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Simple Summary: Nutrition plays a key role in the epigenetic regulation of gene expression in dairy
cows. Epigenetic alterations refer to the changes in gene expression that are not caused by changes
in the DNA sequence itself, but rather by modifications to the DNA molecule or the proteins that
interact with it. These modifications can be influenced by environmental factors such as diet and
have a deep impact on the health and productivity of dairy cows. This work summarizes the main
causes of nutrition that produce epigenetic changes in dairy cattle.

Abstract: Dairy cows require a balanced diet that provides enough nutrients to support milk pro-
duction, growth, and reproduction. Inadequate nutrition can lead to metabolic disorders, impaired
fertility, and reduced milk yield. Recent studies have shown that nutrition can affect epigenetic
modifications in dairy cows, which can impact gene expression and affect the cows’ health and
productivity. One of the most important epigenetic modifications in dairy cows is DNA methylation,
which involves the addition of a methyl group to the DNA molecule. Studies have shown that the
methylation status of certain genes in dairy cows can be influenced by dietary factors such as the
level of methionine, lysine, choline, and folate in the diet. Other important epigenetic modifications
in dairy cows are histone modification and microRNAs as regulators of gene expression. Overall,
these findings suggest that nutrition can have a significant impact on the epigenetic regulation of
gene expression in dairy cows. By optimizing the diet of dairy cows, it may be possible to improve
their health and productivity by promoting beneficial epigenetic modifications. This paper reviews
the main nutrients that can cause epigenetic changes in dairy cattle by analyzing the effect of diet on
milk production and its composition.

Keywords: cow; DNA methylation; epigenetic changes; histone deacetylation; milk production;
miRNA

1. Introduction

Cattle produced around 930 million tons of milk in 2022, up by 0.6 percent from 2021.
The Food and Agriculture Organization of the United Nations expects an increase in milk
production by more than 15 million tons per year by 2030, mainly in developing coun-
tries [1]. In addition, milk production also plays a relevant role in economic development
and poverty mitigation [2]. In relation to human nutrition, milk and dairy products are
one of the main sources of high-quality protein; vitamins A, D3, B1, B2, B6, and B12; and
other micronutrients such as calcium, phosphorus, selenium, and potassium [3,4]. The milk
compounds and types of fat in dairy are involved with bone health, cardiovascular disease,
and other conditions, including immune development in children [4–7]. The quality and
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quantity of these and other relevant nutrients depend on the cow’s health and nutrition,
and other factors such as milk processing.

Increasing productivity while maintaining quality through genetic selection, manage-
ment of cattle, and nutritional strategies is a topic that is well studied [8–10]. In recent years,
genetic selection in dairy cows has improved milk production and quality. Other traits such
as health, fertility, embryo production, and mastitis resistance have also been improved
through genetic selection in dairy cows [11–13]. The application of omics technologies has
achieved notable improvements in these and other traits in dairy cattle [14]. New man-
agement systems of cows have had a great impact on the reproduction performance [15],
resistance to infections [16], and health [17]. In relation to nutrition, different strategies
were assessed to increase milk production and fertility parameters [18], and to reduce
methane emissions [19], among other benefits.

Epigenetic mechanisms regulate gene expression [20]. The impact of the environment
and nutrition on epigenetic changes was demonstrated in animals [21]. For example, high
levels of renal renin expression were shown to regulate gene expression in animals [22],
whereas in humans, a methyl-group donor could modulate gene expression via DNA
and histone methylation [23]. In cows, epigenetic changes could influence not only their
performance, but also their offspring. The aim of this review is to update the current
knowledge about the effects of nutritional management on epigenetic mechanisms in dairy
cattle.

2. Nutrition in Dairy Cows

Nutrient requirements in cattle are dependent on the physiological stage, breed, and
environmental conditions, among other factors. Therefore, dairy cows need a diet that
supplies the energy and nutrients needed for high milk production. Energy, carbohydrates,
amino acids (AAs), fatty acids, minerals, vitamins, and water are all nutrients required by
lactating dairy cows to meet the demand of the mammary gland to produce milk and its
components [18]. The energy requirements are calculated by estimating the maintenance
and production needs. A 10% safety margin is included in maintenance requirements to
cover the energy costs resulting from normal activity. Production requirements should
consider the chemical composition of milk, especially in relation to fat content, not only
because it has a high energy value compared to other components, but also because it
varies considerably between animals and/or farms [24]. The current stage of the productive
cycle should be considered as well, since the cow’s dry matter intake and milk production
vary considerably throughout the entire cycle [18,25–27]. High levels of milk production
require an increase in energy in the diet. Figure 1 shows the daily net energy requirements
depending on milk production and milk composition.
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Lactation is the most demanding biological process. This process requires the cows
to consume enough nutrients to produce milk and to gain weight. So, if the diets are
deficient in any nutrient, the milk production and its components will decrease [29,30].
However, diets with excessive amounts of nutrients will decrease the efficiency of its
nutrient utilization, increase nutrient excretion into the environment, increase the cost of
milk production, decrease the profits for dairy producers, and increase the costs for the
consumers of dairy products [29].

Bovine milk is a nutritionally rich, chemically complex biofluid consisting of hun-
dreds of different components, primarily water and triglycerides [31]. It is the secretory
product of mammary epithelial cells (MEC), where the vast majority of the compounds are
synthesized from blood precursors [32]. It is essential to highlight the key role that a rich
and balanced diet plays in milk production, although there are certain features concerning
rumen physiology and microbiome that should be considered when it comes to making up
the feed ration [33,34].

Considerable progress was made in understanding the protein and AAs nutrition of
dairy cows. Worldwide, most producers and nutritionists still consider only crude protein
(CP) when evaluating protein diets and animal requirements. There is a mechanism of
ruminal protein degradation by rumen bacteria and protozoa. It was shown that ammonia
released from AA degradation in the rumen is used for bacterial protein formation, and
that urea can be a useful nitrogen (N) supplement when low-protein diets are used [34].

Dietary protein generally refers to CP, which is defined for feedstuffs as the nitrogen
content, which is obtained by multiplying the nitrogen content by a factor of 6.25, since
most proteins contain 16% N. The CP content includes both protein and nonprotein N
(NPN). Feedstuffs vary widely in their relative proportions of CP and NPN, in the rate
and extent of the ruminal degradation of the protein, and in the intestinal digestibility
and its AA composition of ruminal undegraded feed protein. The NPN in feedstuffs and
supplements such as urea and ammonium salts are degraded completely in the rumen.
Nevertheless, the goals of ruminant protein nutrition are to provide adequate amounts of
rumen-degradable protein (RDP) for optimal ruminal efficiency and to obtain the desired
animal productivity with a minimum amount of dietary CP. In fact, an increase in milk
production and composition requires an increase in crude protein in the diet (Figure 2).

Figure 2. Daily crude protein requirements of large-breed cows (live weight = 680 kg) in early
lactation. (A) Feed intake estimated on day 11 of its lactation and midlactation. (B) Feed intake
estimated on day 90 of its lactation in terms of milk production and milk composition [28].

Amino acid requirements have only been determined generically for methionine (Met)
and lysine (Lys), although under some conditions, arginine and histidine may also limit
milk production. The AA requirements for adult dairy cattle are known with little certainty,
but both the NRC (2001) and the INRA (2007) recommend the contribution of 2.4 and 7.2%
of the total metabolizable protein to be Met and Lys, respectively [28,35].
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To comply with the AA requirements, the use of rumen-protected AAs (RPAAs) was
evaluated. Met and Lys supplementation was widely studied, showing benefits related
to milk and its protein yield [18]. However, some works suggest that the protein needs
of both the animal and the rumen were overestimated, and that lower levels than those
currently recommended would be sufficient for maintaining high production levels with
higher N retention efficiencies and lower N emissions into the environment, with balanced
AA levels [19,34]. Figure 3 shows the daily RDP requirements in different reproductive
stages related to milk production and milk composition.
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3. Epigenetic Regulators
3.1. DNA Methylation

In mammals, DNA methylation plays a crucial role in regulating different biologi-
cal functions, including chromosomal stability, genomic imprinting, and X-chromosome
inactivation [36]. This process involves the addition of methyl groups to the cytosine of
CpG islands (Figure 4) and is catalyzed by the following three conserved enzyme fam-
ilies: DNA methyltransferase (DNMT) 1, DNMT3a, and DNMT3b [37–39]. These three
enzymes play crucial roles in DNA methylation, an epigenetic modification process in
which a methyl group is added to the DNA molecule. DNA methylation helps regulate
gene expression and is involved in various cellular processes, including development,
differentiation, and genomic stability. DNMT1 (DNA methyltransferase 1) is primarily re-
sponsible for maintaining DNA methylation patters during DNA replication. It recognizes
hemimethylated DNA and adds a methyl group to the unmethylated strand, ensuring
the faithful transmission of DNA methylation patterns to daughter cells. DNMT3a (DNA
methyltransferase 3a) is one de novo DNA methyltransferase. It is involved in establishing
new DNA methylation patterns during development and cellular differentiation. DNMT3A
can methylate previously unmethylated DNA regions and is crucial for embryonic develop-
ment, hematopoiesis, and neuronal differentiation. DNMT3b (DNA methyltransferase 3b)
shares functional similarities with DNMT3a and is involved in establishing DNA methy-
lation patterns during development and cellular differentiation. DNMT3b is particularly
important for the methylation of repetitive sequences, such as transposable elements in the
genome. These three enzymes collectively contribute to the dynamic regulation of DNA
methylation patterns in cells, playing critical roles in normal development, gene expression,
and disease processes [40–45].
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Figure 4. Gene expression regulated by DNA methylation. DNMT enzymes add methyl groups in
cytosine residues of CpG island. As a result, RNA polymerase is unable to bind to DNA sequence of
gene promoter, and the gene expression is repressed [43].

For these enzymes to perform their function, they require a methyl donor, which can
be influenced by methyl groups (choline, betaine, methyl-folate, or methionine) obtained
from the diet. These substances serve as precursors to the universal methyl donor, S-
adenosylmethionine (SAM) [44,46–48]. One example of the impact of methyl groups on
enzyme function is the regulation of the insulin-like growth factor II (IGF2) gene. The
expression of IGF2 depends on the methylation of a specific region, Igf2DMR2, located in the
H19 gene. When pregnant rats are fed a choline-deficient diet, hypermethylation occurs in
these regions, resulting in the inhibition of H19 and an increase in the IGF2 expression [49].
A prime example of this EGF2 regulation and its relationship with nutrition occurred in
the Dutch Hunger Winter of 1944/1945. A reduction in the DNA methylation in the IGF2
gene was observed in the offspring of pregnant women who suffered from famine [50].
Several studies indicate the importance of nutrition in determining epigenetic marks in
livestock. Murdoch et al. (2016) published an extensive review that explores the effects of
nutrient quality and quantity on methylation in different livestock species [51]. Among
the various nutrients, methyl-group donors such as choline, folate, and betaine have a
significant effect on DNA methylation. For example, betaine injections in eggs were shown
to increase DNA methylation, regulating hepatic cholesterol metabolism in chicks [52].
Pregnant sows fed with betaine-supplemented diets were also found to have piglets with
modified methylation patterns [53]. Sheep that were fed diets deficient in vitamin B12,
folate, and Met were linked to hypomethylation in their offspring, which can affect birth
weight, immune responses, and blood pressure levels [50].

The most economically important traits in dairy cows are related to quantitative trait
loci (QTL), including milk yield and milk components. Some of these QTL are regulated
by epigenetic mechanisms, including methylation regulation, and may affect phenotypic
variation in livestock production [54,55]. Therefore, it is necessary to conduct studies on the
epigenetic regulation, particularly through DNA methylation, which are traits of interest
in livestock production. Such studies should focus on how animal nutrition affects these
methylation changes.

3.2. Histone Modifications

Histone post-translational modifications are chemical modifications that occur on the
histone proteins, which are the main components of chromatin, the complex of DNA and
proteins that make up chromosomes [56]. These modifications (acetylation, phosphory-
lation, and methylation) play a crucial role in regulating gene expression and chromatin
structure, thereby influencing various cellular processes such as DNA replication, repair,
and transcription (Figure 5) [57]. These functions can regulate gene expression and play a
role in the development of genetic disorders and early development in mammals [58–60].
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Figure 5. Schematic diagram of the gene expression regulation by histone modifications. Methyltrans-
ferases add methyl groups in lysine (Lys) and arginine residues, favoring chromatin condensation
and preventing gene expression (up). Acetyltransferases and deacetylases add or remove acetyl
groups in Lys residues, decreasing or increasing the condensation of chromatin, respectively (up and
down). The kinases and phosphatases add phosphate groups in different locations, changing the
condensation of chromatin [43].

The acetylation of histones is regulated to two enzyme families, histone acetyltrans-
ferases (HATs) and histone deacetylases (HDACs), which modify the Lys residues of
histones. HATs transfer an acetyl group to the Lys side chain, while HDACs reverse the
process [61]. The phosphorylation of histones occurs on serine, threonine, and tyrosine,
and is regulated by kinases and phosphatases [62]. The methylation of histones occurs on
Lys and arginine side chains, with specific methylases and demethylases [63,64]. Histone
modifications regulate multiple biological processes, with one of the most important being
early mammalian development. For example, modifications in the 4 and 27 Lys residues of
histone 3 (H3K4 and H3K27) regulate the formation of the trophectoderm and the inner cell
mass in mice [65], and other histone modifications are related to the regulation of genomic
imprinting, HOX gene expression, and the regulation of pluripotency in mammalian early
development, among others [66].

3.3. Small Non-Coding RNA: miRNAs as Epigenetic Regulators

The discovery of the first micro RNA (miRNA), lin-4, in the nematode Caenorhabditis
elegans, dates back to 1993, but its significance was not fully realized until the discov-
ery of let-7, another miRNA [67,68]. MiRNAs are small RNA molecules, approximately
20–24 nucleotides in length, that do not code for proteins [69–71]. MicroRNAs are found
in many organisms, including humans, and are involved in various biological processes,
such as development, cell proliferation, differentiation, and apoptosis [71,72]. The pri-
mary function of miRNAs is to regulate gene expression by binding to the messenger
RNA (mRNA) molecules and either degrading them or inhibiting their translation into
proteins. The biogenesis of miRNAs begins in the cell nucleus, where they are transcribed
from DNA sequences into primary miRNA (pri-miRNA) molecules. These pre-miRNAs
are then processed by an enzyme called Drosha to form precursor miRNA (pre-miRNA)
hairpin structures. The pre-miRNAs are exported from the nucleus to the cytoplasm by the
protein Exportin-5. In the cytoplasm, the pre-miRNAs are further processed by an enzyme
called Dicer, resulting in the formation of mature miRNAs. The mature miRNAs are then
incorporated into a protein complex called the RNA-induced silencing complex (RISC).
Within the RISC, the miRNAs guide the complex to complementary sequences on target
mRNA molecules. The binding of miRNAs to mRNA can lead to mRNA degradation or
translational repression, depending on the degree of complementarity between the miRNA
and the target mRNA (Figure 6) [73]. Other non-coding RNAs were found to be epigenetic
regulators. Piwi-interacting RNA (piRNA), small interfering RNA (siRNA), small nucleolar
RNA (snoRNA), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) can
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regulate gene expression through various mechanisms, including heterochromatin forma-
tion and inhibition of translation [74–76]. These RNA molecules were shown to play an
important role in shaping the epigenetic landscape [77–79]. However, the exact connection
between nutrition and the regulation of these non-coding RNAs remains unclear.

Figure 6. Schematic diagram of miRNA biogenesis. In the nucleus, miRNA is transcribed by RNA
polymerase II as primary transcripts (pri-miRNA). The Drosha enzyme cuts this pri-miRNA to form
a pre-miRNA, which is actively transported to the cytoplasm by the nuclear transport receptor
Exportin-5 (XPO5). In the cytoplasm, the pre-miRNA is cut by a second enzyme, Dicer, to form a
mature and short double-stranded miRNA molecule. The miRNA duplex is incorporated into the
RISC protein complex [80].

4. Epigenetic Regulation and Nutrition

Epigenetic regulation plays an important role in milk production in mammals. During
lactation, mammary gland cells show extensive epigenetic changes that help to activate the
genes required for milk production and secretion. One of the key epigenetic mechanisms
involved in milk production is DNA methylation. The methylation of the promoter regions
of genes involved in milk synthesis and secretion can lead to the suppression of their expres-
sion. The methylation profile regulates milk production [81] and is related to the protein
and fat levels in milk. Recently, Wang et al. (2021) demonstrated differentially methylated
CpG sites co-located with QTLs for milk protein and fat [82]. The hypomethylation of the
activator of transcription (STAT) 5-binding lactation enhancer in bovine lactating mammary
glands regulates casein expression [83]. Concretely, an increase in the methylation of the
CpG island of STAT5 binding was observed as the post-milking time lengthens and could
be related to mammary involution and the decrease in the protein levels in milk [83,84].

Nutrition can affect epigenetic regulation in the mammary gland, which, in turn,
can impact milk production. Studies have shown that maternal diet during pregnancy
and lactation can influence epigenetic modifications in the mammary gland, leading to
changes in the gene expression and milk composition. For example, maternal protein
restriction during pregnancy and lactation was shown to alter DNA methylation patterns
in the mammary gland of offspring, leading to changes in the expression of genes involved
in milk production and secretion in cattle and goats [85–87]. The DNA methylation pat-
terns and gene expression in the mammary gland change with the supplementation of
certain nutrients, such as choline and folic acid. Some AAs, mainly Met, participate in the
one-carbon metabolism that regulates the synthesis of purines and methylation. Other
metabolites, such as choline, betaine, and folate, are used to provide methyl donors for
methyltransferases, and their use is related to the AA requirements. All of them have an
important role in the regulation of S-adenosylmethionine (SAM) [88,89].

The impact of Met supplementation on cows was extensively studied both in vivo
and in vitro. Met is an essential AA that plays a crucial role in several biological processes,
such as growth and milk production. It is also essential for maintaining the cow’s overall
health, as it supports the function of the immune system and acts as an antioxidant, pro-
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tecting cells from damage caused by free radicals. Enhancing the supply of Met during
the peripartum period leads to a greater phosphorylation of the antioxidant transcription
regulator (NFE2L2) [90–92], along with a reduction in the protein abundance of its negative
regulator (KEAP1) in mammary tissue. As a result, the abundance of the antioxidant pro-
tein (HMOX1) and various target genes is upregulated. The data suggest the existence of
posttranslational and transcriptional mechanisms in mammary tissue during early lactation
that likely modulate the antioxidant effect of Met [90]. It was shown that Met supplementa-
tion increases the expression of phosphatidylethanolamine methyltransferase (PEMT) and
cystathionine β-synthase (CBS), resulting in a higher synthesis of phosphatidylcholine and
antioxidants [93]. An enhanced Met supply increases the AKT serine/threonine kinase 1
phosphorylation status and a cascade of intracellular events leading to the upregulation of
AAs and glucose transporters [94]. Coleman et al. (2019) studied the effect of increased
post ruminal supply of choline during periods of feed restriction-induced negative energy
balance (NEB), which was found to have beneficial effects on milk production and liver
fatty acid metabolism [95].

The effect of Met supplementation on immunity was studied as well, showing that
Met plays a critical role in the immune response, and its deficiency can impair the immune
system’s ability to fight infections and diseases [96–98]. A strong immune system in cows
can help to prevent diseases and infections, leading to an improvement in overall health
and productivity. This, in turn, leads to higher milk production, better quality of milk,
and lower veterinary costs. In vivo studies provide valuable insights into how Met affects
mammary cell function and milk production, informing dietary recommendations and
management practices for optimizing cow health and productivity. The supplementation
of Met in bovine mammary epithelial cells leads to an increase in milk protein synthesis.
This effect is facilitated by the upregulation of gene expression related to several signaling
pathways, including cGMP-PKG, Rap1, calcium, cAMP, PI3K-AKT, MAPK, and JAK-
STAT [99], and mTOR [100,101]. Qi et al. (2018) demonstrated that Met promotes milk
protein and fat synthesis and the proliferation of BMECs through the activation of the
SNAT2-PI3K signaling pathway [102].

In addition to DNA methylation, histone modifications also play a role in milk pro-
duction. The packaging of DNA around histone proteins can be altered by various modifi-
cations such as acetylation, methylation, phosphorylation, and ubiquitination, which can
affect gene expression. For example, the acetylation of histones is generally associated with
active gene transcription, while the methylation of histone can lead to either the activation
or repression of genes, depending on the specific modification and location [103]. Histone
modifications can also be influenced by nutrition. Studies have shown that dietary compo-
nents, such as polyphenols and omega-3 fatty acids, can alter histone acetylation patterns
in the mammary gland, leading to changes in the gene expression and milk composition
in pigs and goats [104,105]. In the context of milk production in cows, it is known that
additional carbohydrates can lead to an increased availability of glucose, which can be used
by the mammary gland for milk production and milk protein synthesis [106]. However, if
the cow’s energy intake from carbohydrates is excessively high, it can result in an imbalance
in the cow’s metabolism [107–109]. The excess carbohydrates can be converted into fatty
acids in the liver through lipogenesis, leading to an increase in fat synthesis [110]. Studies
on gene expression related to the amount of energy and fat in the diet suggest that diets
with a high energy intake, whether in the form of carbohydrates or fats, could alter the
methylation patterns of genes related to fatty acid biosynthesis in the mammary tissue
of dairy cows, resulting in a reduction in the milk fat content, as well as the quantity of
milk [111,112].

In relation to DNA methylation and histone modifications, non-coding RNAs also
regulate gene expression during lactation. MiRNAs can suppress the translation of target
genes by binding to complementary sequences in the 3′-untraslated regions (UTR) of
mRNAs, leading to the degradation or inhibition of translation. These non-coding RNAs
were shown to be influenced by nutrition. For example, maternal diet during pregnancy



Animals 2023, 13, 1883 9 of 14

and lactation can alter miRNA expression patterns in the mammary gland of offspring,
leading to changes in the gene expression and milk composition in rats [113,114], and
miRNAs are related to DNA methylation regulation. In vitro studies indicate that miRNA-
152 is involved in the development of mammary glands and lactation via the regulation of
DNMT1 [115], and the inhibition of miRNA-29s provokes the hypermethylation of lactation
gene promoters [116]. In relation to milk composition, miRNA-183 is inhibited by prolactin
and regulates milk fat metabolism [117], and miRNA-200 is necessary for mammary gland
development [118]. Milk composition is also regulated by miRNAs. Cui et al. (2020)
found 71 miRNAs differentially expressed in the mammary glands in dairy cows with
different milk proteins and fats [119]. At the same, Billa et al. (2021) found eight miRNAs
associated with QTLs related to lactalbumin content and fat composition [120]. Finally,
other non-coding RNAs were related to mammary gland development and function. For
example, Shore et al. (2012) found a non-coding RNA, named pregnancy-induced non-
coding RNA (PINC), as a possible regulator of milk production [121]. The high expression
of PINC inhibits alveolar cells and prevents milk production and secretion in pregnancy.
Recently, Sun et al. (2023) published an extensive review related to circular RNA and its
roles in livestock production, including milk production [122]. Table 1 shows the examined
nutrients, and the related epigenetic effects and physiological endpoints.

Table 1. Different epigenetic marks and changes due to changes in diet, and related physiological
endpoints.

Nutrient Examined Epigenetic Mark or Molecule Physiological Endpoint References

Protein restriction DNA methylation patterns altered Milk production in cattle and goats [85–87]

Methionine supplementation
Phosphorylation of NFE2L2 Antioxidant effect in cattle [90–92]

Upregulation of gene expression Protein and fat synthesis in milk in cattle [102–104]

Choline supplementation DNA methylation patterns altered Milk production and liver fatty acid
metabolism in cattle [97]

Polyphenol and omega-3 fatty
acid supplementation Histone acetylation patterns Milk composition in pigs and goats [104,105]

Carbohydrates and fat
supplementation DNA methylation patterns altered Reduction in milk fat content; milk

production in cattle [111,112]

High fat supplementation MiRNA expression patterns altered Milk production in rats [115]

Energy restriction MiRNA expression patterns altered Milk production and composition in
cattle [120]

Overall, epigenetic regulation is critical for the proper functioning of the mammary
gland during lactation, and the dysregulation of epigenetic mechanisms can contribute to
lactation insufficiency or other milk-related disorders. Nutrition can influence epigenetic
regulation in the mammary gland, leading to changes in the gene expression and milk
production. Understanding the role of nutrition in epigenetic regulation can help to develop
strategies for improving milk production and composition, as well as the health and well-
being of offspring.

5. Conclusions

This review analyzes the diverse effects of protein and AA levels in lactating cow
diets on epigenetic regulatory mechanisms. An adequate intake of essential nutrients is
necessary for optimal cow health and productivity. Met supplementation was shown to
improve milk protein and fat content, milk quality, and milk production, and support the
function of the immune system. Additionally, Met plays an important role in reproductive
success and overall cow growth and development. Understanding the effects of varying
protein and AA levels on epigenetic changes is important, as these interactions impact not
only the animal’s productive traits, but also other traits of the animal and its offspring.
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These epigenetic changes can have significant consequences on the animal’s health, welfare,
and productivity. Therefore, it is essential to study the mechanisms underlying the effects
of protein and AA levels on epigenetic regulation, and to develop precise and tailored
nutritional strategies that optimize animal health, performance, and offspring development.
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