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Simple Summary: Wildlife researchers and managers can choose from several techniques to estimate
the number of animals in a population. Camera traps and drones are increasingly common and
cost-effective options that can estimate the number and density of wildlife. We compared three simple
methods that are used to estimate the number and density of deer in Pilot Mountain State Park:
(1) mark–resighting and (2) N-mixture modeling, both using camera trap data, and (3) extrapolating
transect counts from thermal videos collected from an aerial drone. We found that all three methods
provided similar estimates of the population’s density, with complementary strengths and weak-
nesses: drone surveys collected data quickly and precisely, mark–resight ratios provided estimates of
different demographic groups, and N-mixture modeling revealed changes in density across different
habitat qualities and seasons.

Abstract: Camera traps and drone surveys both leverage advancing technologies to study dynamic
wildlife populations with little disturbance. Both techniques entail strengths and weaknesses, and
common camera trap methods can be confounded by unrealistic assumptions and prerequisite
conditions. We compared three methods to estimate the population density of white-tailed deer
(Odocoileus virgnianus) in a section of Pilot Mountain State Park, NC, USA: (1) camera trapping using
mark–resight ratios or (2) N-mixture modeling and (3) aerial thermal videography from a drone
platform. All three methods yielded similar density estimates, suggesting that they converged on
an accurate estimate. We also included environmental covariates in the N-mixture modeling to
explore spatial habitat use, and we fit models for each season to understand temporal changes in
population density. Deer occurred in greater densities on warmer, south-facing slopes in the autumn
and winter and on cooler north-facing slopes and in areas with flatter terrain in the summer. Seasonal
density estimates over two years suggested an annual cycle of higher densities in autumn and winter
than in summer, indicating that the region may function as a refuge during the hunting season.

Keywords: camera trapping; N-mixture modeling; density estimates; mark–resight; North Carolina;
Odocoileus virginianus; population estimation; imperfect detection; drones; thermal imaging

1. Introduction

Population surveys establish baseline information for a wide spectrum of ecological
processes and traits, including population dynamics [1], species interactions [2], disease

Animals 2023, 13, 1884. https://doi.org/10.3390/ani13111884 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani13111884
https://doi.org/10.3390/ani13111884
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0001-8646-9042
https://doi.org/10.3390/ani13111884
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani13111884?type=check_update&version=1


Animals 2023, 13, 1884 2 of 17

prevalence [3], and biodiversity [4]. Many methods can be used to survey and estimate pop-
ulations by sampling or complete census; advancing technologies are adding and refining
methods that observe wildlife with little or no disturbance, and advancing statistical tech-
niques can relax past assumptions of modeling and parse the components of uncertainty
into meaningful inferences [5,6]. However, both new and conventional methods must
be validated in real conditions and against one another to ensure that they can provide
accurate and appropriate inferences [7]. At large scales and under realistic management
conditions, this validation can entail a high and potentially prohibitive cost and effort.

Remote photography surveys have surged in popularity since the development of
affordable commercially available infrared-triggered camera traps [8–10]. Camera traps,
once deployed, serve as long-term fixed observers operating continuously in a wide range of
environmental and climatic conditions with minimal human attention [11]. Consequently,
camera traps are less invasive, less labor-intensive, and more cost-effective than many
other ecological monitoring techniques [10,12,13], and are often deployed en masse to
survey large areas of habitat. Such large-scale surveys are sensitive to the number of
cameras deployed, the density of their placement, and individual camera placement and
perspective, as these contextual parameters can determine the effective sampling area of
each camera trap and therefore the aggregate area and proportion of habitat surveyed.
Additionally, data from camera traps can challenge efforts to estimate population size
(the gross number of individuals in a population) or density (the number of individuals
per unit of area) because camera traps do not achieve perfect or necessarily consistent
sampling [14,15]. Because camera traps generally detect and photograph limited portions of
their assumed sampling areas, resulting records conflate true absences of the target species
with undetected occurrences [15,16]. Estimates that do not account for such ‘imperfect
detection’ misrepresent target populations and can misinform management decisions.
Several analytical methods account for imperfect detection of camera traps [10,17], but
modified mark and recapture methods such as mark–resighting are most commonly used
by managers.

Mark–resighting is often used with camera trap data to estimate populations but is
limited by the precondition that some individual animals be identifiable, such that the
ratio of identified animals to all animals sighted can be used to estimate total abundance
at each camera site [15]. Simple mark–resight methods operate under two assumptions:
(1) that individuals are correctly identified and (2) that individuals have equal probabilities
of detection [18]. The assumption of individual identification therefore restricts these
methods to populations that have been previously marked for identification or species with
individually distinct visual markings such as patterned pelage [19] or conspicuous antler
patterns [20]. Many of these methods were chiefly characterized in the context of baited
camera sites [20], which increase the probability of detecting local individuals but can
problematically bias population estimates because movements and responses to bait can
differ among demographic groups and change across seasons [21]. Modern mark–resight
methods account for heterogenous detection of individuals, animal movement and spatially
heterogenous habitat use, and imperfect detection [22], which improves the ability of mark–
resight methods to accurately describe populations across space and time. However, many
of these methods require fine-scale animal movement data whose collection entails higher
costs to both researchers and animals, and many studies still estimate populations from
simple mark–resight ratios instead [23].

N-mixture modeling (NMM) uses count data collected across time in multiple lo-
cations to estimate abundance without identifying individuals [24,25]. NMM treats the
probability of photographically capturing individuals (i.e., ‘detection’) and true abundance
independently by using variation in site-specific counts over time to estimate the probabil-
ity that individuals are detected. NMM entails several assumptions: (1) that variation in
point counts only results from the probability that individuals are detected [25]; (2) that
populations are closed; (3) that there are no false-positive species identifications; (4) that
detections are independent; and (5) that there is a constant, homogeneous detection proba-
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bility for all individuals [16]. NMM can incorporate covariates to model both detection and
occupancy, and it distinguishes non-detection from true absences [26]. In doing so, NMM
can provide fine-scale variation in abundance to inform precise management actions. NMM
has been used to estimate population characteristics of birds, amphibians, and tropical
mammals [27–29], but its accuracy under field conditions remains contentious.

Despite its popularity, NMM has been criticized as a method due to its dependence on
unrealistic assumptions [30]. Repeat-counting of individuals across samples, population
fluctuations within the survey period, and heterogenous detection probability among indi-
viduals or subclasses each violate assumptions of NMM yet are often unavoidable within
field surveys [31]. Recent simulation studies show that these violations only marginally
affect model fit but can radically change resulting population estimates [31,32]. Previous
validations of NMM have relied upon simulated data that conform to the underlying as-
sumptions of the model [25] and do not necessarily validate the model in field scenarios in
which modeling assumptions may not be realistic or verifiable—for example, free-ranging
populations of animals [33].

Recent decades have also yielded new drone-based methods for wildlife research
proceeding from many of the same technological advancements that have enhanced camera-
trap methods, including cheap high-resolution digital photography, improved thermal
sensors, and on-board micro-computer systems for decision making and remote camera
control. Drones can autonomously collect imagery along preprogrammed flight routes
that sample or census large spatial extents of habitat. Depending on the drone’s payload,
imagery can be collected as stills or continuous video; in color, multispectral, or thermal
infrared spectra; and at a variety of resolutions (also depending on the camera and planned
altitude of flight). Different payloads and imaging methods can entail trade-offs with
respect to the data collected or can be combined to complement one another and provide
novel information, and they are further contextualized by the choice of aircraft and flight
routes—which can also determine the cost of the operation in money and effort and the
potential disturbance to both target and non-target animals in the overflown area. In the
case of large mammals, thermal imagery can exploit the difference between endotherms and
their environments, particularly during twilight hours and winter months, to reveal animals
that might otherwise appear cryptic in visible light [34]. Drawbacks of thermal imagery
include higher cost sensors with lower resolutions compared to color cameras and potential
ambiguity of the detected species if multiple species appear similar in thermal infrared
radiation. Videography, in contrast to still photography, can additionally reveal animal
movement, enhancing animal detection and classification against a comparatively inert
environment. Tools and analytical methods for video-type data still lag behind those for
still photography, but emerging techniques promise to integrate the strengths of continuous
video with conventional photogrammetric methods [35]. When disturbance is a concern,
fixed-wing aircraft generally produce a quieter acoustic profile than multirotor drones of
similar size—though sometimes at the trade-off of a threatening visual profile (e.g., Egan
et al. 2020 [36])—and flying at higher altitudes further decreases a drone’s acoustic and
visual profile from the ground at the cost of a higher ground-sampling distance.

The broad goals of this study were to compare wildlife survey methods with a free-
ranging population of white-tailed deer (Odocoileus virginianus; hereafter deer), to derive
density estimates for a moderately large (10.24 km2) extent of habitat, and to relate temporal
fluctuations in regional density to ecological processes within a protected area. Deer are
keystone herbivores in the eastern United States [37], and at elevated densities they can
have profound homogenizing effects on understory composition and structure due to
selective browsing pressure [38,39]. Given that male deer are individually identifiable by
their antler characteristics [20], this species can therefore be used with mark–resighting,
NMM, and aerial thermal videography to estimate population density using each method.
Simple mark–resighting has been used widely to study deer [20,21], but NMM (commonly
used for other species) has been sparsely applied to deer in a management context due
to expected violations of the method’s assumptions [23]. However, white-tailed deer are
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a heavily managed game species, and their behaviors and use of space have been well
characterized in a variety of environments [40]. As such, we designed a sampling scheme
of unbaited camera traps to accommodate previously described occupancy characteristics
of deer and reduce the probability of detecting the same individuals across multiple camera
sites in an attempt to minimize violations of this assumption of NMM.

Our third method of population estimation—aerial thermal videography from
a drone—provided a complementary method of estimating population density and a
potential validation of mark–resight and NMM estimates from camera trap data. This
implementation of drone surveillance has previously been used to estimate population den-
sity of white-tailed deer in a known closed population and otherwise natural setting [34],
demonstrating the efficacy and accuracy of the technique for this species. Our study had
two specific aims: (1) to compare camera survey estimates of populations (expressed as
deer density) with one another and sampling from aerial thermal videography, and (2) to
use NMM to relate fluctuations in deer density to spatial and temporal ecological processes
at a local and regional scales. We hypothesized that each of the three methods would pro-
duce an approximately accurate estimate of the population based on previous successful
applications of each method with populations of white-tailed deer. However, given the
simplicity and coarseness of the mark–resight method, the controversial assumptions of
NMM, and the novelty of counting from aerial thermal videography, we did not necessarily
expect close agreement among the estimates. Past studies have varied with respect to their
use of baiting [41], season [42], and closed or open populations [43], so it is difficult to
compare among them. This study, therefore, addressed the need to test and validate these
methods in a consistent, realistic management scenario.

2. Materials and Methods

We conducted camera trapping and drone flights on a mountain section of Pilot
Mountain State Park (PMSP), NC, USA, 36.3425◦ N, 80.4768◦ W (Figure 1) during 2016–
2018. The mountain section of the park consists of a quartzite monadnock that rises
738 m above sea level and ~425 m above the surrounding countryside. Differing lev-
els of soil moisture and exposure among Pilot Mountain’s south/west and north/east
slopes drive vegetational differences along these aspects. Pine-oak/heath dominate on
the south/west-facing slopes as a result of xeric conditions from prevailing southwestern
winds and greater afternoon sun exposure. Dominant species include Table Mountain pine
(Pinus pungens, Lamb.) and pitch pine (P. rigida Mill.), with an understory of mountain
laurel (Kalmia latifolia L.) and purple rhododendron (Rhododendron catawbiense Michx). Scrub
oak (Quercus ilicifolia Wangenh.), blackjack oak (Q. marilandica Muenchh.), and chestnut
oak (Q. montana Willd.) are also present, with an herb layer comprising mainly beetle-
weed (Galax urceolata (Poir.) Brummitt) and trailing arbutus (also known as mayflower;
Epigaea repens L.). On cooler, more mesic east- and north-facing slopes the dominance shifts
from pines to oaks (predominantly Q. montana), with a poorly developed herbaceous layer
of primarily beetleweed [44]. Nearly all areas of PMSP are accessible to visitors, but most
human activity is concentrated at a visitor’s center at the eastern boundary, the central
peak, and a trail that links the two sites.

We established a grid of camera trap sites (n = 22) across a 10.24 km2 (2530 acre)
study region of PMSP (Figure 1). We separated camera sites by approximately 636 m to
resemble the common management practice of 1 camera per 100 acres [45,46]. Assuming
that individual deer occupy a core range of 0.24 km2 for >50% of their time [47], this camera
density of ~2.4 cameras/km2 established a low probability of capturing individuals at
multiple camera sites while achieving adequate coverage of the study area to feasibly detect
all uniquely identifiable individuals within the park. We chose original site locations using
a systematic design on a randomly generated grid and made minor ad hoc adjustments to
place cameras at sites with low immediate steepness and easy access by foot [20]. We used
Cuddeback E3 model cameras (Non Typical, Inc., Green Bay, WI, USA) set with “high”
trigger sensitivity and “optimal” detection range. We established camera sites in June
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2016 and maintained them continuously until September 2018 by downloading data from
memory cards and changing batteries regularly to achieve continuous monitoring. We
mounted cameras 60–90 cm above the ground and facing north to reduce backlighting at
sunrise and sunset, we cleared obstructive vegetation from each camera’s view to reduce the
likelihood of detected movement from wind gusts, and we mounted plastic identification
tags opposite each camera to facilitate site recognition from imagery. All sites recorded deer
during the deployment period, and humans and coyotes were also recorded on both camera
traps and aerial videography. All species were visually distinct in camera trap imagery;
humans were visually distinct from deer in aerial thermal videography, and coyotes were
sufficiently rare in camera trap data that they were considered a trivial source of potential
error in counts from aerial thermal videography.
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Figure 1. The study area in PMSP, North Carolina, USA. Camera sites were spaced approximately
636 m from one another for a density of 2.4 cameras/km2 over a total area of 10.24 km2. Each site was
outfitted with a single camera facing north that collected data continuously between June 2016 and
September 2018. Drones collected continuous thermal video along aerial transects from an altitude of
120 m and recorded a swath of 100 m in 15.6 cm/pixel ground sample distance for a total surveyed
area of ~1.375 km2. Insets indicate the location of the study area (red stars) within North Carolina
and the continental USA.

For mark–resight analysis we counted the number of adult males, adult females, fawns,
and individuals of indeterminable demographic characteristics in each photograph between
1 December 2017 and 28 February 2018—a period that corresponded to the winter bin of
our NMM seasonal analysis. We then applied the method described by Hamrick et al. [45]
to estimate the density according to a common method among wildlife management
practitioners. We identified all unique male deer photographed across all sites during
this period and calculated a “population factor” as the ratio of identifiably unique male
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individuals (identified by antler characteristics) to all occurrences of adult males (antlered
adults) in photographs.

population factor = unique adult males ÷ all adult male occurrences (1)

We then multiplied this population factor by all occurrences of presumed adult females
(antlerless adults) in photographs to estimate the number of unique females among camera-
trap photographs.

unique females = population factor × all adult female occurrences (2)

Finally, we multiplied the population factor by all occurrences of fawns in photographs
to estimate the number of unique fawns among camera-trap photographs.

unique fawns = population factor × all fawn occurrences (3)

We estimated the population of our sampled area by summing these estimates and
applying an extrapolation factor to correct for undetected individuals in our population.

population estimate = 1.10 × (unique males + unique females + unique fawns) (4)

Based on the 3-month duration of our observation period, we used a conservative
extrapolation factor of 1.10 (which has been empirically estimated for baited surveys of this
length [45,48]) in the absence of a recommended extrapolation factor for unbaited surveys—
which, we expected, were less likely to attract individuals in front of the camera and might
therefore warrant a larger extrapolation factor. We then calculated the population density
by dividing this total estimate by the study area (10.24 km2) [46].

We generated 95% confidence intervals for mark–resight estimates from a bootstrapped
distribution of 10,000 density estimates calculated using bootstrapping: we randomly
resampled 10,000 combinations of our sites (n = 22) with replacement and then aggregated
the resulting mark–resight abundance estimates of those sites into a total density estimate
across sites for the bootstrap instance. The resulting distribution of resampled density
estimates yielded an estimated confidence interval of the total density estimate.

For each day and each site, we counted deer in each photograph and used the highest
count to represent that day and site in NMM in order to avoid the risk of counting the same
individuals multiple times and to disregard photographs in which the frontmost animals
obstructed the camera’s field of view. We binned observations into three-month seasons—
summer (June–August), autumn (September–November), winter (December–February),
and spring (March–May)—to model temporal changes in deer abundance and to control for
seasonal differences in animal behavior and the related probability of detection. We used
30 m resolution elevation data from the USGS National Elevation Dataset [49] to calcu-
late the site-specific elevation, slope, aspect, and distance to the nearest park edge for
each camera site. We transformed the aspect from an angular variable (0–360◦) into its
north–south component by taking the cosine of the angle, which we hereafter describe as
the aspect.

We used NMM with a hierarchical form:

Ni ~ Poisson(λi); with log(λi) = β0 + β1

Cij|Ni ~ Binomial(Ni,pij); with log(pij) = α0 + α1
(5)

where N is the latent abundance of site i, C is the point count at site i and time j, λ is
the mean abundance, and p is the detection probability of individuals at site i and time
j. Covariates (β, α) were incorporated into the detection and abundance portions of the
model using log-link functions [25].

We created candidate models that included one or two environmental predictors
(elevation, slope, aspect, and distance to edge) independently in both the detection and
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abundance components of the model (such that all 42 possible combinations were repre-
sented as candidates) as well as a null model with no covariates included (Appendix A). We
selected a single model for each three-month season from summer 2016 through summer
2018 using Aikake’s information criterion (AIC). For each site, we calculated an empirical
Bayes best unbiased predictor of mean abundance from a simulated posterior distribution
of the top performing model along with 95% credible intervals. We estimated the pop-
ulation density of deer in our study area using NMM each season by adding the mean
abundance estimates of all camera trap sites and dividing the sum of estimates by the
total area sampled across all cameras (10.24 km2). We also modeled deer abundance from
camera trap collected between 15 January and 15 March 2018—a period approximately
centered around the timing of our drone surveys—using the selected model structure for
winter 2017/2018 to assess agreement between the NMM estimates and the estimate from
aerial thermal videography.

We obtained normalized difference vegetation index (NDVI) values from NASA’s Mod-
erate Resolution Imaging Spectroradiometer (MODIS) at a spatial resolution of
250 m and temporal resolution of 16 d (product MOD13Q1 v006) for each camera site
and averaged values by season to estimate changes in vegetation greenery over time [50].
We analyzed all data using R version 3.4.0 [51] with the packages unmarked [52] for NMM,
AICcmodavg [53] for model selection, raster [54] to generate topographic products, and
MODIS [55] to generate products of vegetation dynamics. We report model estimates with
standard error (SE) and p-values with an α = 0.05.

We flew drone surveys in February 2018 to obtain a third estimate of population size
and density through direct counts. We flew five replicate surveys using a Linn Aerospace
Hummingbird quadcopter equipped with a non-radiometric thermal infrared imager with
resolution of 640 × 512 pixels (FLIR Vue Pro 640; 13-mm lens, 45◦ horizontal field of
view, 30 Hz video framerate). These surveys took place on 8 February, AM; 8 February,
PM; 9 February, AM; 9 February, PM; and 13 February, AM. All flights occurred within
one hour of sunrise or sunset. We selected these dates to maximize the detectability
of animals during a period when temperate trees were devoid of leaves and deer body
temperatures contrasted against background temperatures in thermal imagery [34]. We
flew all surveys at 120 m above ground level and achieved a 100-m horizontal field of view
(15.6 cm/pixel ground sample distance). The aircraft flew a long corridor of 12 parallel
transects oriented along an east–west axis spaced evenly 300 m apart across the study area
to avoid possible double counts. The start location of the flight was randomized to achieve
a systemically randomized design of parallel, equally spaced transects throughout the
study region. Transects varied by length, and northern transects were aborted when the
aircraft lost line-of-sight communications with its controller (Figure 1). These transects
summed to 13.75 km in length and surveyed 1.375 km2 or 13.5% of the study area. During
each flight, the drone continuously collected thermal video, which we processed and
analyzed according to the methods of Beaver et al. [34]. The thermal video showed uneven
temperature measurements across the field of view resulting from uneven cooling of the
sensor during flight; however, this did not appear to interfere with visual identification
of deer’s thermal signatures during video analysis. Using the resulting counts, we first
calculated the mean density of deer per transect in each flight; using the summed transect
densities, we calculated the mean density of deer in each flight; and using the flight
densities, we calculated the mean density of deer in our study region across all flights. We
then bootstrapped the mean densities from each flight (n = 5) to generate a 95% confidence
interval of our density estimate from aerial thermal videography. We used an analysis of
variance (ANOVA) using a type II sum of squares to test for significant differences between
flight estimates.
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3. Results

The camera traps collected 16,775 photographs of deer over our total 27-month study
period (after false-positive photographs were removed) and 1695 photographs of deer
specifically during the three-month period from 1 December 2017 to 28 February 2018.
The mark–resight analysis and NMM using camera trap data and the aerial thermal
videography each produced density estimates that were comparable (Figure 2). The
aerial thermal videography estimated 31.3 deer/km2 (95% CI: 23.7–39.0) in February
with no significant differences between flights (F4,28 = 1.09, p = 0.30). The NMM esti-
mated the 27.5 deer/km2 (95% CI: 19.9–36.9) during the overlapping period (15 January–15
March 2018) and 40.7 deer/km2 (95% CI: 31.9–51.0) during winter 2017/2018; the mark–
resight analysis estimated 27.7 deer/km2 (95% CI: 15.4–48.7) for the same period of winter
2017/2018. We determined that the NMM and drone estimates for the month of February
were statistically indistinct because both means occurred within the 95% confidence interval
or credible interval of each another (Figure 2).
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Figure 2. Mean population density of deer as estimated by mark–resight, NMM, and aerial thermal
videography (drone) methods during surveys of PMSP in 2017–2018. Mark–resight methods and
NMM were used to analyze camera trap photographs collected during 1 December 2017–28 February
2018; NMM was also used to analyze camera trap photographs collected during 15 January–15
March 2018; and aerial thermal videography was collected during 8–13 February 2018. All error bars
represent 95% confidence intervals or credible intervals.

Selected seasonal models from NMM contained different combinations of predictors
in both the abundance and detection components of the model, but key patterns emerged.
Slope was the most common predictor of abundance among the selected models, most
often with an inverse relationship (higher abundance on shallower slopes); the elevation
and aspect were also commonly selected predictors (Table 1). Coefficients associated with
aspect were negative in the winter (suggesting a preference for drier, pine-dominated,
south-facing slopes) and positive in the summer (suggesting a preference for cooler, oak-
dominated, north-facing slopes). For the winter 2017/18 season, when all three density
estimation methods were compared, higher deer densities occurred at sites character-
ized by a southerly aspect and high elevations (βaspect = −0.26, SE = 0.07, p = 0.0004;
βelevation = 0.23, SE = 0.09, p = 0.01). Elevation was the most common predictor of detection,
most often with a direct relationship (greater detection at high elevations). Slope was the
next most common predictor of detection with a consistently inverse relationship (greater
detection on flat slopes). In the winter 2017/18 season, slope was a significant predictor
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of detection with an inverse relationship (greater detection on flat slopes; αslope = −0.29,
SE = 0.09, p = 0.001).

Table 1. Parameters estimates, SE, and associated statistics of selected N-mixture models that
estimated the density of deer in our study region of PSMP, North Carolina, for each season between
June 2016 and August 2018. Maximum counts were determined from all photographs in a 24-h survey
windows each day for each camera trap site (n = 22) and binned into three-month seasons. Models
were then fit to these seasonal count subsets and predictors were selected using AIC (Figure 1).
B-Abundance and B-Detection represent intercepts for the abundance and detection components of each
N-mixture model.

Season Parameter Estimate SE Z-Value p-Value

Summer 2016 B-Abundance 2.19 0.17 12.99 <0.001
Slope −0.32 0.13 −2.46 0.014

B-Detection −3.12 0.17 −18.68 <0.001
Edge 0.4 0.2 2.04 0.042

Elevation −0.43 0.14 −3.08 0.002
Autumn 2016 B-Abundance 2.68 0.16 16.74 <0.001

Elevation −0.25 0.1 −2.55 0.011
Slope 0.19 0.1 1.99 0.046

B-Detection −3.73 0.16 −23.48 <0.001
Aspect 0.17 0.07 2.49 0.013

Winter
2016/17 B-Abundance 1.87 0.15 12.12 <0.001

Aspect −0.2 0.1 −2.03 0.042
B-Detection −3.65 0.14 −25.4 <0.001
Elevation 0.6 0.18 3.28 0.001

Slope −0.47 0.16 −2.91 0.004
Spring 2017 B-Abundance 1.94 0.16 11.78 <0.001

Edge −0.29 0.12 −2.33 0.02
B-Detection −3.34 0.16 −21.2 <0.001
Elevation 1.23 0.23 5.45 <0.001

Slope −0.99 0.19 −5.3 <0.001
Summer 2017 B-Abundance 0.99 0.21 4.75 <0.001

Aspect 0.36 0.16 2.2 0.028
B-Detection −3.39 0.19 −18.31 <0.001
Elevation 1.08 0.21 5.06 <0.001

Slope −0.29 0.18 −1.57 0.115
Autumn 2017 B-Abundance 2.22 0.16 13.82 <0.001

Edge −0.22 0.12 −1.89 0.059
Slope −0.34 0.13 −2.58 0.01

B-Detection −3.21 0.15 −20.7 <0.001
Aspect −0.2 0.08 −2.56 0.01

Elevation 0.3 0.14 2.05 0.04
Winter

2017/18 B-Abundance 2.51 0.14 18.54 <0.001

Aspect −0.26 0.07 −3.52 <0.001
Elevation 0.23 0.09 2.49 0.013
B-Detection −3.19 0.13 −24.53 <0.001

Slope −0.29 0.09 −3.3 <0.001
Spring 2018 B-Abundance 2.22 0.2 11.01 <0.001

Slope −0.29 0.13 −2.32 0.02
B-Detection −3.76 0.2 −18.84 <0.001
Elevation 0.4 0.13 2.98 0.003

Summer 2018 B-Abundance 1.56 0.15 10.21 <0.001
Elevation 0.15 0.12 1.26 0.208
B-Detection −2.71 0.13 −20.76 <0.001

Aspect −0.3 0.11 −2.83 0.005
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Our temporal analysis using NMM revealed regular seasonal fluctuations in regional
deer density over the course of our 27-month study period. PMSP’s deer density was
lowest in the summer months, increased steadily in the autumn and winter months, and
slowly decreased throughout the spring—varying inversely with seasonal NDVI patterns
(Figure 3). The amplitude of change differed across years, but the general trend appeared
in both years, and density estimates in winter months approximated those of aerial thermal
videography in February 2018.
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Figure 3. Seasonal changes in the deer population and vegetation in PMSP. Deer density was
estimated using NMM with camera trap data (black points) and aerial thermal videography (blue
point); connecting lines illustrate trends over time. Vegetation intensity was estimated using NDVI
values (green bars) from MODIS satellite imagery [50]. Three-month seasonal bins were used to
aggregate the camera trap data for NMM and to calculate average NDVI values. Error bars represent
95% credible intervals of the mean best unbiased predictor of site abundance for estimates using
NMM or a 95% confidence interval bootstrapped from mean density estimates of replicate surveys
with aerial thermal videography (n = 5).

4. Discussion

All three methods of estimating population density produced similar estimates—two us-
ing camera trap datasets and one using aerial thermal videography. This corroboration
among estimates suggests that all three methods converged on an accurate representation
of the population, although replicate surveys would add additional confidence to this
interpretation. The small differences between estimates were likely due to the various
assumptions entailed with each method. Mark–resight estimates of deer density require the
photographic capture of all individual male animals and account for imperfect detection
by inflating estimates by an extrapolation factor [45] as informed by baited surveys of
captive populations [20,48]. Notably, although a variety of mark–resight methods have
been proposed, the calculations used in this study were representative of common prac-
tices in deer management. The simple ratios were applied to raw counts with empirically
estimated extrapolation factors [45] rather than estimated encounter rates [20] and did not
account for potential variance in encounter rates across sites [56], between sexes [57], or
across seasons [58]. Furthermore, proper extrapolation factors have not been explored for
unbaited mark–resight surveys, which likely capture fewer animals due to the absence
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of an attractant. Our use of a conservative extrapolation factor (one that expects more
complete surveillance) likely yielded lower density estimates than other methods and
the relatively large difference from the NMM estimate of the same time period (Figure 2).
NMM accounts for uncounted individuals by estimating imperfect detection probability
and abundance separately [25], yielding more accurate density estimates if the method’s
assumptions are upheld. NMM has been validated on large, free-ranging ungulates using
telemetry data to estimate immigration and emigration rates [59], but individual movement
data are time-intensive, costly, invasive, and rarely available to stakeholders. Our findings
applied NMM using a freely available, open-source software [52] to achieve validated abun-
dance estimates for free-ranging ungulates and to test hypotheses regarding abundance
relationships with spatial and temporal predictors. Ultimately, aerial thermal videography
provided density estimates with the highest confidence informed by prior validation of
the method [34], a relative consistency among replicate surveys, and a comparative lack
of assumptions necessary to infer abundance from video-derived counts over sampled
transects. Based on the visual appearance and contrast in the thermal video data that we
collected, we presumed that analysts detected all deer that occurred along each transect
strip. This methodology could be improved, however—especially when there is poor
contrast among thermal signatures—by incorporating distance estimates with deer counts
across the camera’s field of view; this would enable analysts to identify and correct for any
decrease in detection across distance from the center of the camera’s perspective.

The seasonal influence of aspect on deer abundance highlighted the important in-
fluence of spatial context on population surveys. Aspect can determine soil content of
nutrients and organic matter due to directional exposure to wind and sunlight and moisture
regimes [60], which can produce contrasting compositions of the vegetation community
between different aspects [61]. Deer preferentially select areas of higher relative nutritive
quality when such habitat is available among other areas of equivalent cost and lower
quality [62]. Additionally, white-tailed deer adjust their behavior and habitat use to avoid
thermal stress and balance foraging needs against the risk of heat loss during colder peri-
ods [63,64]. Within our study area, individuals occupied southern slopes during winter
months, likely due to their higher amounts of available browse within the mixed forest over-
story area [65] and their warmer temperatures. In highly seasonal environments, deer select
habitats by aspect during winter months, but this has been attributed to lower accumulation
of snow on slopes that receive more sunlight [66,67]. In our study system, southern slopes
additionally provide easier access to nearby agricultural lands, whereas northern slopes
are bounded by suburban areas. Habitat preferences of deer are already well documented,
but our results demonstrated that NMM can further reveal spatial influences on abundance
in a robust manner and over multiple seasons.

We propose that the seasonal fluctuations in deer density in PMSP (Figure 3) describe
changes in habitat use and selection rather than local changes in detectability. The range
and core habitats of white-tailed deer often fluctuate throughout the annual cycle, but
the population of PMSP is known to be non-migratory, and such shifts are expected to be
relatively minor in this habitat [40,68,69]. Rather, the seasonal fluctuation that we observed
may reflect the interplay between risk and resource availability in habitat selection at
a local scale. Ungulates experience a trade-off between mortality risk and forage quality
when they select habitat [70,71], prioritizing safety over forage when risks of predation are
especially high [72]. In the resource-rich agricultural landscapes that surround our study
area, recreational hunting pressure poses a substantial risk to deer during the autumn
hunting season, which deer perceive and to which they respond [73]. Public lands in the
western United States shelter abundances of ungulates disproportionate to the regions’
areas during hunting seasons due to the restriction and prohibition of hunting on those
lands [74,75]. Our temporal analysis suggests that PMSP may function as a similar refuge
for local deer. Conversely, during the early growing season, the deer density of PMSP
gradually decreases as habitat preference shifts into surrounding lands with less tree
canopy cover and greater forage availability at ground level. These seasonal trends in
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deer density demonstrate the importance of considering behavior and landscape context
when interpreting population surveys; survey methods and designs should account for
these factors alongside the management goals of the study [15]. Longer multiyear studies
and individual-scale movement tracking can clarify the degree to which seasonal shifts in
habitat selection manifest in local density estimates.

High temporal and spatial coverage are necessary for NMM but can present tradeoffs
to a study’s cost and effort [76]. A high range and density of camera coverage facilitates the
detection of rare or cryptic species, whereas a long period of continuous or targeted moni-
toring allows for precise estimates of common species [24]. The consistency of our density
estimates across estimation methods suggests that we achieved satisfactory coverage of
our study region using a camera placement schema based on existing knowledge of spatial
habitat use by our focal species—home ranges and core area sizes of deer are extensively de-
tailed in published literature [40]. In Appalachian forests, deer occupy an average core area
of use of 0.24 km2 and a home range size of 10 km2 during winter [47], but home ranges and
space use are also known to vary with habitat quality [77], season [78], and sex [64]. Among
these sources of variation, we selected a fixed camera density (2.4 camera/km2) while
attempting to balance goals of (1) a low probability of detecting individuals across multiple
camera sites in our study area for NMM analysis with (2) achieving adequate coverage
to capture a high number of individually identifiable animals for mark–resight analysis.
A mark–resight analysis of uniquely identifiable individuals could inform estimated rates
of repeat-counting in male deer among photographs used for NMM and reveal potential
changes across seasons; however, such an analysis would demand considerable effort from
analysts to catalog and document all identifiable males across all photographs based on
their antler patterns each year, which was not feasible within the scope of this work. Our
decision to only analyze the highest count of deer photographed at each site in each 24-hour
period methodologically did reduce the risk of repeat-counting individuals within the daily
sample period, which aligned with the diel activity patterns of deer [64]. However, this data
selection practice would not be appropriate for species and populations that form herds
on a seasonal basis, as larger aggregations might be misconstrued to reflect a change in
abundance rather than behavior. Such changes in social behavior might manifest in counts
of group sizes across all photographs in the effort, but such changes were not expected,
noticed, or explicitly tested in this work.

We cannot ensure complete closure between our camera sites, and we did not calibrate
or validate their true effective sampling area, so our interpretation of abundance changes is
not an estimate of absolute abundance but is rather most appropriately interpreted as an
estimate of habitat use [79]. Site-specific abundances for each camera location represent the
mean number of animals that used that local site in our study area and not necessarily the
“true” population density of that site and overlapping population. The relative congruency
among our three estimation methods suggests that repeat-counting of individuals either
did not occur often or did not affect our estimates using NMM if it did. Notably, this
application of NMM was sensitive to both the density of camera trap placement and the
bins used for temporal aggregation, and future applications of this method should consider
the behavior and ecology of the target species and should test the sensitivity of these
parameters in the study’s design. Extensions of NMM can address heterogeneity within
sample units, alternative Poisson mixed model structures can relax the assumptions of
the estimation, and occupancy modeling methods can yield useful occurrence proxies
under imperfect detection conditions [30,32]. Even when acknowledging the limits of our
chosen methods, congruency across the resulting density estimates suggests that a basic
NMM implementation, simple mark–resight ratios, and a targeted survey of aerial thermal
imagery constitute low-effort methods of estimating a deer population over a moderately
large (10.24 km2) region of habitat and—in the case of NMM—can yield limited spatial
inference to inform integrated landscape management.

The simplest, most cost-effective, and likely most accurate methods, however, are
simple counts from drone-based thermal videography, which in this study captured popula-
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tion density within a few hours of flights—with subsequent processing and analysis—and
has been shown in studies of known captive animals to reproduce known population
sizes with high fidelity [34,80,81]. Flights repeated seasonally could capture many of the
spatiotemporal patterns revealed by long-term camera trapping and NMM analysis, and
the spatial quality of aerial videography enables georeferenced observations of animal
movement and short-term patterns of habitat use [35]. A major drawback of aerial thermal
videography, however, is its inability to describe other aspects of deer populations such
as sex and age or serendipitous encounters with non-target animals, which can reveal
additional ecological insights.

5. Conclusions

The goals of management action can determine the most suitable survey methods for
an applied scenario. All three methods employed in this study are practical options for
species that exhibit human avoidance or occupy habitats that cannot be surveyed directly
by ground. Mark–resight surveys can leverage short survey windows and flexible study
designs to achieve simple estimation of demographic information such as age- and sex-
structures in a population compared to NMM and other modeling methods. Such estimates
can critically inform decisions for population management, which often target demographic
classes and processes [82]. However, it can be difficult to calculate the precision of mark–
resight estimates, requiring replicate surveys that are often impractical or unachievable.
In the example of our study, the error associated with mark–resight estimations exceeded
that associated with each other method (Figure 2). Managers must be able to compare
estimations across space and time to evaluate ongoing management actions [83], and NMM
can estimate the precision of its estimates, thereby enabling such comparisons among
estimates. A combination of approaches might be appropriate to achieve the management
goals and resources available in a given area, and our findings suggest that in a moderately
large study area and with species-tailored sampling schemes, managers have multiple
surveillance techniques at their disposal to achieve consistent density estimates, including
camera-trap sampling and aerial imaging from drones.
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Appendix A

List of models tested for the seasonal evaluation of deer abundance at Pilot Mountain
State Park between June 2016 and August 2018. Each model has two components: one
modelling imperfect detection and one modelling abundance (see methods). And detection.

https://github.com/gl7176/PMSP_deer_survey_2016
https://github.com/gl7176/PMSP_deer_survey_2016
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The model parameters were: slope aspect (ASPECT), slope (SLOPE), elevation (ELE), and
distance from edge (EDGE). The final model selections, along with their coefficients, are
presented in Table 1. Each model was evaluated with the unmarked package in R using
the following command structure: pcount(~detection parameters ~abundance parameters,
data = data.scaled, K = 150, se = TRUE, starts = c(0, 0, . . . ), control = list(trace = TRUE,
REPORT = 1)).

Model Name Detection Abundance

m0 ~1 ~1
m1 ~ASPECT ~SLOPE
m2 ~ASPECT ~ELE
m3 ~ASPECT ~EDGE
m4 ~SLOPE ~ASPECT
m5 ~SLOPE ~ELE
m6 ~SLOPE ~EDGE
m7 ~ELE ~ASPECT
m8 ~ELE ~SLOPE
m9 ~ELE ~EDGE
m10 ~EDGE ~ASPECT
m11 ~EDGE ~SLOPE
m12 ~EDGE ~ELE
m13 ~ASPECT ~SLOPE + ELE
m14 ~ASPECT ~SLOPE + EDGE
m15 ~ASPECT ~ELE + EDGE
m16 ~ASPECT + SLOPE ~ELE
m17 ~ASPECT + SLOPE ~EDGE
m18 ~ASPECT + ELE ~SLOPE
m19 ~ASPECT + ELE ~EDGE
m20 ~ASPECT + EDGE ~SLOPE
m21 ~ASPECT + EDGE ~ELE
m22 ~SLOPE ~ASPECT + ELE
m23 ~SLOPE ~ASPECT + EDGE
m24 ~SLOPE ~ELE + EDGE
m25 ~SLOPE + ELE ~ASPECT
m26 ~SLOPE + ELE ~EDGE
m27 ~SLOPE + EDGE ~ASPECT
m28 ~SLOPE + EDGE ~ELE
m29 ~ELE ~ASPECT + SLOPE
m30 ~ELE ~ASPECT + EDGE
m31 ~ELE ~SLOPE + EDGE
m32 ~ELE + EDGE ~ASPECT
m33 ~ELE + EDGE ~SLOPE
m34 ~EDGE ~ASPECT + SLOPE
m35 ~EDGE ~ASPECT + ELE
m36 ~EDGE ~SLOPE + ELE
m37 ~ASPECT + SLOPE ~ELE + EDGE
m38 ~ASPECT + ELE ~SLOPE + EDGE
m39 ~ASPECT + EDGE ~SLOPE + ELE
m40 ~SLOPE + ELE ~ASPECT + EDGE
m41 ~SLOPE + EDGE ~ASPECT + ELE
m42 ~ELE + EDGE ~ASPECT + SLOPE
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