and 61 individuals from CRS were successfully genotyped
with the GGP Bovine 100 K Chip. Furthermore, a total of 82,101 common autosomal bi-
allelic SNPs were detected in the merged data across 306 individuals; out of 80,871 SNPs
remaining after the removal SNPs with <95% call rate, MAF < 0.03 with an average distance
of 32.3 kb distributed over 29 chromosomes were obtained for subsequent analysis. The
length of each chromosome, number, percentage of SNPs, and the average interval between
SNPs for each chromosome are shown in Table S3. The results showed that the highest
number of SNPs (4994 SNPs) was found on chromosome 1, and the lowest (1523 SNPs)
was found on chromosome 25. The distribution of SNPs on each chromosome within 1 Mb
window size is shown in Figure S1, and the result showed that SNPs are evenly distributed
across the chromosome. The average observed heterozygosity (Ho), average expected
heterozygosity (He), the homozygosity inbreeding coefficient (FHOM), and inbreeding

https://www.ncbi.nlm.nih.gov/
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coefficient based on ROH (FROH) have been calculated to assess polymorphism of 16 cattle
populations. The results indicated that the pi value ranged from 0.000034 to 0.000047
(Table S4). Among them, CRS (0.000043) was higher than that in most indicine breeds
but lower than that in most taurine breeds. Among all groups in this study, the HO of
CRS (0.387) was higher than most commercial breeds, including Simmental (0.386), Angus
(0.377), and Holstein (0.372), and the HE of CRS (0.375) was between Hereford and Angus.
Overall, these results indicated high genetic diversity in CRS. As shown in S3, the results
showed that the FHOM (−0.0312) in CRS was very close to zero. In addition, the FROH
value of CRS was 0.088, which was lower than the three commercial cattle population of
Hereford cattle (0.133), Angus cattle (0.111), and Holstein cattle (0.096), and approximately
that of local Chinese cattle of Lingnan cattle (0.073), and Zhoushan cattle (0.079). The results
indicating the existing breeding programs effectively avoid inbreeding.

3.2. Population Structure and Admixture Analysis

To investigate the cluster patterns among the CRS cattle and other cattle breeds, we
conducted PCA and ADMIXTURE using genomic SNPs. The genetic relationships among
the 16 cattle breeds revealed using PCA are shown in Figure 1. The first and second
PCs explained 7.10% and 3.80% of the variation in the entire genomic data, respectively
(Figure 1a). In particular, the first PC obviously separated CRS and SHO from other breeds,
which had the greatest explanatory power. Next, to determine the admixture degree in
the 16 cattle populations, ADMIXTURE software was used to infer the proportions of
individuals in CRS cattle. The hypothetical ancestral groups ranged from K = 2 to 9, with
the lowest cross-validation error value being 9 (Figure 1b). When K = 2, these different cattle
breeds can be genetically divided into two groups: Bos taurus and Bos indicus. When K = 3,
CRS cattle displayed different admixture component proportions among SHO and MON
populations; it is more similar to SHO, which indicates that the genetic influence of SHO
cattle was greater than that of MON cattle, a result consistent with the principal component
analysis result. When K = 8, CRS displayed different admixture component proportions
among all populations, indicating that it formed its own unique genetic features obviously
distinguished from all other populations.

3.3. Identification of Selection Signatures

In this study, we applied the iHS and CLR methods to detect the genomic regions
under the recent selection of the CRS. Two methods showed outlier signals (top 5%) in
overlapping regions and were, therefore, considered candidate selective regions. The
genome-wide distribution of |iHS| values and CLR values for 100 k non-overlapping
windows on autosomes is depicted in Figure 2. Results of the |iHS| value indicated that the
distribution of selective signatures was not uniform across the genome; the average |iHS|
value was 0.76, and the maximum |iHS| value was 6.62. In total, there were 1122 candidate
regions under the threshold of the top 5% that were identified, and we obtained 1291 genes
under selection in the iHS test (Figure 2a; Table S5). In addition, We identified 1235 regions
meeting the top 5% CLR values and were selected as candidate regions with a total of
1285 genes (Figure 2b; Table S6). Through gene retrieval, 141 potentially selected candidate
genes were detected in 106 overlapping genomic regions covered 5.62 Mb by both methods,
indicating strongly selected in the CRS population (Table S7). The commonly detected
regions showed several candidate genes already reported as selection signals or related to
excellent economic traits, such as milk yield and lactation performance (DGAT1, OPLAH,
and GRINA) [39–41], lipid metabolism (PARP10 and AMFR) [42,43], and growth and carcass
traits (PRKG2, ZFP90, and BMP3) [44,45]. Among them, most of these genes were located
on chromosomes 10 and 14, respectively (Tables 1 and S7). Notably, PLAG1 has been fully
proven to be associated with stature and body size, which may affect the beef production
of CRS [46–48]. PRKG2 plays a role in growth and carcass [49,50]. DGAT1 showed some
positive role in the enhancement of meat and carcass fatness quality in beef cattle and
obtained considerable attention, especially in animal milk production [51].
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Figure 1. Population structure and relationships of CRS compared with other breeds. (a) The PCA
result of 306 individuals from 16 cattle populations. (b) Model-based clustering among different
cattle using ADMIXTURE (K = 2–9). Abbreviations: CRS, Chinese Red Steppe Cattle; ANG, Angus;
HER, Hereford; SIM, Simmental; LIM, Limousin; CHA, Charolais; HOL, Holstein; SHO, Shorthorn;
MON, Mongolian; TIB, Tibetan; KAZ, Kazakh; YAN, Yanbian; LUX, Luxi; LIN, Lingnan; WEN,
Wenling; ZHO, Zhoushan. Individuals were shown as a thin vertical line colored in proportion to
their estimated ancestry.

Table 1. Potential selected genes associated with important economic traits in CRS.

Chr Position (bp) a Candidate Genes Traits

6 95,951,816–96,039,423 PRKG2 Meat and carcass

14 22,865,966–22,878,026
22,878,513–22,965,966 XKR4 Feed intake and growth

14 23,280,460–23,365,970 PLAG1 Body height trait
14 771,431–865,745 GRINA Milk yield and lactation

14 670,944–770,944
771,431–865,745 OPLAH Milk yield and lactation

14 570,458–665,743 DGAT1 Milk and Meat Production

14 469,971–569,971
570,458–665,743 ADCK5 Milk production
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Table 1. Cont.

Chr Position (bp) a Candidate Genes Traits

14 469,971–565,742 TONSL Milk production
14 469,971–565,742 CPSF1 Milk production
14 771,431–865,745 PARP10 Lipid metabolism
14 469,971–565,742 VPS28 Milk fat synthesis

14 469,971–565,742 CYHR1 Milk production and
lactation

14 670,944–765,744 MAF1 305-day milk
18 24,199,314–24,261,243 AMFR Lipid metabolism
18 35,861,360–35,909,418 ZFP90 Growth traits
1 148,529,301–148,616,272 DOP1B Fertility trait
14 771,431–865,745 SPATC1 Fertility trait
6 95,750,518–95,850,518 BMP3 Skeletal development
14 670,944–765,744 EXOSC4 Embryonic lethality

a This column presents the position of candidate genes that are within or overlap with the potential regions of
selection.

Figure 2. Genome-wide distribution of selection signatures detected by iHS and CLR in CRS. Red
line displays the threshold levels of 5%. (a) Manhattan plot of iHS scores in CRS. (b) Manhattan plot
of CLR scores in CRS. Alternating colors distinguish markers on neighboring chromosomes.
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3.4. Gene Annotation and Enrichment Analysis

The functional enrichment analysis using KEGG pathways and Gene Ontology (GO)
for overlapped genes were further analyzed. The significantly enriched GO terms and
KEGG pathways are shown in Table S8. Among them, a total of 290 significantly en-
riched GO terms with corrected p-value < 0.05 were observed, such as regulation of cell
cycle (GO:0051726, p = 0.00681), identical protein binding (GO:0042802, p = 0.000112),
protein-containing complex binding (GO:0044877, p = 0.000349), and positive regulation of
protein catabolic process (GO:0045732, p = 0.0246). In addition, metabolism-related and
immune-related biological functions were significant. Furthermore, eighteen significant
enriched pathways were obtained, including the mRNA surveillance pathway (bta03015,
p = 0.00113), protein processing in the endoplasmic reticulum (bta04141, p = 0.00769), cGMP-
PKG signaling pathway (bta04022, p = 0.0447), and cAMP signaling pathway (bta04024,
p = 0.0222), which are related to metabolism and protein synthesis.

Moreover, the cattle quantitative trait locus (QTL) database was used to identify the
overlapping regions associated with the most plausible trait-associated selective signatures.
In total, 436 QTLs were located within or overlapping with these 106 candidate regions
(Table S9). Most of these regions have been found to be related to economically important
traits in cattle, including milk traits, meat and carcass traits, and reproduction traits.
Notably, 106 (24.3%) QTLs belonging to 77 candidate regions were associated with milk
traits, and 99 (22.7%) QTLs belonging to 95 candidate regions were associated with meat
and carcass traits, suggesting the strong selection for milk and meat traits during the
breeding of CRS.

4. Discussion

CRS is a crossbred cattle breed in China, and it has been intensively bred for beef
over the past 30 years, with characteristics of high slaughter rate, excellent meat quality,
greater disease resistance, and good reproductive performance [17]. The characterization of
genetic diversity, population structure, and genetic relationships at the genome-wide level
is essential for evaluating bovine genetic resources and uncovering genetic divergence,
as well as detecting the selection signatures [52,53]. The data generated from this study
will help inform and design appropriate management and breeding strategies to maximize
the productivity of CRS. The dataset contains a total of 82,101 SNPs in 306 individuals
from 16 breeds and 80,871 SNPs with an average distance of 32.3 kb distributed over
29 autosomal chromosomes after quality control. Among all groups in this study, the
observed heterozygosity, expected heterozygosity, and pi of CRS were 0.387, 0.375, 0.000043,
respectively, which were at the relatively high level of genomic diversity among the 16
cattle populations in this study. One reason may be that CRS was crossed with local breeds,
which is consistent with previous research [54]. On the other hand, the bovine SNP chips
were optimized for use in taurine, which has a little bias and is not suitable for studying the
genetic diversity and origin of domestic cattle in other regions [55]. The GGP Bovine 100 K
Chip can provide the amount of neutral information to adapt to most breeds and is widely
used for genetic diversity and selection signal analysis of local or cultivated varieties [56,57].
Although crossbreeding is still an important method to increase the genetic variation of
modern cattle breeds, high-intensity artificial selection may promote the improvement
of population inbreeding levels and, thus, reduce the genetic diversity of breeds, which
should be noted in the process of breeding [58]. The results indicated that the FHOM and
FROH of CRS exceeded the expected value, which was lower than a lot of commercial
cattle populations. In this study, the genetic diversity of CRS holds significant potential for
improvements in production. Therefore, based on the existing breeding, breeding cattle
with a large genetic distance should be selected to increase the population size and maintain
the genetic diversity of the CRS population. In the future, we could obtain more genomic
information using whole-genome data to more precisely elucidate the genetic diversity and
represent a realistic estimate of total genomic inbreeding in CRS [59,60].
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PCA and ADMIXTURE were used to investigate the genetic relationship and
population-level admixture among CRS and other breeds. The results indicated that the
genomic background of the CRS breed initially represents the fusion of ancestral varieties.
In addition, CRS individuals were obviously separated from other cattle breeds, and the
CRS breed composition stabilized over time after initial crossbreeding and subsequent
artificial selection.

The domestication of various livestock species is one of the greatest achievements
of humankind [61]. In the process of domestication, domesticated animals have been
subjected to multiple natural selections such as environment, food, and pathogens, as
well as strong artificial selection in terms of economic traits. With the maturity and rapid
development of second-generation sequencing technology, more and more sequencing data
have been accumulated, which can detect the selection footprint left on the genome in a
large range [62,63]. By analyzing the selection signatures in the genome, we can understand
the evolutionary history of the population and better guide the study of biological evolution
and genetic breeding [64,65]. With the improvement in analytical methods and strategies,
as well as more consideration of population factors, many approaches have been proposed
to identify selection signals, such as iHS, CLR, XP-EHH, and Fst. In this study, the iHS
and CLR were used to identify candidate genomic regions under positive selection with
important traits in CRS [66,67]. We identified 1291 and 1285 potentially selected genes
in CRS, respectively, of which 5.62 Mb selection area overlapped in the two selective
signature detection methods. Complex quantitative traits, such as milk traits, are controlled
by numerous genes with small effects [68,69]. Previous studies suggested that DGAT1
was documented to have a significant influence on milk production in cattle in Germany
and is associated with milk production traits through GWAS [70,71]. Of these candidate
genes, a series of genes (DGAT1, TONSL, CPSF1, ADCK5, GRINA, and PARP10) in the
CRS that has the strongest signal for milk production traits also reported various levels
of interactions in which CPSF1 as the hub gene since it interacted with all the other
genes [51]. Additionally, TONSL, CPSF1, ADCK5, and DGAT1 genes are neighbors and
there are coexpressions among each other [72]. Moreover, several of the candidate genes
found for body size were previously reported in humans, cattle, goats, and horses [73–77].
Variation in the genome region coding for PLAG1 has well-documented associations with
skeletal growth and age at puberty in cattle [78], and it has been reported in humans that
PRKG2 gene deletion is associated with growth restriction [79,80]. In this study, many
results highlighted genes that improve milk, meat, and lipid metabolism and their quality
characteristics. The heritability of these traits increases due to the frequency of dominant
mutations of genes affecting traits in the population, which leads to a positive selection of
gene regions [16]. Moreover, QTL associated with milk yield and meat production traits
were significantly enriched in selection signatures. Overall, our results demonstrate the
genetic basis of economically important traits, show evidence of sustained selection, and
provide a reference for subsequent breeding strategies.

5. Conclusions

The results presented in this study indicated that CRS cattle have high genetic diversity,
a low level of inbreeding, and have formed unique genetic features. Meanwhile, putative
selection regions containing candidate genes associated with the traits of milk production,
growth, and carcass traits were also identified and annotated. These findings will be very
useful for conservation, management, and selection approaches in CRS cattle in the future.
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diversity of the 16 cattle breeds used in this study; Table S5: A summary of genes from iHS in CRS;
Table S6: A summary of genes from CLR in CRS; Table S7: 106 overlapping genomic regions; Table
S8: GO and KEGG enrichment analysis of CRS candidate genes by iHS and CLR methods; Table S9:
QTLs overlapped with candidate selected regions.

Author Contributions: Investigation and writing—original draft, M.H.; conceptualization and
methodology, H.J.; investigation, visualization, and validation, W.L.; investigation and validation,
L.S.; investigation and validation, W.Y.; formal analysis, H.S.; resources and project administration,
C.C.; conceptualization, validation, and supervision, B.Y.; data curation, funding acquisition, and
writing—review and editing, S.Y.; supervision, project administration, and funding acquisition, J.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (no.
31972570) and China Agriculture Research System of MOF and MARA (no. CARS-37).

Institutional Review Board Statement: All experiments were conducted in accordance with the
Institutional Animal Care and Use Committee guidelines (IACUC No. SY202208201) under currently
approved protocols at Jilin University.

Informed Consent Statement: Not applicable.

Data Availability Statement: The genotyping data supporting the findings of the present study
are available in FigShare (https://doi.org/10.6084/m9.figshare.21586182.v1), and the file(s) become
available on 19 November 2024.

Acknowledgments: The authors thank Chunyan Bai and Zhengxi Liu for providing constructive
suggestions for this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yurchenko, A.A.; Daetwyler, H.D.; Yudin, N.; Schnabel, R.D.; Vander Jagt, C.J.; Soloshenko, V.; Lhasaranov, B.; Popov, R.; Taylor,

J.F.; Larkin, D.M. Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental
adaptation and acclimation. Sci. Rep. 2018, 8, 12984. [CrossRef] [PubMed]

2. Zhang, S.J.; Wang, G.D.; Ma, P.; Zhang, L.L.; Yin, T.T.; Liu, Y.H.; Otecko, N.O.; Wang, M.; Ma, Y.P.; Wang, L.; et al. Genomic
regions under selection in the feralization of the dingoes. Nat. Commun. 2020, 11, 671. [CrossRef] [PubMed]

3. Decker, J.E.; McKay, S.D.; Rolf, M.M.; Kim, J.; Molina Alcala, A.; Sonstegard, T.S.; Hanotte, O.; Gotherstrom, A.; Seabury, C.M.;
Praharani, L.; et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 2014, 10,
e1004254. [CrossRef] [PubMed]

4. Bovine Genome, S.; Analysis, C.; Elsik, C.G.; Tellam, R.L.; Worley, K.C.; Gibbs, R.A.; Muzny, D.M.; Weinstock, G.M.; Adelson,
D.L.; Eichler, E.E.; et al. The genome sequence of taurine cattle: A window to ruminant biology and evolution. Science. 2009, 324,
522–528. [CrossRef]

5. Van der Nest, M.A.; Hlongwane, N.; Hadebe, K.; Chan, W.Y.; van der Merwe, N.A.; De Vos, L.; Greyling, B.; Kooverjee, B.B.;
Soma, P.; Dzomba, E.F.; et al. Breed Ancestry, Divergence, Admixture, and Selection Patterns of the Simbra Crossbreed. Front.
Genet. 2020, 11, 608650. [CrossRef]

6. Kijas, J.W.; Townley, D.; Dalrymple, B.P.; Heaton, M.P.; Maddox, J.F.; McGrath, A.; Wilson, P.; Ingersoll, R.G.; McCulloch, R.;
McWilliam, S.; et al. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS ONE 2009, 4,
e4668. [CrossRef]

7. Liu, B.; Tao, W.; Feng, D.; Wang, Y.; Heizatuola, N.; Ahemetbai, T.; Wu, W. Revealing Genetic Diversity and Population Structure
of Endangered Altay White-Headed Cattle Population Using 100 k SNP Markers. Animals 2022, 12, 3214. [CrossRef]

8. McKay, S.D.; Schnabel, R.D.; Murdoch, B.M.; Matukumalli, L.K.; Aerts, J.; Coppieters, W.; Crews, D.; Dias Neto, E.; Gill, C.A.;
Gao, C.; et al. An assessment of population structure in eight breeds of cattle using a whole genome SNP panel. BMC Genet. 2008,
9, 37. [CrossRef]

9. Rubin, C.J.; Megens, H.J.; Martinez Barrio, A.; Maqbool, K.; Sayyab, S.; Schwochow, D.; Wang, C.; Carlborg, O.; Jern, P.; Jorgensen,
C.B.; et al. Strong signatures of selection in the domestic pig genome. Proc. Natl. Acad. Sci. USA 2012, 109, 19529–19536. [CrossRef]

https://www.mdpi.com/article/10.3390/ani13101717/s1
https://doi.org/10.6084/m9.figshare.21586182.v1
https://doi.org/10.1038/s41598-018-31304-w
https://www.ncbi.nlm.nih.gov/pubmed/30154520
https://doi.org/10.1038/s41467-020-14515-6
https://www.ncbi.nlm.nih.gov/pubmed/32015346
https://doi.org/10.1371/journal.pgen.1004254
https://www.ncbi.nlm.nih.gov/pubmed/24675901
https://doi.org/10.1126/science.1169588
https://doi.org/10.3389/fgene.2020.608650
https://doi.org/10.1371/journal.pone.0004668
https://doi.org/10.3390/ani12223214
https://doi.org/10.1186/1471-2156-9-37
https://doi.org/10.1073/pnas.1217149109


Animals 2023, 13, 1717 11 of 13

10. Axelsson, E.; Ratnakumar, A.; Arendt, M.L.; Maqbool, K.; Webster, M.T.; Perloski, M.; Liberg, O.; Arnemo, J.M.; Hedhammar, A.;
Lindblad-Toh, K. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 2013, 495, 360–364.
[CrossRef]

11. Xia, X.; Zhang, S.; Zhang, H.; Zhang, Z.; Chen, N.; Li, Z.; Sun, H.; Liu, X.; Lyu, S.; Wang, X.; et al. Assessing genomic diversity and
signatures of selection in Jiaxian Red cattle using whole-genome sequencing data. BMC Genom. 2021, 22, 43. [CrossRef]

12. Bovine HapMap, C.; Gibbs, R.A.; Taylor, J.F.; Van Tassell, C.P.; Barendse, W.; Eversole, K.A.; Gill, C.A.; Green, R.D.; Hamernik,
D.L.; Kappes, S.M.; et al. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 2009, 324,
528–532. [CrossRef]

13. Chen, N.; Huang, J.; Zulfiqar, A.; Li, R.; Xi, Y.; Zhang, M.; Dang, R.; Lan, X.; Chen, H.; Ma, Y.; et al. Population structure and
ancestry of Qinchuan cattle. Anim. Genet. 2018, 49, 246–248. [CrossRef]

14. Paim, T.D.P.; Hay, E.H.A.; Wilson, C.; Thomas, M.G.; Kuehn, L.A.; Paiva, S.R.; McManus, C.; Blackburn, H.D. Dynamics of
genomic architecture during composite breed development in cattle. Anim. Genet. 2020, 51, 224–234. [CrossRef]

15. Ma, J.; Gao, X.; Li, J.; Gao, H.; Wang, Z.; Zhang, L.; Xu, L.; Gao, H.; Li, H.; Wang, Y.; et al. Assessing the Genetic Background and
Selection Signatures of Huaxi Cattle Using High-Density SNP Array. Animals 2021, 11, 3469. [CrossRef]

16. Taye, M.; Kim, J.; Yoon, S.H.; Lee, W.; Hanotte, O.; Dessie, T.; Kemp, S.; Mwai, O.A.; Caetano-Anolles, K.; Cho, S.; et al. Whole
genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef. BMC Genet. 2017,
18, 11. [CrossRef]

17. Fang, X.; Qin, L.; Yu, H.; Jiang, P.; Xia, L.; Gao, Z.; Yang, R.; Zhao, Y.; Yu, X.; Zhao, Z. Comprehensive Analysis of miRNAs and
Target mRNAs between Immature and Mature Testis Tissue in Chinese Red Steppes Cattle. Animals 2021, 11, 3024. [CrossRef]

18. China National Commission of Animal Genetic Resources. Animal Genetic Resources in China Bovines; Chinese Agricultural Press:
Beijing, China, 2011; pp. 222–225. (In Chinese)

19. Li, X.; Zhang, J.; Zhao, Y.; Hu, C. Study on Polymorphisms of Red Steppe Cattle by Microsatellites. China Herbiv. Sci. 2004, 3, 3–5.
Available online: https://caod.oriprobe.com/articles/20274162/Study_on_Polymorphisms_of_Red_Steppe_Cattle_by_Mic.htm
(accessed on 5 March 2023).

20. Hu, C.; Zhang, G.; Wu, J.; Huo, C.; Hu, C. Study on lactation and meat production performance of grassland Red cattle. Mod.
Agric. Sci. Techn. 2009, 5, 210–213.

21. Fang, X.; Zhao, Z.; Yu, H.; Li, G.; Jiang, P.; Yang, Y.; Yang, R.; Yu, X. Comparative genome-wide methylation analysis of longissimus
dorsi muscles between Japanese black (Wagyu) and Chinese Red Steppes cattle. PLoS ONE 2017, 12, e0182492. [CrossRef]

22. Lv, Y.; Cao, Y.; Gao, Y.; Yun, J.; Yu, Y.; Zhang, L.; Hu, Z.; Liu, L.; Xue, J.; Zhang, G. Effect of ACSL3 Expression Levels on
Preadipocyte Differentiation in Chinese Red Steppe Cattle. DNA Cell Biol. 2019, 38, 945–954. [CrossRef] [PubMed]

23. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760.
[CrossRef] [PubMed]

24. McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.;
et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.
2010, 20, 1297–1303. [CrossRef] [PubMed]

25. Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al.
PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575.
[CrossRef] [PubMed]

26. Xu, L.; Yang, L.; Zhu, B.; Zhang, W.; Wang, Z.; Chen, Y.; Zhang, L.; Gao, X.; Gao, H.; Liu, G.E.; et al. Genome-wide scan reveals
genetic divergence and diverse adaptive selection in Chinese local cattle. BMC Genom. 2019, 20, 494. [CrossRef]

27. McQuillan, R.; Leutenegger, A.L.; Abdel-Rahman, R.; Franklin, C.S.; Pericic, M.; Barac-Lauc, L.; Smolej-Narancic, N.; Janicijevic,
B.; Polasek, O.; Tenesa, A.; et al. Runs of homozygosity in European populations. Am. J. Hum. Genet. 2008, 83, 359–372. [CrossRef]

28. Xu, L.; Zhao, G.; Yang, L.; Zhu, B.; Chen, Y.; Zhang, L.; Gao, X.; Gao, H.; Liu, G.E.; Li, J. Genomic Patterns of Homozygosity in
Chinese Local Cattle. Sci. Rep. 2019, 9, 16977. [CrossRef]

29. Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011,
88, 76–82. [CrossRef]

30. Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19,
1655–1664. [CrossRef]

31. Browning, S.R.; Browning, B.L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association
studies by use of localized haplotype clustering. Am. J. Hum. Genet. 2007, 81, 1084–1097. [CrossRef]

32. Szpiech, Z.A.; Hernandez, R.D. selscan: An efficient multithreaded program to perform EHH-based scans for positive selection.
Mol. Biol. Evol. 2014, 31, 2824–2827. [CrossRef]

33. Voight, B.F.; Kudaravalli, S.; Wen, X.; Pritchard, J.K. A map of recent positive selection in the human genome. PLoS Biol. 2006, 4,
e72. [CrossRef]

34. Pavlidis, P.; Zivkovic, D.; Stamatakis, A.; Alachiotis, N. SweeD: Likelihood-based detection of selective sweeps in thousands of
genomes. Mol. Biol. Evol. 2013, 30, 2224–2234. [CrossRef]

35. Chen, M.; Wang, J.; Wang, Y.; Wu, Y.; Fu, J.; Liu, J.F. Genome-wide detection of selection signatures in Chinese indigenous Laiwu
pigs revealed candidate genes regulating fat deposition in muscle. BMC Genet. 2018, 19, 31. [CrossRef]

https://doi.org/10.1038/nature11837
https://doi.org/10.1186/s12864-020-07340-0
https://doi.org/10.1126/science.1167936
https://doi.org/10.1111/age.12658
https://doi.org/10.1111/age.12907
https://doi.org/10.3390/ani11123469
https://doi.org/10.1186/s12863-016-0467-1
https://doi.org/10.3390/ani11113024
https://caod.oriprobe.com/articles/20274162/Study_on_Polymorphisms_of_Red_Steppe_Cattle_by_Mic.htm
https://doi.org/10.1371/journal.pone.0182492
https://doi.org/10.1089/dna.2018.4443
https://www.ncbi.nlm.nih.gov/pubmed/31355674
https://doi.org/10.1093/bioinformatics/btp324
https://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1101/gr.107524.110
https://www.ncbi.nlm.nih.gov/pubmed/20644199
https://doi.org/10.1086/519795
https://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1186/s12864-019-5822-y
https://doi.org/10.1016/j.ajhg.2008.08.007
https://doi.org/10.1038/s41598-019-53274-3
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1086/521987
https://doi.org/10.1093/molbev/msu211
https://doi.org/10.1371/journal.pbio.0040072
https://doi.org/10.1093/molbev/mst112
https://doi.org/10.1186/s12863-018-0622-y


Animals 2023, 13, 1717 12 of 13

36. Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent prioritization
and exploratory visualization of biological functions for gene enrichment analysis. Nucleic. Acids Res. 2021, 49, W317–W325.
[CrossRef]

37. Liu, D.; Chen, Z.; Zhao, W.; Guo, L.; Sun, H.; Zhu, K.; Liu, G.; Shen, X.; Zhao, X.; Wang, Q.; et al. Genome-wide selection
signatures detection in Shanghai Holstein cattle population identified genes related to adaption, health and reproduction traits.
BMC Genom. 2021, 22, 747. [CrossRef]

38. Hu, Z.L.; Park, C.A.; Reecy, J.M. Building a livestock genetic and genomic information knowledgebase through integrative
developments of Animal QTLdb and CorrDB. Nucleic. Acids Res. 2019, 47, D701–D710. [CrossRef]

39. Atashi, H.; Salavati, M.; De Koster, J.; Ehrlich, J.; Crowe, M.; Opsomer, G.; Gplus, E.c.; Hostens, M. Genome-wide association for
milk production and lactation curve parameters in Holstein dairy cows. J. Anim. Breed. Genet. 2020, 137, 292–304. [CrossRef]

40. Kolbehdari, D.; Wang, Z.; Grant, J.R.; Murdoch, B.; Prasad, A.; Xiu, Z.; Marques, E.; Stothard, P.; Moore, S.S. A whole genome
scan to map QTL for milk production traits and somatic cell score in Canadian Holstein bulls. J. Anim. Breed. Genet. 2009, 126,
216–227. [CrossRef]

41. Wang, D.; Ning, C.; Liu, J.F.; Zhang, Q.; Jiang, L. Short communication: Replication of genome-wide association studies for milk
production traits in Chinese Holstein by an efficient rotated linear mixed model. J. Dairy. Sci. 2019, 102, 2378–2383. [CrossRef]

42. Chen, C.Z.; Zhu, Y.N.; Chai, M.L.; Dai, L.S.; Gao, Y.; Jiang, H.; Zhang, L.J.; Ding, Y.; Liu, S.Y.; Li, Q.Y.; et al. AMFR gene silencing
inhibits the differentiation of porcine preadipocytes. Genet. Mol. Res. 2016, 15. [CrossRef] [PubMed]

43. Szanto, M.; Gupte, R.; Kraus, W.L.; Pacher, P.; Bai, P. PARPs in lipid metabolism and related diseases. Prog. Lipid. Res. 2021, 84,
101117. [CrossRef] [PubMed]

44. Gamer, L.W.; Ho, V.; Cox, K.; Rosen, V. Expression and function of BMP3 during chick limb development. Dev. Dyn. 2008, 237,
1691–1698. [CrossRef]

45. Pasandideh, M.; Gholizadeh, M.; Rahimi-Mianji, G. A genome-wide association study revealed five SNPs affecting 8-month
weight in sheep. Anim. Genet. 2020, 51, 973–976. [CrossRef] [PubMed]

46. Song, Y.; Xu, L.; Chen, Y.; Zhang, L.; Gao, H.; Zhu, B.; Niu, H.; Zhang, W.; Xia, J.; Gao, X.; et al. Genome-Wide Association
Study Reveals the PLAG1 Gene for Knuckle, Biceps and Shank Weight in Simmental Beef Cattle. PLoS ONE 2016, 11, e0168316.
[CrossRef]

47. Zhong, J.L.; Xu, J.W.; Wang, J.; Wen, Y.F.; Niu, H.; Zheng, L.; He, H.; Peng, K.; He, P.; Shi, S.Y.; et al. A novel SNP of PLAG1 gene
and its association with growth traits in Chinese cattle. Gene 2019, 689, 166–171. [CrossRef]

48. Hou, J.; Qu, K.; Jia, P.; Hanif, Q.; Zhang, J.; Chen, N.; Dang, R.; Chen, H.; Huang, B.; Lei, C. A SNP in PLAG1 is associated with
body height trait in Chinese cattle. Anim. Genet. 2020, 51, 87–90. [CrossRef]

49. Xiong, X.; Zhou, M.; Zhu, X.; Tan, Y.; Wang, Z.; Gong, J.; Xu, J.; Wen, Y.; Liu, J.; Tu, X.; et al. RNA Sequencing of the Pituitary
Gland and Association Analyses Reveal PRKG2 as a Candidate Gene for Growth and Carcass Traits in Chinese Ningdu Yellow
Chickens. Front. Vet. Sci. 2022, 9, 892024. [CrossRef]

50. Pagnamenta, A.T.; Diaz-Gonzalez, F.; Banos-Pinero, B.; Ferla, M.P.; Toosi, M.B.; Calder, A.D.; Karimiani, E.G.; Doosti, M.;
Wainwright, A.; Wordsworth, P.; et al. Variable skeletal phenotypes associated with biallelic variants in PRKG2. J Med Genet. 2022,
59, 947–950. [CrossRef]

51. Khan, M.Z.; Ma, Y.; Ma, J.; Xiao, J.; Liu, Y.; Liu, S.; Khan, A.; Khan, I.M.; Cao, Z. Association of DGAT1 With Cattle, Buffalo, Goat,
and Sheep Milk and Meat Production Traits. Front. Vet. Sci. 2021, 8, 712470. [CrossRef]

52. Jia, X.; Ding, P.; Chen, S.; Zhao, S.; Wang, J.; Lai, S. Analysis of MC1R, MITF, TYR, TYRP1, and MLPH Genes Polymorphism in
Four Rabbit Breeds with Different Coat Colors. Animals 2021, 11, 81. [CrossRef]

53. Zhang, S.; Yao, Z.; Li, X.; Zhang, Z.; Liu, X.; Yang, P.; Chen, N.; Xia, X.; Lyu, S.; Shi, Q.; et al. Assessing genomic diversity and
signatures of selection in Pinan cattle using whole-genome sequencing data. BMC Genomics 2022, 23, 460. [CrossRef]

54. Ghafouri-Kesbi, F. Change in genetic size of small-closed populations: Lessons from a domestic mammal population. Genet. Mol.
Biol. 2010, 33, 657–662. [CrossRef]

55. Cheruiyot, E.K.; Bett, R.C.; Amimo, J.O.; Zhang, Y.; Mrode, R.; Mujibi, F.D.N. Signatures of Selection in Admixed Dairy Cattle in
Tanzania. Front. Genet. 2018, 9, 607. [CrossRef]

56. Jin, H.; Zhao, S.; Jia, Y.; Xu, L. Estimaton of Linkage Disequilibrium, Effctive Population Size, and Genetic Parameters of
Phenotypic Traits in Dabieshan Cattle. Animals 2022, 14, 107. [CrossRef]

57. Nazar, M.; Abdalla, I.M.; Chen, Z.; Ullah, N.; Liang, Y.; Chu, S.; Xu, T.; Mao, Y.; Yang, Z.; Lu, X. Genome-Wide Association Study
for Udder Conformation Traits in Chinese Holstein Cattle. Animals 2022, 12, 2542. [CrossRef]

58. Kristensen, T.N.; Hoffmann, A.A.; Pertoldi, C.; Stronen, A.V. What can livestock breeders learn from conservation genetics and
vice versa? Front. Genet. 2015, 6, 38. [CrossRef]

59. Rothammer, S.; Seichter, D.; Forster, M.; Medugorac, I. A genome-wide scan for signatures of differential artificial selection in ten
cattle breeds. BMC Genom. 2013, 14, 908. [CrossRef]

60. Signer-Hasler, H.; Burren, A.; Neuditschko, M.; Frischknecht, M.; Garrick, D.; Stricker, C.; Gredler, B.; Bapst, B.; Flury, C.
Population structure and genomic inbreeding in nine Swiss dairy cattle populations. Genet. Sel. Evol. 2017, 49, 83. [CrossRef]

61. Meszarosova, M.; Meszaros, G.; Moravcikova, N.; Pavlik, I.; Margetin, M.; Kasarda, R. Within- and between-Breed Selection
Signatures in the Original and Improved Valachian Sheep. Animals 2022, 12, 1346. [CrossRef]

https://doi.org/10.1093/nar/gkab447
https://doi.org/10.1186/s12864-021-08042-x
https://doi.org/10.1093/nar/gky1084
https://doi.org/10.1111/jbg.12442
https://doi.org/10.1111/j.1439-0388.2008.00793.x
https://doi.org/10.3168/jds.2018-15298
https://doi.org/10.4238/gmr.15027354
https://www.ncbi.nlm.nih.gov/pubmed/27173213
https://doi.org/10.1016/j.plipres.2021.101117
https://www.ncbi.nlm.nih.gov/pubmed/34450194
https://doi.org/10.1002/dvdy.21561
https://doi.org/10.1111/age.12996
https://www.ncbi.nlm.nih.gov/pubmed/32910467
https://doi.org/10.1371/journal.pone.0168316
https://doi.org/10.1016/j.gene.2018.12.018
https://doi.org/10.1111/age.12872
https://doi.org/10.3389/fvets.2022.892024
https://doi.org/10.1136/jmedgenet-2021-108027
https://doi.org/10.3389/fvets.2021.712470
https://doi.org/10.3390/ani11010081
https://doi.org/10.1186/s12864-022-08645-y
https://doi.org/10.1590/S1415-47572010000400011
https://doi.org/10.3389/fgene.2018.00607
https://doi.org/10.3390/genes14010107
https://doi.org/10.3390/ani12192542
https://doi.org/10.3389/fgene.2015.00038
https://doi.org/10.1186/1471-2164-14-908
https://doi.org/10.1186/s12711-017-0358-6
https://doi.org/10.3390/ani12111346


Animals 2023, 13, 1717 13 of 13

62. Boschiero, C.; Moreira, G.C.M.; Gheyas, A.A.; Godoy, T.F.; Gasparin, G.; Mariani, P.; Paduan, M.; Cesar, A.S.M.; Ledur, M.C.;
Coutinho, L.L. Genome-wide characterization of genetic variants and putative regions under selection in meat and egg-type
chicken lines. BMC Genom. 2018, 19, 83. [CrossRef] [PubMed]

63. Kemper, K.E.; Saxton, S.J.; Bolormaa, S.; Hayes, B.J.; Goddard, M.E. Selection for complex traits leaves little or no classic signatures
of selection. BMC Genom. 2014, 15, 246. [CrossRef] [PubMed]

64. Fang, Z.H.; Pausch, H. Multi-trait meta-analyses reveal 25 quantitative trait loci for economically important traits in Brown Swiss
cattle. BMC Genom. 2019, 20, 695. [CrossRef] [PubMed]

65. Guan, D.; Luo, N.; Tan, X.; Zhao, Z.; Huang, Y.; Na, R.; Zhang, J.; Zhao, Y. Scanning of selection signature provides a glimpse into
important economic traits in goats (Capra hircus). Sci. Rep. 2016, 6, 36372. [CrossRef]

66. Lopez, M.E.; Cadiz, M.I.; Rondeau, E.B.; Koop, B.F.; Yanez, J.M. Detection of selection signatures in farmed coho salmon
(Oncorhynchus kisutch) using dense genome-wide information. Sci. Rep. 2021, 11, 9685. [CrossRef]

67. Sabeti, P.C.; Varilly, P.; Fry, B.; Lohmueller, J.; Hostetter, E.; Cotsapas, C.; Xie, X.; Byrne, E.H.; McCarroll, S.A.; Gaudet, R.; et al.
Genome-wide detection and characterization of positive selection in human populations. Nature 2007, 449, 913–918. [CrossRef]

68. Winter, A.; Kramer, W.; Werner, F.A.; Kollers, S.; Kata, S.; Durstewitz, G.; Buitkamp, J.; Womack, J.E.; Thaller, G.; Fries, R.
Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1)
with variation at a quantitative trait locus for milk fat content. Proc Natl Acad Sci USA 2002, 99, 9300–9305. [CrossRef]

69. Grisart, B.; Farnir, F.; Karim, L.; Cambisano, N.; Kim, J.J.; Kvasz, A.; Mni, M.; Simon, P.; Frere, J.M.; Coppieters, W.; et al. Genetic
and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and
composition. Proc. Natl. Acad. Sci. USA 2004, 101, 2398–2403. [CrossRef]

70. Molee, A.; Duanghaklang, N.; Na-Lampang, P. Effects of acyl-CoA:diacylglycerol acyl transferase 1 (DGAT1) gene on milk
production traits in crossbred Holstein dairy cattle. Trop. Anim. Health Prod. 2012, 44, 751–755. [CrossRef]

71. Bovenhuis, H.; Visker, M.; Poulsen, N.A.; Sehested, J.; van Valenberg, H.J.F.; van Arendonk, J.A.M.; Larsen, L.B.; Buitenhuis, A.J.
Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition
of dairy cattle milk. J. Dairy Sci. 2016, 99, 3113–3123. [CrossRef]

72. Peters, S.O.; Kizilkaya, K.; Ibeagha-Awemu, E.M.; Sinecen, M.; Zhao, X. Comparative accuracies of genetic values predicted for
economically important milk traits, genome-wide association, and linkage disequilibrium patterns of Canadian Holstein cows. J.
Dairy Sci. 2021, 104, 1900–1916. [CrossRef] [PubMed]

73. Pybus, M.; Dall’Olio, G.M.; Luisi, P.; Uzkudun, M.; Carreno-Torres, A.; Pavlidis, P.; Laayouni, H.; Bertranpetit, J.; Engelken, J.
1000 Genomes Selection Browser 1.0: A genome browser dedicated to signatures of natural selection in modern humans. Nucleic.
Acids Res. 2014, 42, D903–D909. [CrossRef] [PubMed]

74. Zhao, F.; McParland, S.; Kearney, F.; Du, L.; Berry, D.P. Detection of selection signatures in dairy and beef cattle using high-density
genomic information. Genet. Sel. Evol. 2015, 47, 49. [CrossRef] [PubMed]

75. Guo, J.; Tao, H.; Li, P.; Li, L.; Zhong, T.; Wang, L.; Ma, J.; Chen, X.; Song, T.; Zhang, H. Whole-genome sequencing reveals selection
signatures associated with important traits in six goat breeds. Sci. Rep. 2018, 8, 10405. [CrossRef]

76. Jin, M.; Lu, J.; Fei, X.; Lu, Z.; Quan, K.; Liu, Y.; Chu, M.; Di, R.; Wang, H.; Wei, C. Genetic Signatures of Selection for Cashmere
Traits in Chinese Goats. Animals 2020, 10, 1905. [CrossRef]

77. Petersen, J.L.; Mickelson, J.R.; Rendahl, A.K.; Valberg, S.J.; Andersson, L.S.; Axelsson, J.; Bailey, E.; Bannasch, D.; Binns, M.M.;
Borges, A.S.; et al. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet. 2013, 9,
e1003211. [CrossRef]

78. Engle, B.N.; Hayes, B.J. Genetic variation in PLAG1 is associated with early fertility in Australian Brahman cattle. J. Anim. Sci.
2022, 100. [CrossRef]

79. Bonnet, C.; Andrieux, J.; Beri-Dexheimer, M.; Leheup, B.; Boute, O.; Manouvrier, S.; Delobel, B.; Copin, H.; Receveur, A.;
Mathieu, M.; et al. Microdeletion at chromosome 4q21 defines a new emerging syndrome with marked growth restriction, mental
retardation and absent or severely delayed speech. J. Med. Genet. 2010, 47, 377–384. [CrossRef]

80. Koltes, J.E.; Kumar, D.; Kataria, R.S.; Cooper, V.; Reecy, J.M. Transcriptional profiling of PRKG2-null growth plate identifies
putative down-stream targets of PRKG2. BMC Res. Notes 2015, 8, 177. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s12864-018-4444-0
https://www.ncbi.nlm.nih.gov/pubmed/29370772
https://doi.org/10.1186/1471-2164-15-246
https://www.ncbi.nlm.nih.gov/pubmed/24678841
https://doi.org/10.1186/s12864-019-6066-6
https://www.ncbi.nlm.nih.gov/pubmed/31481029
https://doi.org/10.1038/srep36372
https://doi.org/10.1038/s41598-021-86154-w
https://doi.org/10.1038/nature06250
https://doi.org/10.1073/pnas.142293799
https://doi.org/10.1073/pnas.0308518100
https://doi.org/10.1007/s11250-011-9959-1
https://doi.org/10.3168/jds.2015-10462
https://doi.org/10.3168/jds.2020-18489
https://www.ncbi.nlm.nih.gov/pubmed/33358789
https://doi.org/10.1093/nar/gkt1188
https://www.ncbi.nlm.nih.gov/pubmed/24275494
https://doi.org/10.1186/s12711-015-0127-3
https://www.ncbi.nlm.nih.gov/pubmed/26089079
https://doi.org/10.1038/s41598-018-28719-w
https://doi.org/10.3390/ani10101905
https://doi.org/10.1371/journal.pgen.1003211
https://doi.org/10.1093/jas/skac084
https://doi.org/10.1136/jmg.2009.071902
https://doi.org/10.1186/s13104-015-1136-6

	Introduction 
	Materials and Methods 
	Sample Selection 
	SNP Genotyping and Quality Control 
	Genetic Diversity 
	Population Structure Analysis 
	Identification of Selection Signature 
	Enrichment Analyses of Candidate Genes under Selection 
	Aligning Core Regions to QTL Database 

	Results 
	SNP Genotyping and Genetic Diversity 
	Population Structure and Admixture Analysis 
	Identification of Selection Signatures 
	Gene Annotation and Enrichment Analysis 

	Discussion 
	Conclusions 
	References

