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Simple Summary: This paper provides a review of recent studies exploring the application of
artificial intelligence (AI) in the early detection and monitoring of respiratory disease in swine,
emphasizing the significance of early detection for preventing economic losses. The studies primarily
focus on utilizing coughing sounds as a feature in disease recognition, comparing different AI
models and methodologies. A commercially available AI system that integrates temperature and
humidity sensors with audio technologies for respiratory health monitoring through cough-sound
identification is also assessed. However, the limitations of the current technology are identified,
highlighting the need for further advancements to develop smarter AI solutions for swine respiratory
health monitoring.

Abstract: Porcine respiratory disease complex is an economically important disease in the swine
industry. Early detection of the disease is crucial for immediate response to the disease at the farm
level to prevent and minimize the potential damage that it may cause. In this paper, recent studies
on the application of artificial intelligence (AI) in the early detection and monitoring of respiratory
disease in swine have been reviewed. Most of the studies used coughing sounds as a feature of
respiratory disease. The performance of different models and the methodologies used for cough
recognition using AI were reviewed and compared. An AI technology available in the market
was also reviewed. The device uses audio technology that can monitor and evaluate the herd’s
respiratory health status through cough-sound recognition and quantification. The device also has
temperature and humidity sensors to monitor environmental conditions. It has an alarm system based
on variations in coughing patterns and abrupt temperature changes. However, some limitations of
the existing technology were identified. Substantial effort must be exerted to surmount the limitations
to have a smarter AI technology for monitoring respiratory health status in swine.

Keywords: artificial intelligence; PRDC; respiratory disease; smart farming; swine

1. Introduction

Porcine respiratory disease complex (PRDC) is one of the most economically important
diseases in the swine industry globally [1]. This disease causes economic losses to the in-
dustry through increased mortality, increased production costs due to increased medication
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and measures to control the disease, increased condemnation in the abattoir, and reductions
in growth performance [2]. PRDC is induced by a combination of environmental condi-
tions such as temperature, dust, ammonia, and carbon dioxide and pathogens including
porcine reproductive and respiratory syndrome virus (PRRS), porcine circovirus (PCV2)
type 2, Actinobacillus pleuropneumonia (APP), Mycoplasma hyopneumoniae (MHP), Mycoplasma
hyorhinis (MHR), Pasteurella multocida (PM), Haemophilus parasuis (HPS), etc. [3].

Early detection of the disease is crucial for the early deployment of control measures
to prevent further economic losses [4]. In the conventional method, the disease diagnosis
is conducted through clinical examination and necropsy of dead or euthanized animals
and sample collection during farm visits. However, this method is stressful for the animals
and expensive, and the result is not real-time which delays the appropriate intervention.
Artificial intelligence (AI) has been used in smart livestock farming for many applications
including animal welfare and health detection and monitoring [5–7]. AI can detect subtle
changes in animals, making it more effective in the early detection of disease compared to
the conventional method and without time limitations [8,9].

There are several review articles that have been published regarding the application
of artificial intelligence in smart agriculture or in smart livestock farming. However, to
the authors’ knowledge, there is no study that specifically discusses the application of
AI intelligence in respiratory disease detection and monitoring in swine. Therefore, this
study was conducted. As the first topic of this paper, the authors discuss the importance
of respiratory disease in the swine industry. Secondly, the authors review studies that
were published between 2012 and 2022 about respiratory disease detection in swine using
AI. In this section, the performance of different AI models and methodologies used is
reviewed and compared. Thirdly, the AI technology available in the market is reviewed.
Lastly, the authors discuss the limitations of the existing AI technology and synthesize
recommendations for the future development of the technology.

2. Importance of PRDC in the Swine Industry

Global meat production in 2020 reached up to 337 million tons, and pork represented
33% of the total meat production, which makes it the second-largest source of meat among
livestock species after poultry meat [10]. According to Komarek et al. [11], the global
demand for livestock-derived foods is projected to increase by 38% from 2020 to 2050,
driven by population growth and rising incomes in developing countries. It is a challenge
for the swine industry to meet the demand for good quality and cheap pork in a situation
where global warming is worsening and the prevalence of infectious diseases is increasing.

PRDC is caused by complex factors, including either or a combination of viral (includ-
ing swine influenza, PRRS, and PCV2) and/or bacterial (including APP, MHP, MHR, PM,
and HPS) factors, and is influenced by environmental conditions such as temperature, dust,
ammonia, and carbon dioxide [3]. Viral pathogens are the primary causative agent of PRDC
that can induce severe lesions and suppress the immune system and attract secondary
infection and coinfection with bacteria [12]. The prevalence of PRRS and PCV2 in top
pork-producing countries was investigated. In China, the prevalence of PRRS and PCV2
from 2017 to 2021 was 52.04% and 29.75%, respectively [13]; high prevalence was recorded
in 56 commercial farms in South Korea with 85.70% and 51.80%, respectively [14]; and the
prevalence of PRRS in 3 regions of Ontario, Canada, ranged from 17.0% to 48% [15]. In an
investigation conducted in Brazil, only 0.11% (15/12,841) of serum samples from commer-
cial pigs, imported boars, and wild and feral pigs were positive for PRRS. The prevalence
of such PRDC-associated pathogens varies from country to country. However, this statistic
highlights the importance of surveillance programs to prevent entry and control the spread
of the disease.

PRDC is a major concern for the swine industry, resulting in significant economic
losses due to decreased pig productivity, increased mortality, increased condemnation
at slaughter, and increased medication costs resulting in high production costs [1]. A
financial analysis by Calderón Díaz et al. [2] on Irish farrow-to-finish farms showed the
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negative economic impact of PRDC. The annual net profit was reduced by 14.6%, 12.8%,
and 41.0% on farms infected with PRRS, swine influenza, and MHP, respectively. The
treatment and control of PRDC are challenging and expensive, making prevention crucial
for the swine industry. To minimize the impact of PRDC, swine producers implement
strict biosecurity measures to prevent the entry of disease from other farms or within the
farm, vaccination, quarantine and acclimatization, proper hygiene practices, and early
disease detection [1,16,17]. Effective PRDC control and management are important for the
sustainability and profitability of the swine industry.

3. Artificial Intelligence for Respiratory Disease Detection

Fever, inappetence, lethargy, coughing, sneezing, and dyspnea are common clinical
signs of respiratory disease in pigs [18,19]. However, coughing is the most evident symptom
and is used for the assessment of the respiratory health condition of the herd [20]. In
developing AI for monitoring respiratory health status in pigs, coughing sounds are mostly
used as a feature. Eye temperature, ear base temperature, respiration rate, and heart rate
can also be used as features using computer vision [1,21]. However, the application of
cameras for monitoring respiratory health status is still in the experimental stage. In this
paper, the authors mainly reviewed studies that used audio technologies for respiratory
disease detection.

3.1. Development of AI Technology for Cough Recognition

Pig cough recognition studies using machine learning and deep learning involve four
steps: data acquisition, preprocessing, feature extraction, and classification. Other studies
involved the fusion step for fusing two or more features after feature extraction [22–25].
As shown in Table 1, the performance of the AI models for cough recognition in terms of
accuracy, recall, precision, and F1 score could reach more than 97%. This suggests that
AI technology can be used for the automatic monitoring of respiratory health status with
high reliability. Nevertheless, differences in performance were observed, and there is more
opportunity for improvement. The AI model’s performance regarding cough recognition is
affected by the methodologies used, particularly in the sound data preprocessing, feature
extraction, and classification steps [22,25–27]. These are discussed in the next subsections.

Types of data acquisition tools (sound sensors) can affect sound quality because of
noise and eventually degrade the performance of the model in the recognition of sounds [28].
Therefore, the specification of the sound sensor or microphone must be considered in
developing an AI device for cough recognition. The devices used in the studies for sound
data collection were unidirectional cardioid microphone [22–24,29], omnidirectional electret
microphone [27,30], M260C microphone [25], digital camcorder [26], CCTV camera with
sound sensors [31,32], recording pen [33], and sound sensors fixed in ear tags [34–37].
Monitoring the respiratory health of an individual animal is feasible using ear tags with
sensors. However, it is not cost effective compared to group monitoring. In addition,
battery life and proneness to damage are a great concern [36].

As shown in Table 2, most of the studies that have been conducted have focused
on the improvement of the performance of the AI model in cough recognition through
the application and development of different architectures in the feature extraction and
classification steps. Other studies have proposed the use of body-conducted sound for the
early detection of respiratory disease [34,35,37]. Wang et al. [27] investigated the association
between animal sounds and house air quality. Coughing sounds vary according to the type
of infection. AI can distinguish the differences and detect specific infections, for example,
MHP, PRRS, and postweaning multisystemic wasting syndrome (PMWS) in pigs [31,38].
Though most of the studies used cough as a feature to detect respiratory disease, sneezing
can also be used in the early detection of influenza infection [30].

Wu et al. [39] proposed using vision and audio in respiratory disease detection using a
CCTV camera with sound sensors. Eye temperature, ear base temperature, respiration rate,
and heart rate can be used as features in respiratory disease detection using an infrared
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camera and RGB camera [1,21]. The respiration rate and the heart rate can also be measured
using a piezoelectric sensor fixed in the ear tag [34,35,37]. Each sensor has some limitations
regarding its application in disease detection. The incorporation of two or more sensors
is necessary to compensate for the limitations of the individual. Therefore, the ideal AI
technology in disease detection is a hybrid.

Table 1. Performance of different AI models in cough recognition.

Extraction
Technique

Classification
Technique

Sound
Dataset (N) Accuracy Recall Precision F1 Literature

Acoustic (RMS, ZCR,
MFCC, Centroid,

Flatness, Bandwidth,
Rolloff, & Chroma) &
visual (LBP & HOG)

SVM 3157 96.45 97.33 96.83 97.08 Ji et al. [22]

MFCC + ∆MFCC Improved SE-
DenseNet-121 1445 93.80 98.60 97.00 97.80 Song et al. [25]

Acoustic (RMS, ZCR,
MFCC, Centroid,

Flatness, Bandwidth,
Rolloff, Contrast & Flux)

& deep feature

SVM 2546 97.35 96.51 98.41 97.46 Shen et al. [24]

STFT Fine-tuned
AlexNet 4480 95.40 96.80 95.50 96.20 Yin et al. [29]

MFCC–CNN
SVM

4551
96.68 97.72 96.81 97.26

Shen et al. [23]Softmax 95.82 95.51 97.33 96.41

PMFCC SVM 200 95.00 Wang et al. [27]

DNS

CNN 96.57

Choi et al. [26]
SVM 95.15
KNN 93.74
C4.5 85.10

MFCC SVDD/SRC 94.00 92.00 90.80 Chung et al. [31]

Average 95.56 96.35 96.10 95.28

RMS: root-mean-square energy; ZCR: zero-crossing rate; MFCC: mel-frequency cepstral coefficient; ∆MFCC:
first-order difference of MFCC; PMFCC: principal MFCC; LBP: local binary pattern; HOG: histogram of oriented
gradients; STFT: short-time Fourier transform; DNS: dominant neighborhood structure; CNN: convolutional
neural network; SVM: support vector machine; KNN: k-nearest neighbors; SVDD: support vector data description;
SRC: sparse representation classifier.

3.2. Feature Extraction and Fusion Techniques

Datasets contain a large amount of irrelevant information. In the feature extraction
step, variables that significantly represent the cough-sound signal are selected and com-
bined into a multidimensional feature vector. This step is the most crucial step for sound
recognition [40,41]. In speech and sound recognition, the mel-frequency cepstral coefficient
(MFCC) is the most popular feature used. Accordingly, the MFCC maps the linear spectrum
of the sound signal onto the nonlinear mel spectrum and analyzes the spectrum according
to human hearing [25].

In field conditions, background noises (non-cough sounds) are abundant and in-
evitable and can degrade the quality of cough sounds and affect model recognition per-
formance. The method to improve model performance is to preprocess the sound data to
enhance the quality of the cough sounds using background noise filtering [24,25,27,33,38]
and by training the model with background noise data [42]. Feature extraction techniques
can also solve this problem. One of the reasons for the popularity of the MFCC is its anti-
noise capability [25,27,31]. However, this statement contradicts the statement of Ji et al. [22]
based on the result of Zhao et al. [43]. Furthermore, the method proposed by Choi et al. [26]
using the dominant neighborhood structure (DNS) algorithm as an extraction method has
shown superior performance in a noisy environment. It is also much better than the MFCC
feature. Furthermore, Wang et al. [27] obtained an average recognition rate of 95% after
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reducing the dimensionality of the MFCC using principal component analysis (PCA), which
is better than Chung et al.’s [31] result using conventional MFCC features.

Much effort has been made in research to improve the precision of pig cough recog-
nition. Most of the studies focused on feature extraction techniques. To overcome the
limitation of the individual feature, fusion of two or more features to create a new feature
has proven to improve cough-sound recognition. Shen et al. [23] fused the MFCC and
convolutional neural network (CNN) features to obtain MFCC–CNN, which has shown
significantly better performance compared to using MFCC features. Similarly, performance
was also improved when fusing all acoustic features (root-mean-square energy or RMS,
zero-crossing rate or ZCR, MFCC, spectral centroid, spectral flatness, spectral bandwidth,
spectral roll-off, and contrast and flux) and deep features [24]. Furthermore, the fusion of
acoustic features and visual features (local binary pattern or LBP and histogram of gradient
or HOG) also has superior performance compared to individual features [22]. In the study
of Song et al. [25], the combination of MFCC and ∆MFCC has a better performance com-
pared to the MFCC alone. The ∆MFCC is the first-order difference of the MFCC, which is
the relationship between two adjacent frames of pig sound signals.

3.3. Classification Techniques

Classifier architectures are classified into traditional machine learning classifiers and
deep neural networks (DNN) [44]. A CNN is a popular deep neural network architecture
that is inspired by neurons in the human brain. It has been widely applied in different
fields like computer vision, face recognition, and sound and speech recognition [45–47]. In
human health, it can be used in cough recognition [48,49] and in the detection of COVID-19
infection through cough and breathing sounds [50]. Choi et al. [26] compared CNN with
traditional machine learning classifiers like support vector machine (SVM), k-nearest
neighbors (KNN), and C4.5 in pig sound recognition under various noise conditions. CNN
outperformed the other classifier architectures. Unlike the traditional classifiers, CNN
can further extract deeper abstract features for classification and can learn in time and
frequency simultaneously [51].

Nowadays, there are several CNN architectures that have been presented that differ
in strengths and performance [52]. Modification of the architectures has been studied to im-
prove classification performance. To improve the cough recognition performance of a deep
learning algorithm, Song et al. [25] came up with an improved DenseNet architecture which
they called SE-DenseNet-121. The SE-DenseNet-21 has an improved dense block module
and is embedded with a Squeeze-and-Excitation Network (SENet) attention module. The
purpose of the SENet is to optimize the extraction of relevant features and ignore irrelevant
features. To improve the performance of conventional AlexNet, Yin et al. [29] combined
it with softmax architecture and found that it has better performance in cough-sound
classification compared to the probabilistic neural network (PNN). The softmax classifier
uses logistic regression statistics in classification [53]. It has been widely used in the field of
computer vision, especially in deep learning [54]. Similarly, TransformerCNN (a fusion of
CNN and an encoder part of Transformer) has better performance in classifying different
pig sounds compared to other classifier architectures [55].

Table 2. Summary of studies that involve smart technologies in respiratory disease detection.

Technique Sensors Number of Pigs
Used (Head) Objective Findings Literature

Vision

TIR camera (FLIR
AX8) & RGB video
camera (Raspberry
Pi Camera
Module V2.1)

76 (9-week-old)

Utilizing computer-based
methods, thermal infrared and
conventional images are
employed to gauge alterations
in the temperature of pigs
(through eye- and ear-based
measurements) as well as their
heart and respiration rates.

4 Infected pigs showed higher temperature and
heart rate than healthy pigs.

4 Respiration rate showed less difference
between infected and healthy pigs.

4 The use of computer vision techniques can
furnish significant and actionable
information regarding physiological
alterations that may signify initial indications
of respiratory infection in pigs.

Joquera-Chavez
et al. [1]
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Table 2. Cont.

Technique Sensors Number of Pigs
Used (Head) Objective Findings Literature

TIR camera (FLIR
Duo® Pro R) 46 (9-week-old)

To assess the effectiveness of
utilizing computer-based
methods with RGB and
thermal infrared imagery in
measuring the heart rate and
respiration rate of pigs and to
explore the possibility of
utilizing remote assessments of
eye temperature, heart rate,
and respiration rate as a means
of identifying early indications
of respiratory diseases in
growing pigs that are
group-housed and free-moving
within a commercial piggery.

4 The remotely obtained heart rate and
respiration rate were compared with the
measures obtained with standard methods,
showing positive correlations (r = 0.61–0.66;
p < 0.05).

4 Clear variations in remotely obtained eye
temperature and heart rate were observed
between healthy and sick pigs two days prior
to the appearance of clinical indications.

Joquera-Chavez
et al. [21]

Audio

Piezoelectric sensor
& MEMS
microphone

4 (5-week-old)

To propose a wireless system to
record body-conducted sounds
of pigs individually and a
method of analysis for the
early detection of respiratory
diseases in infected pigs.

4 Zero-crossing & MFCC values of
body-conducted sound were significant
before and after PRRS inoculation.

4 Heart rate and respiratory rate can be
measured indirectly through body-conducted
sound which can be used for
disease detection.

Narusawa et al.
[35]

Piezoelectric sensor
& MEMS
microphone

4 (5-week-old)

To develop a system for early
detection of respiratory
diseases in pigs utilizing
body-conducted sound.

4 Zero-crossing & MFCC values of
body-conducted sound were significant
before and after PRRS inoculation.

4 Respiratory and heart sounds can be
effectively extracted by recording BCS from
the tip of ear.

Cheng et al. [34]

Piezoelectric sensor
& MEMS
microphone

4 (5-week-old)

To develop a system for early
detection of respiratory
diseases in pigs utilizing
body-conducted sound.

4 Zero-crossing & MFCC values of
body-conducted sound were significant
before and after PRRS inoculation.

4 Heart rate and respiratory rate can be
measured indirectly through body-conducted
sound which can be used for
disease detection.

Tsuchiya et al.
[37]

Directional
cardioid
microphone

NI (commercial
farm)

To improve the recognition
accuracy of pig coughs using a
new fusion feature
(MFCC–CNN).

4 Classifiers that utilized the MFCC–CNN
feature demonstrated considerably superior
performance in comparison to those that
employed the MFCC feature.

4 Fusing 55 and 45 adjacent frames resulted in
the best performance for the softmax and
SVM classifiers, respectively.

Shen et al. [23]

Digital camcorder
& CCTV with an
audio sensor

36 (25–35 kg)

To propose an efficient
data-mining solution for the
detection and recognition of
pig wasting diseases using
sound data in audio
surveillance systems.

4 A combination of MFCC and SVDD can
automatically detect pig wasting diseases
using cough sounds at an accuracy level
of 94%.

4 The SRC classified pig wasting diseases into
PMWS, PRRS virus, and MHP with an
average accuracy of 91.0%.

Chung et al. [31]

Omnidirectional
electret
microphone

280
(8.5-week-old;
25 kg)

To identify the relationship
between animal sounds and air
quality of animals’ living
environment.

4 Cough sounds from weaners differ
significantly under different air quality
conditions.

4 The developed model had recognition
accuracy of 95%.

Wang et al. [27]

Recording pen
(Mrobo M66)

10 (age &
weight NI)

To propose DNN–HMM model
to construct an acoustic model
for continuous pig
cough-sound recognition.

4 The DNN–HMM-based acoustic model for
continuous pig cough-sound recognition was
stable and reliable.

Zhao et al. [33]
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Table 2. Cont.

Technique Sensors Number of Pigs
Used (Head) Objective Findings Literature

Sound sensor
(MAX9814) in
ear tag

2 (18 kg)

To propose a remote
monitoring tool for the
objective measurement of some
behavioral indicators that may
help in assessing health and
welfare status—namely,
posture, gait, vocalization, and
external temperature.

4 Sensors can be successfully incorporated in
ear tag.

4 No coughing recorded during the trial.
Pandey et al. [36]

Audio sensor 36 (25–35 kg)

To propose an economical and
lightweight sound-based pig
anomaly detection system that
can be applicable even in
small-scale farms.

4 The results of the abnormality identification
experiment demonstrated an F1 score
of 0.947.

4 The execution time of the abnormality
identification algorithm on the TX-2 board
was 0.253 s, which was 0.220 s faster than the
basic MnasNet model.

Hong et al. [38]

Omnidirectional
electret
microphones
(Panasonic,
WM-61A)

16 (age &
weight NI)

To examine the correlations
between the frequency of
sneezing and various strains of
influenza virus in
domestic pigs.

4 The classification performance of the
automatic sneeze detector was observed to be
close to 100%.

4 The infection of certain swine influenza virus
strains can be detected a few days after the
infection by analyzing the frequency of
induced sneeze.

Mito et al. [30]

Microphone (LIQI
LM320E, Cardioid
electret
microphone)

128 (17-week-old;
60 kg)

To propose a feature fusion
method by combining acoustic
and deep features from
audio segments.

4 The proposed acoustic and deep feature
fusion achieved 97.35% accuracy for pig
cough recognition.

4 CQT is more suitable for sound recognition in
a pig housing environment than traditional
linear STFT.

Shen et al. [24]

M260C
Microphone Array
with six
SPA1687LR5H-
1microphone
components

6 (age &
weight NI)

To develop SE-DenseNet-121
model to recognize pig
cough sounds.

4 The rate of recognition accuracy, recall,
precision, and F1 score of the
SE-DenseNet-121 recognition model for pig
cough sounds were 93.8%, 98.6%, 97%, and
97.8%, respectively.

Song et al. [25]

Microphone
(LIQILM320E,
Cardioid electret
microphone)

128 (17-week-old;
60 kg)

To propose a novel feature
fusion method that fuses
acoustic and visual features to
achieve an enhanced pig cough
recognition rate.

4 The fused acoustic features (Acoustic)
combined with LBP and HOG (A-LH)
achieved 96.45% pig cough accuracy.

Ji et al. [22]

Digital camcorder
(JVC
GR-DVL520A)

36 (25–30 kg)
To propose a noise-robust
system for the classification of
sound data.

4 The proposed method can be used to classify
sound events in a cost-efficient manner while
maintaining high levels of accuracy even in
the presence of environmental noise.

Choi et al. [26]

Microphone (LIQI
LM 320ECardioid
electret
microphone)

NI (commercial
farm)

To provide a highly accurate
pig cough recognition method
for the respiratory disease
alarm system using fine-tuned
AlexNet model and
spectrogram feature.

4 The proposed algorithm significantly
outperforms the other algorithms—cough
and overall recognition accuracies reach
96.8% and 95.4%, respectively, with 96.2% F1
score achieved.

Yin et al. [29]

Vision
& audio

CCTV with an
audio sensor

NI (commercial
farm)

To propose a method to detect
wasting disease automatically
using both audio and
video data.

4 The Motion History Image-Based method can
discriminate the shaking motion of coughing
from other movement motions with careful
motion pattern analysis.

Kim et al. [32]

Others
Recording pen
(Lenovo B610)

NI (commercial
farm)

To propose a pig sound
classification method based on
the dual role of signal
spectrum and speech.

4 An accuracy of 93.39% was achieved for the
pig speech classification task. Wu et al. [39]
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Table 2. Cont.

Technique Sensors Number of Pigs
Used (Head) Objective Findings Literature

Recording pen
(Lenovo B610)

NI (commercial
farm)

To propose a sound
classification model called
TransformerCNN, which
combines the advantages of
CNN spatial feature
representation and the
Transformer sequence coding
to form a powerful global
feature perception and local
feature extraction capability.

4 The scores for domestic pig sound
recognition accuracy, AUC, and recall were
96.05%, 98.37%, and 90.52%, respectively.

Liao et al. [55]

NI: not indicated; TIR: thermal infrared; RGB: red–green–blue; MEMS: micro-electromechanical systems; BCS:
body-conducted sound; SRC: sparse representation classifier; MFCC: mel-frequency cepstral coefficient; CNN:
convolutional neural network; SVDD: support vector data description; DNN–HMM: deep neural network–hidden
Markov model; CQT: constant-Q transform; STFT: short-time Fourier transform; LBP: local binary pattern; HOG
(A-LH): acoustic combined with LBP (local binary pattern) and HOG (histogram of oriented gradients); AUC:
area under the curve; PMWS: postweaning multisystemic wasting syndrome; PRRS: porcine reproductive and
respiratory syndrome; MHP: Mycoplasma hyopneumoniae.

SVM is the most popular traditional machine learning classifier used for sound ap-
plications [44], and it is the common classifier used in the reviewed studies for cough-
and non-cough-sound classification. It is more robust compared to deep neural network
classifiers for a few datasets available for training [24], for example, that in Wang et al. [27]
with only 200 sound samples. The principle of SVM is to generate a hyperplane that
separates the data into two classes [56]. The functionality of SVM is dependent on its kernel
function, which should be for its application [57]. The commonly used kernel functions
are linear, Gaussian radial basis function (RBF), and polynomial [58]. Wang et al. [27] used
the RBF kernel in pig cough recognition because of its easy design, good generalization,
and robust tolerance to noises. More than one kernel can be used in SVM. For example,
Shen et al. [24] and Ji et al. [22] used RBF for the non-linear model and linear kernel model
in cough recognition.

Other studies used KNN, C4.5, and random forest (RF) in cough recognition. In KNN, the
trained data are grouped into subsets, and it classifies the new data on the basis of their values
and assigns them to the nearest neighbor [59]. C4.5 is based on a decision-tree classification
algorithm [60]. The RF is similar to C4.5. However, the RF generates multiple trees for
decision-making [61]. Compared to SVM, these classifiers are inferior in performance in pig
cough and non-cough-sound classification [22,23,26]. Shen et al. [23] compared SVM and the
softmax in cough recognition. They found that SVM is superior to the softmax. However, this
contradicts other studies, especially regarding computer vision [54,62].

Among the studies reviewed, no existing models reached more than 99% performance.
That means that there is still room for improvement. The robustness of the model is still
the priority concern. However, researchers should also prioritize the speed of recognition
without compensating performance.

3.4. Performance Evaluation Metrics

Many metrics are proposed for AI model algorithm performance evaluation. However,
the most common metrics used for cough recognition in the reviewed studies are based on
the confusion matrix. These are accuracy, precision, recall or sensitivity, specificity, and F1
score (Table 3). Accuracy is the proportion of correctly classified coughing-sound samples
to the total number of the dataset. Accuracy alone is not a reliable parameter for evaluating
the cough recognition model. It is sensitive to imbalanced datasets [63], which is not good
if there are more non-cough-sound data than cough-sound data, or vice versa. A model
can have high accuracy but a low level of recognition of cough sounds.
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Table 3. AI model performance metrics based on a confusion matrix.

Metrics Definition Formula

True Positive The number of samples that are correctly
classified as cough sounds TP

True Negative The number of samples that are correctly
classified as non-cough sounds TN

False Positive The number of samples that are
incorrectly classified as cough sounds FP

False Negative
The number of samples that are

incorrectly classified as non-cough
sounds

FN

Accuracy The ratio of correct predictions over the
total number of dataset

TP+TN
TP+TN+FP+FN

Precision
The ratio of correctly classified

cough-sound samples to the total
samples classified as cough sounds

TP
TP+FP

Recall
The ratio of correctly classified

cough-sound samples to the total
cough-sound dataset

TP
TP+FN

Specificity
The ratio of correctly classified

non-cough-sound samples to the total
non-cough-sound dataset

TN
FP+TN

F1 score Combination of precision and recall 2 × Precision × Recall
Precision + Recall

Precision is the ratio of correctly classified cough-sound samples to the total samples
classified as cough sounds. Recall is the ratio of correctly classified cough-sound samples
to the total cough-sound dataset. Therefore, the higher the precision and recall, the better
the model for recognizing cough-sound data. However, this does not mean that the model
has a high recognition rate of non-cough sounds. An ideal AI technology should be able to
distinguish cough sounds from non-cough sounds at a high rate. In this case, specificity is
the matrix. Specificity is the ratio of correctly classified non-cough-sound samples to the
total non-cough-sound dataset. Furthermore, high precision and recall do not coincide in a
real scenario. The F1 score measures the balance of precision and recall, and, accordingly, it
is a good candidate for a formal classifier quality evaluation metric [64]. In developing an
AI model for cough recognition, it is important to consider all the metrics and not use them
individually to be able to capture the strengths and weaknesses of the model.

4. Commercial Application

SoundTalks (SoundTalks NV, Leuven, Belgium) is a pioneering and popular AI product
for automatic respiratory disease detection that is available on the market today. Addi-
tionally, new similar technologies developed in the United States by MASCO Technologies
(City of Industry, CA, USA) and in China by iFLYTEK Co., Ltd. (Hefei, China) and Muyuan
Foods Co., Ltd. (Nanyang, China). However, the authors have limited knowledge about
these new technologies, and thus, the review focuses solely on SoundTalks. This review
was conducted to understand the features and the limitations of the existing technology,
providing a foundation for the future development of more precise smart technology.

4.1. Features of SoundTalks

SoundTalks is an AI technology available on the market today that can automatically
monitor the respiratory health status of herds (in the nursery to finishing stages) through
cough-sound recognition and quantification. It has sensors for monitoring environmental
conditions such as room temperature and relative humidity. It also has an alert system that
signals the farmers about potential respiratory problems and abrupt temperature changes.
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This device has two main pieces of hardware: the monitor and the gateway (Figure 1).
The sound sensor (microphone) and the environmental sensors are fixed to the monitor.
The device also has LED lights for alert indication. It can gather sound data within a 10 m
radius. All the data from the monitor are transferred to the gateway wirelessly. A plurality
of monitors can be connected to the gateway not more than 30 m from the location of the
gateway. The gateway is connected to a network via LAN. The function of the gateway
is to connect and gather data from the monitor and send data to the AI cloud for data
processing and analysis. Users can access their data online from every monitor through
a PC or smartphone via a mobile app. A strong and undisrupted internet connection is
essential for this technology to work optimally.

Figure 1. SoundTalks has two pieces of hardware: (A) the gateway and (B) the monitor.

The respiratory health status of the herd is presented as respiratory distress index
(RDI). The RDI is the average number of coughs per head within 24 h [65]. Nowadays, the
respiratory health status of the herd is presented as ReHS (respiratory health status), with
values ranging from 0 to 100. An alert system is an important feature of health monitoring
technology for notifying farmers of abnormalities within the farm. This device has a
patented algorithm that uses the history of and variation in the respiratory health status
of the herd for the calculation of the threshold as the basis of the alarm [65]. A green light
represents a normal ReHS, which ranges from 60 to 100. Yellow and red alerts mean there
is a potential and a high risk of a respiratory problem, respectively. These are equivalent to
40–59 and 0–39 ReHS, respectively. For thermal shock alerts, a yellow warning is issued
when there is a ≥5 ◦C difference in temperature within a 6 h interval. Furthermore, a red
alert is issued when there is a ≥8 ◦C difference. The alerts can be perceived through LED
lights on the monitor and through their website.

4.2. Research Using SoundTalks

Several studies have been conducted using SoundTalks for automatic quantification of
the respiratory health status of pigs because of its advantages and reliability. It has shown
that the coughing frequencies recorded using manual and automatic quantifications of
coughing have a similar trend [65,66]. However, manual quantification is time-consuming
and not efficient in a field situation. Moreover, farmers are not present 24 h inside the
house. Therefore, coughs are often not detected, particularly at night [67].

A study by Clavijo et al. [5] showed that this device can detect respiratory disease in
MHP-infected pigs. The RDI value increased as more pigs tested positive for MHP. The
first alert was observed 55 days post-infection (DPI), 27 days late from the first day of MHP
detection in uninoculated pigs. Similarly, Poeta Silva et al. [66] found an increase in RDI
value in MHP-infected pigs as the infection progressed. However, an alarm from the device
was not observed during the study despite mortality being observed at 10 DPI, and the
RDI value was lower compared to Clavijo et al. [5]. The population is the main factor in
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these differences because this device was designed to recognize cough sounds in large pig
populations [65], suggesting that the alarm system in future AI technology should work
in multiple populations and should be refined on the basis of the severity of infection for
earlier detection.

Data generated from SoundTalks can be used to improve the management of the
housing environment and respiratory disease in finishing pigs. Pessoa et al. [68] conducted
a study that correlates coughing frequency and environmental conditions of healthy pigs.
They found that coughing frequencies are affected by a high ammonia concentration and
high ventilation rates. However, the coughing incidence and ammonia concentration
during the study were low. Another study by Pessoa et al. [65] has found an association
between lung lesions at slaughter and values of RDI toward the end of growing. Coughing
episodes in the early stage of the growing period are not associated with the prevalence
of lung lesions at slaughter. This could mean that intervention and treatment should
be conducted once a coughing episode is observed in the late finishing stage to reduce
condemnation at slaughter.

SoundTalks is not yet able to distinguish whether coughing is caused by pathogens
or by environmental conditions. However, by thoroughly analyzing the patterns of RDI,
PRDC-associated pathogens can potentially be distinguished. For example, as shown in
Figure 2, the RDI patterns in influenza A virus-infected pigs had a distinct double-peaked
shape, whereas the pattern associated with MHP showed a gradual increasing pattern [69].
Further study is recommended to compare the RDI/ReHS patterns of pigs infected with
other PRDC-associated pathogens and environmental conditions. With this information,
farmers will be given a tool for more timely, precise diagnosis and control of the disease.

Figure 2. Chart showing Respiratory Disease Index (RDI), temperature, and humidity data from a
wean-to-finish barn experiencing clinical episodes of influenza and Mycoplasma [69].

5. Existing Technology: Limitations and Opportunities for Improvement

In a decade, several studies have been conducted on AI’s application in livestock
production. One application of AI is cough detection for monitoring the respiratory
health status of swine. AI for cough detection has been implemented in commercial
applications, and it has been found to have a great advantage in enhancing farming
productivity and efficiency through improvements in decision-making for herd health
management. However, the authors found some limitations of the existing technology that
should be considered for the improvement and development of smarter technology.

5.1. Farm-Dependent Coughing Threshold

Early detection of a respiratory problem is crucial for controlling the disease to prevent
further economic losses. Thus, an alarm system is a very important feature of technology
for accurately and promptly alerting the user of an early respiratory problem. The existing
technology has a patented algorithm that calculates the threshold as the basis of the alarm.
This threshold is based on the history of and the variation in the respiratory health status
of a specific room where a monitor is installed. This system has a possible drawback. For
example, two farms with different coughing histories may have different thresholds, and
once the farms are infected at the same rate, one room might not alarm (possibly the room
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with more coughing at the start). Thus, further research is recommended to generate a
threshold value that is associated with the severity of infection. As stated, historical data
were used for threshold calculation as the basis for the alarm. In the authors’ opinion, the
algorithm was designed to detect acute respiratory disease. Is this algorithm able to detect
chronic respiratory disease? This is something that needs to be explored.

5.2. Population-Dependent Coughing Threshold

The existing technology is built to monitor the respiratory health status of a large
population. Several studies found lower RDI values and no alert even in infected, small
populations compared to large populations. The threshold for alarm should be associated
with infection. Further research is recommended to generate a threshold value that is
corrected by population.

5.3. Monitoring of Herd Respiratory Health Status

Studies using audio technology have shown great performance in detecting respiratory
problems caused by pathogens or environmental conditions. However, the current technol-
ogy can only evaluate the general health status of the herd in a specific room. Automatic
recognition of individual pigs is essential for monitoring an individual’s health condition.
Currently, the application and development of computer vision technology for individual
pig recognition are still in the experimental stage, the cost of hardware being a notable
limiting factor in its large-scale application. However, the integration of visual technology
with audio technology can be a better technology for monitoring the health of the herd and
the individual pig. In this system, the specific sick pig can be immediately recognized, and
the health management will be more precise.

6. Conclusions

PRDC is a major concern for the swine industry that results in significant economic
losses. Thus, early detection of and response to the disease at the farm level is essential
for preventing and minimizing the potential damage that it may cause. Studies about the
application of AI in respiratory health disease detection have shown its great advantage in
swine farming. Respiratory diseases can be detected using AI for automatic cough-sound
recognition and quantification with high sensitivity and precision. However, different AI
models have demonstrated differences in performance. These differences might be due
to methodologies and architectures used in data preprocessing, feature extraction, and
classification. Additionally, the size and diversity of the dataset used for training are crucial
for this part.

The AI technology available is commercially used audio technology that can monitor
and evaluate the herd’s respiratory health status with temperature and humidity sensors to
monitor environmental conditions. Moreover, some limitations of the existing technology
were identified. The limitations are mainly regarding the sensitivity of the alarm system
to coughing episode variations. The alarm system is farm-dependent and population-
dependent. Lastly, it cannot detect a respiratory problem in an individual pig. Substantial
effort must be exerted to surmount the limitations to have a smarter AI technology for
monitoring respiratory health status in swine.
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