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Simple Summary: Dog cloning requires in vivo matured recipient oocytes to transfer somatic donor
cells for somatic cell cloning. The timing for recovering in vivo matured dog oocytes was determined
by predicting the ovulation day based on serum progesterone (P4) concentration in estrus bitches.
Radioimmunoassay (RIA) is traditionally used to measure the P4 concentration in dogs. In this study,
the P4 concentration for ovulation was measured using next-generation enzyme-linked fluorescence
assay (ELFA) and it was compared with that measured using RIA. The oocytes collected in vivo
showed a maturation rate of 65.19% after the prediction of ovulation based on the P4 range measured
using the ELFA system. These oocytes then produced four cloned puppies. Conclusively, we provide
the optimal P4 range for the prediction of ovulation in estrus bitches when ELFA is used to measure
the P4 concentration. Thus, we prove the effectiveness of application of ELFA in obtaining in vivo
matured oocytes for dog cloning.

Abstract: Successful dog cloning requires a sufficient number of in vivo matured oocytes as recipient
oocytes for reconstructing embryos. The accurate prediction of the ovulation day in estrus bitches is
critical for collecting mature oocytes. Traditionally, a specific serum progesterone (P4) range in the
radioimmunoassay (RIA) system has been used for the prediction of ovulation. In this study, we
investigated the use of an enzyme-linked fluorescence assay (ELFA) system for the measurement of
P4. Serum samples of estrus bitches were analyzed using both RIA and ELFA, and the measured P4
values of ELFA were sorted into 11 groups based on the standard concentration measured in RIA
and compared. In addition, to examine the tendency of changes in the P4 values in each system,
the P4 values on ovulation day (from D − 6 to D + 1) in both systems were compared. The ELFA
range of 5.0–12.0 ng/mL was derived from the RIA standard range of 4.0–8.0 ng/mL. The rates
of acquired matured oocytes in RIA and ELFA were 55.47% and 65.19%, respectively. The ELFA
system successfully produced cloned puppies after the transfer of the reconstructed cloned oocytes.
Our findings suggest that the ELFA system is suitable for obtaining in vivo matured oocytes for
dog cloning.

Keywords: enzyme-linked fluorescence assay; serum progesterone; somatic cell cloning; somatic cell
nuclear transfer; dog
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1. Introduction

Since the birth of the first somatic cell cloned dog, “Snuppy”, in 2005 [1], the demand
for dog cloning has risen steadily because cloned dogs may replicate elite working dogs or
deceased pets [2,3]. The artificial reproduction technology for dogs has been developed
to meet this demand. However, significant development in dog cloning technology has
not been achieved so far owing to the reproductive characteristics of dogs, which are
different from those of other farm animals. A large number of matured oocytes are required
to reconstruct a sufficient number of somatic cell nuclear transfer (SCNT) embryos and
clone more dogs [4,5]. In vivo dog oocytes are typically used to reconstruct embryos for
dog cloning. The collected oocytes require maturation from the moment of collection as
in vitro maturation techniques for immature dog oocytes are not yet established [6]. Recent
reports on dog oocytes indicate a relatively low rate of in vitro maturation at about 30%
compared to approximately 80% in mice and 70% in both sows and cows [7–10]. One of
the reasons for the low in vitro oocyte maturation rate in dogs is a specific physiologic
trait in dog reproduction, in which dog oocyte maturation is completed in the oviduct
after ovulation, whereas most animals ovulate matured or nearly matured oocytes [11].
In other words, ovulated oocytes are immature and require further stimulation in vitro to
completely mature when compared to other mammalian species. For this reason, oviduct
flushing and optimal collection times are important for efficient dog cloning.

There are two major methods for determining the optimum oocyte collection time:
one based on the range of blood progesterone (P4) levels and the other based on the peak
of blood estradiol levels. Immature oocytes typically mature 3 days after ovulation within
the oviducts [12]. In the estradiol-peak method, the ovulation day is presumed to be 3 days
after the blood estradiol peak; therefore, oocyte collection should be scheduled more than
3 days after the predicted ovulation day [13]. However, this method is rarely used as it
requires long-term blood collection over 7 days to detect the estradiol peak. However, any
type of analysis system can be used because the decision is based on the peak rather than
absolute values. Alternatively, the blood P4-range method is commonly used as it requires
a shorter period of daily blood collection (approximately 4–5 days) [14]. However, this
method must be altered according to the analysis system as the detected range of blood P4
values differs depending on the analysis system [15–17].

The radioimmunoassay (RIA) system for measuring animal blood hormone levels,
including P4, was first developed in the 1960s [18]. Although the RIA system has excellent
sensitivity, safety problems are associated with the use of radioisotopes as indicators. In
the 1970s, the radioisotope indicator was replaced with an enzyme in the enzyme-linked
fluorescence assay (ELFA) system [19]. Lastly, an electrochemiluminescence immunoassay
(ECLI) system was developed, which has advanced sensitivity and safety [20,21]. These
systems are primarily used to analyze blood P4 in animals [22–24]. All of the above
systems are acceptable in predicting ovulation days of bitches, particularly the estradiol
peak method as previously explained. When the P4 level range is used to predict the
ovulation day of bitches, the range in each system differs owing to the different sensitivities
of each system [25]. In dog species, the P4 level for ovulation is approximately 4–9.9 ng/mL
based on the RIA system [26]. Our group investigated the conversion range from RIA to
ECLI for P4 levels of bitches. The range of 4–8 ng/mL using a RIA system was adjusted
to 6–15 ng/mL using the ECLI system based on measurements of the same samples [15].
However, the broad range of the ECLI system, caused by hypersensitivity, results in lower
rates of prediction of ovulation compared to the RIA system, although matured oocytes
obtained using the ECLI system have been successfully used to produce cloned dogs.

In this study, the range blood P4 levels of bitches measured using the ELFA system
was examined by simultaneously calculating the P4 levels using the RIA and ELFA systems.
Lastly, we propose a suitable range of P4 levels for the ELFA system to acquire matured
recipient oocytes to be used for successful dog cloning.



Animals 2023, 13, 1885 3 of 10

2. Materials and Methods
2.1. Chemicals

Unless otherwise indicated, all reagents were purchased from Sigma Chemical Co.
(St. Louis, MO, USA). The measurements using the RIA system was conducted at the
Neodin Veterinary Laboratory (Seoul, Republic of Korea) using a DSL-3900 ACTIVE pro-
gesterone Coated Tube Radioimmunoassay Kit (Diagnostic systems Laboratories Inc.,
Webster, TX, USA). All reagents for the ELFA system were purchased from Mini-Vidas
automated analyzer (Biomerieux, Marcy-l’Étoile, France).

2.2. Animals

For the SCNT study, 2–5 year old mixed-origin large-breed bitches weighing 25–30 kg
were used. The bitches were housed in separate temperature- and light-controlled rooms.
The bitches were fed a commercial diet twice a day and provided with sufficient water
throughout the day. Prior to all surgical procedures, including oocyte collection and cloned
embryo transplantation, the bitches were anesthetized using a 9:1 mixture of alfaxalone
(alfaxane) and medetomidine (domitor), and then maintained using 2% isoflurane. A pulse
oximeter was used to monitor the condition of the bitches [27]. After surgical procedures
of embryo collection from oviduct flushing or embryo transfer to oviduct, antibiotics were
administered to prevent inflammation. The suture site was checked by veterinarian daily
until the wounds were completely healed. Bitches were used as either oocyte donors or
surrogate mothers during the experimental period.

2.3. Serum P4 Analysis Using RIA and ELFA Systems

Each morning, blood samples were obtained from bitches in the proestrus or estrus
phase, and the serum was subsequently divided into two parts for the detection of the
P4 level using the RIA and ELFA systems. The RIA system analysis was conducted by
the Neodin Veterinary Laboratory. ELFA analysis was performed according to methods
described in the user’s manual of the Mini-Vidas automated analyzer. Before analysis, the
analyzer was calibrated using calibration reagents provided in the kit.

2.4. Oocyte Recovery and Judgement of Oocyte Maturation Status

The cumulus oocyte complexes (COCs) from estrus bitches were recovered by oviducts
flushing at 70–72 h after predicted ovulation by serum P4 evaluation. To prevent contam-
ination of COCs, a 1% penicillin/streptomycin mixture was added to HEPES-buffered
TCM-199 based flushing medium. The recovered COCs were denuded through pipetting
after brief treatment of 0.1% hyaluronidase. Denuded oocytes exhibiting the presence of
the first polar body (PB1) were classified as mature. Conversely, oocytes with a periv-
itelline space exceeding 25 µm and oocytes lacking the PB1 were categorized as ageing and
immature, respectively [15].

2.5. Donor Cell Culture and Somatic Cell Cloning

Ear skin cells were surgically harvested from male black retriever dogs and promptly
transported to the laboratory within 4 h, ensuring a cold environment with ice-cold D-PBS.
The tissue underwent three washes with D-PBS, followed by mincing and subsequent
culture in advanced Dulbecco’s modified eagle medium supplemented with 10% fetal
bovine serum. This cultivation took place at a temperature of 38 ◦C within a humidified
atmosphere consisting of 5% CO2 and 95% air. Following 7 days of culture, a fibroblast
monolayer was successfully established and was then passaged. For SCNT, cells from
passages 3–5 were employed as donor cells. To perform SCNT, denuded matured oocytes
were stained with 10 µg/mL of Hoechst 33342 for 5 min. Using an inverted microscope
equipped with micromanipulation devices and fluorescence detection filter, the stained
PB1 and nucleus of the oocyte were meticulously removed. Subsequently, a donor cell was
injected into the perivitelline space of each enucleated oocyte. The fusion of these couplets
was accomplished through two pulses of DC electric stimulation at 3 kV/cm for 15 µs. The
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fused couplets were then activated via calcium ionophore treatment for 5 min, followed
by culturing in mSOF medium supplemented with 1.9 mmol/L 6-DMAP for a duration of
4 h [28].

2.6. Somatic Cell Cloned Embryo Transfer and Pregnancy Diagnosis

The activated SCNT embryos after electric fusion were transferred into the ampullary
portion of the oviducts of surrogate bitches. Surrogate bitches were also selected by P4
evaluation. Estrus bitches which had represented predicted ovulation at 70–72 h before
were selected as surrogates in order to synchronize uterus circumstances between oocyte
contributors and surrogates. The diagnosis of pregnancy was established by ultrasound
detection approximately 31 days post embryo transfer and continued to be monitored
until delivery.

2.7. Microsatellite Analysis for Certification of Cloned Puppies

A microsatellite is a repeated DNA region in the genome with characteristics of a high
mutation rate. This high mutation rate causes genetic diversity compared to other areas
of the whole genome. Therefore, microsatellite analysis is often used to certify genetic
identification. In this study, microsatellite analysis was employed to confirm whether
newborn puppies were cloned individuals. A total of 21 canine microsatellite markers
were selected using an annealing temperature of 61 ◦C, as well as a product size and
type of dye that satisfied the condition of multiplex PCR. The multiplex PCR had a 25 µL
reaction volume, consisting of 6 µL (20 ng/µL) of genomic DNA, 0.4 µL (10 pmole) each
of forward and reverse fluorescence dye primer, 1 µL (unit/µL) of Hot Start Taq DNA
polymerase, 4 µL of 10× buffer, and 3 µL of 2.5 mM dNTP. A Thermal Cycler PTC-0240 (MJ
Research, Inc., Waltham, MA, USA) multiplex PCR was used according to the following
protocol: 15 min at 95 ◦C for initial denaturation; five cycles of denaturation at 95 ◦C for
60 s, annealing at 62 ◦C for 75 s, and elongation at 72 ◦C for 60 s; five cycles of denaturation
at 95 ◦C for 60 s, annealing at 61 ◦C for 75 s, and elongation at 72 ◦C for 60 s; 25 cycles of
denaturation at 95 ◦C for 60 s, annealing at 60 ◦C for 75 s, and elongation at 72 ◦C for 60 s; a
final extension at 65 ◦C for 30 min. The PCR products were analyzed using the ABI-3730XL
genetic analyzer (Applied Biosystems, Waltham, MA, USA) and GeneMapper version 4.0
(Applied Biosystems).

2.8. Statistical Analyses

Statistical analyses were conducted using Prism 5 (GraphPad), and the significance of
the P4 levels (ng/mL) was evaluated using a t-test. The significance level was set at p < 0.05.

3. Results
3.1. Differences in Blood P4 Level According to RIA and ELFA Systems

To compare the serum P4 concentrations measured by the RIA and ELFA systems,
201 serum samples collected from 69 proestrus or estrus period bitches were analyzed. The
average blood P4 levels were analyzed using the two systems simultaneously (Table 1).
The serum samples were categorized into 11 groups on the basis of their concentrations
determined using the standard RIA system. Each group contained data from 5–84 samples
analyzed using RIA and ELFA. Results showed that the two systems exhibited larger differ-
ences when the P4 levels were higher, although all groups showed significant differences
between the testing systems (p < 0.05).
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Table 1. Comparison of average P4 values of RIA and ELFA systems in groups sorted according to
the average RIA range.

Groups
(by P4 Ranges of RIA) No. of Samples RIA * ELFA * p-Value

0 84 0.41 ± 0.03 0.69 ± 0.04 <0.0001
1 24 1.51 ± 0.06 1.57 ± 0.14 0.0304
2 25 2.48 ± 0.06 3.67 ± 0.29 0.0002
3 10 3.43 ± 0.12 4.81 ± 0.31 0.0006
4 10 4.52 ± 0.08 7.19 ± 0.81 0.0041
5 5 5.45 ± 0.18 9.8 ± 1.34 0.0123
6 9 6.48 ± 0.101 9.91 ± 0.53 0.0001
7 12 7.45 ± 0.068 11.16 ± 0.91 0.0005
8 12 8.46 ± 0.05 11.10 ± 0.56 0.0001
9 5 9.66 ± 0.05 16.63 ± 1.67 0.0006
10 5 10.47 ± 0.15 18.83 ± 2.34 0.0074

* Mean ± SEM.

3.2. P4 Level in Estrus Bitches Using RIA and ELFA Systems Based on Predicted Ovulation Day

To examine P4 changing tendency and represent the estrus curve of P4 level in estrus
bitches, the P4 levels of 45 blood samples taken from 10 random bitches were sorted
according to the predicted ovulation day using the RIA and ELFA systems. These samples
were sorted by each day from 6 days before the predicted ovulation day (D6) to 1 day
after the predicted ovulation day (D + 1) (Figure 1). The average P4 level using RIA was
6.24 ± 0.18 ng/mL, which corresponded to an average value of 9.71 ± 0.69 ng/mL in ELFA
on the predicted ovulation day. Figure 1 shows that the P4 level at D0 was significantly
higher than at D − 1. This rapid increase in the P4 level on ovulation day was more obvious
in the ELFA system than in the RIA system.
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3.3. Prediction of Ovulation Based on the P4 Level Detected Using RIA and ELFA Systems

We decided the range of 5.0–12.0 ng/mL of ELFA according to the range of 4.0–8.0 ng/mL
of RIA referring to Table 1. To estimate the accuracy rate of prediction of ovulation on the
P4 ranges determined using the RIA and ELFA systems, we surgically collected oocytes
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3 days after predicted ovulation day based on the P4 range measured using both systems
and then judged their ovulation status. A total of 61 bitches (43 bitches using RIA, and
18 bitches using ELFA) were selected as oocyte recipients on the basis of the ranges of each
system (4.0–8.0 ng/mL and 5.0–12.0 ng/mL in RIA and ELFA, respectively). A total of
546 oocytes (393 and 153 oocytes using RIA and ELFA, respectively) were recovered. The
average number of oocytes per bitch was 9.12 and 8.5 for RIA and ELFA, respectively. The
rates of acquired matured oocytes were 55.47 and 65.19% for RIA and ELFA, respectively
(Figure 2).
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3.4. Dog Cloning Using In Vivo Matured Oocytes Based on ELFA

To verify whether the ELFA system could be used for dog cloning, we used it with the
newly derived P4 range of 5.0–12.0 ng/mL to predict the ovulation of oocyte in the estrus
cycle of 38 recipient bitches. A total 419 oocytes were collected, and 287 matured oocytes
were used for SCNT. After the SCNT procedure, 165 reconstructed SCNT embryos were
finally transferred to 17 recipients (Table 2). Four recipient bitches were confirmed to be
pregnant 30 days after transplantation and ultrasound pregnancy tests showed full-term
development at 60 days. A total of four cloned puppies were born, but only three survived
(Table 2). The genetic identities of the cloned dogs were tested using microsatellite analysis
of genomic DNA taken from the somatic cell of the donor dogs, cloned dogs, and surrogates.
Analysis of 21 canine-specific microsatellite makers confirmed that the cloned dogs were
genetically identical to their respective donor dog as genetic types of 21 microsatellite of
all cloned dogs perfectly coincide with donor dog. Both donor dogs and cloned dogs also
represented the same phenotypes of hair color, ear shape, etc. (Figure 3).

Table 2. Results of dog cloning performed using in vivo oocytes acquired based on P4 prediction
using ELFA.

No. of Transferred
Embryos

No. of
Recipients

Day 30
Pregnancy (%) Full Term (%) 1 No. of Puppies

Born (%) 2

No. of Puppies
Survived until
Weaning (%) 3

165 17 4 (23.5) 4 (23.5) 4 (2.4) 3 (75)
1 Percentage calculated on the basis of the number of recipients receiving embryos. 2 Percentage calculated on the
basis of the number of embryos transferred. 3 Percentage calculated on the basis of the number of puppies born.
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However, their results showed similar levels using both RIA and ELFA, which could be 
due to different brands of RIA systems being used. The brand of the ELFA system was 

Figure 3. Somatic cell donor black retriever dog and its cloned dog: (A) original dog who donated
his ear fibroblast cell for cloning; (B) one of the cloned puppies at 3 weeks after birth.

4. Discussion

Successful dog cloning requires a sufficient number of matured oocytes as recipients.
In dogs, in vivo oocytes are used as in vitro oocyte maturation techniques are not yet
established. A recent report showed that the in vitro maturation rate of dog oocytes is only
30% [7]. One reason for the difficulty in establishing an in vitro maturation technique is
that dog oocytes mature in the oviduct after ovulation and take about 72 h from ovulation
to complete maturation [29,30]. For the successful collection of mature oocytes by oviduct
flushing, an accurate prediction of ovulation time is crucial. The prediction of ovulation
day in estrus bitches is typically conducted through the progesterone analysis of serum.
However, the measured P4 values may vary depending on the diagnostic system used
for analysis. Each analysis system must be calibrated with the appropriate P4 range for
that system to accurately predict the ovulation day. In this study, we compared the RIA
and ELFA systems to establish the adjusted range of the ELFA system, using the RIA
range as a reference for detecting P4 concentration. The P4 levels of the same samples
were simultaneously analyzed using the RIA and ELFA systems. We categorized these
samples into 11 groups on the basis of their P4 concentration obtained using the RIA
system. Although the low concentration groups such as groups 0–1 showed significant
differences between the RIA and ELFA systems, at higher concentrations (groups 2–10),
the differences observed between the systems increased substantially. ELFA had higher
measured concentration levels compared to RIA, which was similar to our previous results
that compared RIA and ECLI, which showed larger differences between the two systems
at higher P4 levels [15]. Although we did not directly compare ELFA and ECLI, the
differences between ELFA and RIA were more moderate than between RIA and ECLI. In
another species such as human, some kinds of hormonal levels are detected at a higher
range in the ECLI system than in the ELFA system, as well as in the ELFA system than in
the RIA system [31–33], indicating that the sensitivity of the systems has improved over
time. In this study, considering the standard curve of P4 based on range and estrus day, a P4
range of 4.0–8.0 ng/mL based on RIA that corresponded to the ovulation day was measured
at 5.0–12.0 ng/mL using ELFA. The range of 5.0–12.0 ng/mL for ELFA was determined
according to the range of 4.0–8.0 ng/mL observed in RIA, as shown in Table 1. To account
for the empty P4 ranges between groups 3 and 4 in ELFA, we utilized the maximum range
of group 3 (4.81 + 0.31 ng/mL) as the minimum range in the ELFA P4 range. On the basis
of the same criteria, we employed the maximum range of group 8 (11.10 + 0.56 ng/mL)
as the maximum range in the ELFA P4 range. Consequently, although the exact derived
P4 range in ELFA was 5.12–11.66 ng/mL, we adjusted the P4 ranges to 5.0–12.0 ng/mL
to align with integer for practical application. The 5.0–12.0 ng/mL range of ELFA agrees
with the previously reported range of 5.0–10.0 ng/mL [34]. However, their results showed
similar levels using both RIA and ELFA, which could be due to different brands of RIA
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systems being used. The brand of the ELFA system was the same as that used in this study.
The applicability of set ranges across brands may be examined in further studies.

After recovering oocytes according to the predicted ovulation day of each system, the
adjusted P4 range of ELFA yielded a 65.19% maturation rate of oocytes compared to 55.47%
in RIA. This higher maturation rate in ELFA than RIA indicates that ELFA can be used to
harvest suitable in vivo matured oocyte for dog cloning. We also showed that matured
oocytes collected using the ELFA system for P4 level analysis were successfully used to
clone dogs. The increased maturation rate obtained using the ELFA system is because of
the steep increase in the P4 level from D − 1 to D0, which is more easily detectable using
ELFA owing to the broader range in this system compared to the RIA system. However, a
broad range of P4 concentration, as in the ECLI system, can complicate the prediction of
ovulation day because the measured value often exceeds the defined range owing to its
hypersensitivity at higher concentrations. Indeed, the accuracy of prediction using ECLI is
lower than the RIA system [15].

In the estradiol peak method mentioned in Section 1, the hormone range is not factored
as only the “up and down” pattern is needed to predict the ovulation day. Therefore, the
ECLI system with hypersensitivity is more suitable for the estradiol peak method than the
ELFA system. However, the estradiol peak method requires a long examination period,
often taking more than 7 days, as the estradiol peak usually forms 72 h before ovulation
and requires at least 3 days of data for determination. The P4 range methods are more
economical and intuitive. Although P4 analysis for dog cloning has traditionally been
conducted using the RIA system, it poses safety concerns because of the use of radioisotopes.
Therefore, we examined the applicability of a next-generation diagnostic system, ELFA,
for dog cloning. Our findings suggest that a P4 level of 5.0–12.0 ng/mL that was obtained
using the ELFA system can be used to determine the ovulation day of dog oocytes. This P4
range in ELFA is broader than that of RIA and narrower than that of ECLI, easily enabling
the detection of P4 elevation the day before ovulation and mitigates errors caused by
accelerated elevation, particularly at higher concentrations of P4. Because of the potential
dangers associated with the use of radioisotopes, there has been a shift from traditional RIA
to ELFA or ECLI analysis. Although the newer ECLI system is more suitable for the E2 peak
prediction method because of its enhanced sensitivity, the system is not as cost-effective
or time-efficient compared to the P4 range method. Therefore, we recommend the ELFA
system, which has a reasonable range for the application of the P4-range method, owing to
its cost and tome effectiveness. In this study, we confirmed that the ELFA system is safe
and accurate and, hence, suitable for obtaining in vivo matured oocytes for dog cloning.

5. Conclusions

The precise prediction of ovulation day in estrus bitches is crucial for obtaining a
sufficient number of in vivo matured oocytes for dog cloning. A P4 concentration range of
4.0–8.0 ng/mL was determined to indicate ovulation day using the traditional RIA system,
whereas it was 5.0–12.0 ng/mL for the next-generation ELFA system. ELFA is a promising
and accurate tool for obtaining in vivo matured oocytes for dog cloning.
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