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Simple Summary: Triacylglycerol (TAG) is the primary component of intramuscular fat, an im-
portant factor in determining meat quality. The synthesis of TAG is regulated by diacylglycerol
o-acyltransferase (DGAT). This study investigated the regulatory mechanisms of two subtypes of
DGAT, namely DGAT1 and DGAT2, in the differentiation of Yanbian bovine preadipocytes and
their roles in lipid metabolism-related signaling pathways. sh-DGAT1 and sh-DGAT2 were pre-
pared using short interfering RNA (siRNA) interference technique targeting DGAT1 and DGAT2
genes and infected with bovine preadipocytes separately or simultaneously. Differentially expressed
genes (DEGs) in bovine preadipocytes were analyzed using RNA sequencing and genome databases.
During bovine preadipocytes differentiation, interference with DGAT1 and DGAT2 inhibited the
formation of lipid droplets, content, and expression of lipid-forming genes at the mRNA level. DGAT2
showed a stronger inhibitory effect. Transcriptome analysis revealed 2070 and 2242 DEGs between
pre-adipocytes and normal cells that inhibited DGAT1 and DGAT2 expression, respectively, and 2446
DEGs when both were simultaneously inhibited. Our results indicate that compared with DGAT1,
DGAT2 plays a more important role in regulating bovine fat metabolism, which provides a theoretical
basis for producing high-quality marbled beef.

Abstract: Triacylglycerol (TGA) is the primary component of intramuscular fat. Expression of
diacylglyceryl transferase (DGAT) determines the polyester differentiation ability of precursor
adipocytes. The two DGAT isoforms (DGAT1 and DGAT2) play different roles in TAG metabolism.
This study investigates the roles of DGAT1 and DGAT2 in signaling pathways related to differentia-
tion and lipid metabolism in Yanbian bovine preadipocytes. sh-DGAT1 (sh-1), sh-DGAT2 (sh-2), and
sh-DGAT1 + sh-DGAT2 (sh-1 + 2) were prepared using short interfering RNA (siRNA) interference
technique targeting DGAT1 and DGAT2 genes and infected bovine preadipocytes. Molecular and
transcriptomic techniques, including differentially expressed genes (DEGs) and Kyoto Encyclopaedia
of Genes and Genomes (KEGG) pathway analysis, were used to investigate the effects on the differ-
entiation of Yanbian bovine preadipocytes. After interference with DGAT1 and DGAT2 genes, the
contents of TAG and adiponectin were decreased. The TAG content in the sh-2 and sh-1 + 2 groups
was significantly lower than that in the sh-NC group. RNA sequencing (RNA-seq) results showed
2070, 2242, and 2446 DEGs in the sh-1, sh-2, and sh-1 + 2 groups, respectively. The DEGs of the
sh-2 group were mainly concentrated in the PPAR, AMPK, and Wnt signaling pathways associated
with adipocyte proliferation and differentiation. These results demonstrated that at the mRNA level,
DGAT2 plays a more important role in lipid metabolism than DGAT1.
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1. Introduction

The beef cattle industry plays an important role in China’s livestock industry and
economy. Producing premium beef with rich intramuscular fat deposits, such as “Snowflake
beef”, can enhance the profitability and prospects of the dairy-fattening business. The
aim of any fattening operation is to produce meat with excellent quality characteristics,
including tenderness, shear strength, and marbling [1]. These quality traits are associated
with the intramuscular fat content of beef [2], indicating the importance of intramuscular
fat content in determining meat quality. Intramuscular fat is mainly located in skeletal
muscle fibers and stored as lipid droplets (LD) primarily composed of triglycerides (TAGs)
and cholesterol esters [3].

TAG is the main form of energy storage in animals, and fat deposition in beef cattle
muscle is mainly due to TAG accumulation. TAG is synthesized in vivo by two pathways:
The glycerophosphate pathway (Kennedy pathway) in most cells and the glycerophos-
phoryl pathway in specialized cells [4]. These two pathways catalyze the synthesis of
diacylglycerol and fatty acid acyl via the action of the microsomal enzyme diacylglycerol
o-acyltransferase (DGAT) [5]. Studies have shown that DGAT is not only the last reactive
enzyme controlling TAG synthesis in adipocytes but also the only key and rate-limiting
enzyme in TAG synthesis [6]. DGAT comprises two subtypes, and the genes encoding these
two enzymes are DGAT1 and DGAT2. DGAT1 belongs to the acyl-coA cholesterol acyl
transferase (ACAT) gene family, while DGAT2 to the acyl-coa monoacylglyceryl transferase
(MGAT1) gene family, both of which have significantly different membrane topologies [7]
and are widely expressed in various mammalian tissues where they play different roles [8].
Harris et al. [9] studied the effects of DGAT1 and DGAT2 genes on TAG synthesis and LD
formation in mouse adipose cells and found that knocking out one gene in DGAT1 and
DGAT2 does not interfere with TAG synthesis or LD formation in adipose cells. Conversely,
when the two genes were simultaneously knocked out, no TAG was synthesized in the fat
cells, and no LD were formed inside the cells. This study further demonstrates that DGAT1
and DGAT2 are closely associated with TAG synthesis, lipid deposition, and LD formation.

Given that enzymes in the DGAT1 and DGAT2 families have several different lipid
acyltransferase activities [10], and since the functional activities of several of these enzymes
are unknown, whether TAG is produced by enzymes other than DGAT1 and DGAT2 and the
molecular mechanism by which DGAT regulates the differentiation and lipid metabolism of
bovine preadipocytes remain unclear. We hypothesize that DGAT2 plays an important role
in TAG synthesis and storage and in regulating the differentiation of bovine preadipocytes.

In this study, sh-DGAT1 (sh-1), sh-DGAT2 (sh-2) and sh-DGAT1+ sh-DGAT2 (sh-1 + 2)
were generated via small interfering RNA (siRNA)interference targeting the DGAT1 and
DGAT2 genes in infected bovine preadipose cells. Molecular and transcriptomic techniques
were also used to investigate the role of DGAT in lipid metabolism and preadipocyte
differentiation in cattle and to provide a theoretical basis for producing high-quality
marbled beef.

2. Materials and Methods
2.1. Bovine Preadipocytes Isolation, Culture, and Differentiation

Preadipocytes were isolated from subcutaneous adipose tissue obtained from the
backs of three 18-month-old Yanbian cattle using the collagenase digestion method [11].
Briefly, adipose tissue fragments of were sterilized with 75% alcohol and stored in a 15-mL
centrifuge tube containing 1% phosphate-buffered saline (PBS; Gibco, Thermo Fisher
Scientific, Waltham, MA, USA). Thereafter, the cells (5 × 104) were inoculated in DMEM
(Gibco, Thermo Fisher Scientific, Waltham, MA, USA) containing 10% fetal bovine serum
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(FBS; Gibco, Thermo Fisher Scientific, Waltham, MA, USA) and cultured at 37 ◦C under a
5% CO2 atmosphere. The culture medium was replaced every 48 h.

When the cell density reached more than 80%, lipid-induced differentiation was
performed with a low serum concentration, and cell growth was observed and recorded on
day 8 of culture.

In the induction differentiation process of different oleic acid concentrations, blank con-
trol group (CON, 5% FBS), 25 µM oleic acid treatment group (OA-25, 5% FBS + 25 µM OA),
50 µM oleic acid treatment group (OA-50, 5%FBS + 50 µM OA), 100 µM oleic acid treatment
groups (OA-100, 5%FBS + 100 µM OA) and 200 µM oleic acid treatment groups (OA-200,
5%FBS + 200 µM OA) were repeated three times per treatment, and the differentiation
medium was changed every 48 h. After 96 h of culture, transfected cells, and medium were
collected for subsequent analysis to screen the optimal oleic acid treatment concentration.

At 80% confluency, cells were infected with either DGAT1-siRNA (sh-1), DGAT2-siRNA
(sh-2), or DGAT1-siRNA + DGAT2-siRNA (sh-1+2) for 96 h. Preadipocyte differentiation
was induced in a differentiation medium (DMEM supplemented with 5% FBS and 100 µM
OA). After 96 h of culture, transfected cells, and culture medium were collected for subse-
quent analysis.

2.2. Construction of DGAT-siRNA

Based on the coding DNA sequence (CDS) regions of DGAT1 and DGAT2 in Yanbian
cattle, three RNAi targets were selected. Primers for DGAT1 were 144, 539, and 1157 bp,
while those for DGAT2 were designed and synthesized at 108, 320, and 818 bp. They were
named siRNA-DGAT1-114, siRNA-DGAT1-539, siRNA-DGAT1-1157, siRNA-DGAT2-108,
siRNA-DGAT2-320, siRNA-DGAT2-818, while shRNA-NC that did not target any gene
was used as a control (siRNA-NC) and synthesized by Sangon Bioengineering (Shanghai)
Co., Ltd. (Shanghai, China). Primer design was carried out through oligo software, and the
primer sequences are listed in Table 1.

Table 1. siRNA sequences of DGAT1 and DGAT2 gene.

Scheme
Sequence

Sence (5′ to 3′) Sence (3′ to 5′)

siRNA-DGAT1-144 AGACAAGGACGGAGACGUATT UACGUCUCCGUCCUUGUCUTT
siRNA-DGAT1-539 CCUUUCUCCUCGAGUCUAUTT AUAGACUCGAGGAGAAAGGTT

siRNA-DGAT1-1157 GCAUCAGACACUUCUACAATT UUGUAGAAGUGUCUGAUGCTT
siRNA-DGAT2-108 GGUAGAGAAGCAGCUCCAATT UUGGAGCUGCUUCUCUACCTT
siRNA-DGAT2-320 GCUACUUUCGAGACUACUUTT AAGUAGUCUCGAAAGUSGCTT
siRNA-DGAT2-818 AGAAGAAGUUCCAGCUCCAATT UACUUCUGGAACUUCUUCUTT

siRNA-NC UUCUCCGAACGUGUCACGUTT ACGUGACACGUUCGGAGAATT

2.3. Detection of DGAT-siRNA Interference Effect

To determine a better interference effect, three DGAT1-siRNA and DGAT2-siRNA
from the two genes were screened and evaluated. When the cell growth density reached
>80%, cell infection was performed, and three replicates were used for each group. Cells
were collected 48 h later, RNA was extracted, and infection efficiency was detected using
fluorescence quantitative PCR to screen for the siRNA with the best interference effect for
subsequent tests.

2.4. RNA Extraction and Quantitative Real-Time PCR (qRT-PCR) Detection

Total RNA was extracted from bovine preadipocytes using TRIzol™ reagent (Thermo
Fisher Scientific, Waltham, MA, USA), and RNA integrity was resolved using NanonodropnD-
100 spectrophotometer (2000C, Thermo Fisher Scientific, Waltham, MA, USA) and 1%
agarose gel electrophoresis. A complementary DNA (cDNA) template was synthesized
using the FastKing gDNA Dispelling RT SuperMix Kit (Tiangen Biotech, Beijing, China).
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The qRT-PCR was performed on an Agilent Mx3000/5p Real-Time PCR Detection System
(Agilent Technologies, Santa Clara, CA, USA), using 20 µL SYBR Green SuperReal PreMix
Plus (Tiangen Biotech, Beijing, China) containing 10 µL SYBR, 0.6 µL up- and downstream
primers (10 µmol/L), 1 µL cDNA template, 7.5 µL Rnase-free ddH2O, and 0.3 µL Rox. PCR
was performed as follows: Pre-denaturation at 95 ◦C for 15 min. There were 35 cycles
of denaturation at 95 ◦C for 10 s, annealing at 55 ◦C for 30 s, and extension at 72 ◦C for
32 s. The dissolution stage was 95 ◦C for 15 s and 65 ◦C for 5 s. The relative expression
of the target gene was normalized to that of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH; internal control) and calculated using the 2−44Ct method [12]. Primers for lipid
metabolism- and phosphoglycerol pathway-related genes were designed online through
primer premier 6.25 and synthesized by Shenggong Bioengineering Co., Ltd. (Shanghai,
China), and their sequences are listed in Table 2.

Table 2. Sequence information of PCR primers.

Gene Sense Strand (5′→3′) Length (bp) Gene ID

GAPDH F:ACTCTGGCAAAGTGGATGTTGTC
R:GCATCACCCCACTTGATGTTG 143 NM_001034034

DGAT1 F:CTACACCATCCTCTTCCTCAAG
R:AGTAGTAGAGATCGCGGTAGGTC 176 NM_174693.2

DGAT2 F:GACCCTCATAGCCTCCTACTCC
R:GACCCATTGTAGCACCGAGATGAC 145 NM_205793.2

AGPAT4 F:TGTTCTCGTCTTCTTTGTGGCTTCC
R:TCGCTATGTTTCTGCTTGCTGTCC 111 NM_001015537.1

MGAT1 F:AGCCGTGGTGGTAGAGGATGATC
R:TGCTCCTTGCCATTGTCGTTCC 132 XM_024994376.1

LIPIN1 F:AGTCCTCGCCACACAAGATG
R:AGATGCCCTGACCAGTGTTG 137 NM_001206156.2

GPAT4 F:ATGCGGTCCAGTTTGCCAATAGG
R:GCTTCTGCTGCTCCTCCTTGAAC 129 NM_001083669.1

PPARγ
F:ATCTGCTGCAAGCCTTGGA
R:TGGAGCAGCTTGGCAAAGA 138 NM_181024

C/EBPα
F:CCAGAAGAAGGTGGAGCAACTG
R:TCGGGCAGCGTCTTGAAC 69 NM_176788

PLIN2 F:GCGTCTGCTGGCTGATTTCT
R:TGTAAGCCGAGGAGACCAGA 139 NM_173980.2

FABP4 F:AAACTTAGATGAAGGTGCTCTGG
R:CATAAACTCTGGTGGCAGTGA 134 NM_174314.2

SCD F:TGCCCACCACAAGTTTTCAG
R:GCCAACCCACGTGAGAGAAG 80 NM_173959

CD36 F:ACTGCGGATGGAATTTACAAAG
R:ATGAGGCTGCATCTGTACCATTA 142 NM_001278621.1

2.5. Oil Red O Staining and Triglyceride Determination

An Oil Red O staining kit (G1262; Solarbio, Beijing, China) was used. Briefly, cells were
washed with PBS, fixed with cytochrome fixative for 30 min, washed with 60% isopropanol,
stained with Oil Red O staining solution for 10–15 min, and counterstained with Mayer
hematoxylin solution for 1–2 min. Finally, cell images were collected under an inverted
microscope (IX-73; Olympus, Tokyo, Japan) to observe the lipid droplets.

The triglyceride content was determined using an unkude triglyceride determination
kit (Applygen Technologies, Beijing, China). The cells were washed three times with PBS
and lysed in lysis buffer (R0010; Solarbio, Beijing, China). TAG content was determined
via enzymatic colorimetry at 570 nm using a microplate reader (iMark; Bio-Rad, Hercules,
CA, USA).
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2.6. Determination of Aiponectin (ADP) Concentration

After 96 h of induction and differentiation, the cell culture medium was collected and
analyzed using a bovine adiponectin ELISA Kit (Mlbio, Shanghai, China). A microplate
reader (iMark; Bio-Rad, Hercules, CA, USA) was used to measure the optical density at
450 nm and generate a standard curve to determine adiponectin concentration.

2.7. RNA Sequencing (RNA-Seq)

Bovine preadipocytes were infected with sh-NC, sh-DGAT1, sh-DGAT2, and
sh-DGAT1 + sh-DGAT2, with three replicates per group. Cell samples were collected 96 h
after differentiation, and RNA was extracted using 1 mL of TRIzol reagent. Shanghai
Parsonol Biotechnology Co. Ltd. (Shanghai, China) was used for RNA purification, cDNA
library construction, and sequencing. Standard library preparation was sampled with an
RIN value > 7.

The samples were sequenced by Illumina® NovaSeq 6000 (2 × 150 bp ultra-long read
length sequence has a better splicing effect), and the image file was obtained, which was
converted by the software of the sequencing platform to generate the original FASTQ data,
and each sample was analyzed separately. The sample name was Q30 with fuzzy base
percentage, Q20 (%) and Q30 (%). There were some low-quality reads containing joints in
the sequencing data, which might have interfered with the subsequent information analysis.
Therefore, FastQC v0.11.8 was used to check the quality of the disembarkation data.

Reference Genome and Gene Model Annotation files (GTF files) were downloaded
directly from the Genome website. Using HISAT2 v2.0.5 (http://ccb.jhu.edu/software/
hisat2/index.shtml (accessed on 18 December 2021)) to construct the reference index in
the genome, the paired-end clean reads were compared with the reference genome using
HISAT2 v2.0.5. We used gene coverage parity and saturation analyses to assess the se-
quencing quality for the volume of the sequencing data. Under ideal conditions, the read
distribution of all expressed genes should be uniform. We used RSeQC analysis of expres-
sion saturation to assess whether the amount of data measured was sufficient to correctly
calculate gene expression levels. HTSeq (0.9.1) was used to calculate and compare the Read
Count value of each gene with the original gene expression level. Non-stromalization of ex-
pression was performed using FPKM, and genes with FPKM >1 were generally considered
to be expressed in the reference transcriptome. We used the DESeq software (version 1.20.0)
to perform differential expression analysis between the two comparison combinations.
For the gene expression via DESeq variance analysis, screening of differentially expressed
gene conditions was as follows: Multiple expression differences |log2FoldChange| > 1,
significant p-value < 0.05. The R language ggplots2 software package was used to map the
volcano plots of the differentially expressed genes.

2.8. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG)
Enrichment Analysis

TopGO was used for GO enrichment analysis, and the hypergeometric distribution
method was used to calculate the p-value (the standard of significant enrichment was
p-value < 0.05) to determine the GO term of significant enrichment of differential genes so
as to determine the main biological functions of differential genes. ClusterProfiler (3.4.4)
software was used for the enrichment analysis of KEGG pathways, focusing on significantly
enriched pathways with a p-value < 0.05.

2.9. Statistical Analyses

Data analysis and graph generation were performed using GraphPad Prism 6.07
(GraphPad Software, La Jolla, CA, USA) and SPSS Statistical software v19.0 (IBM, Armonk,
NY, USA). The unpaired t-test was used for calculating p values. The results are presented
as the mean ± standard error of the mean (SEM) from experiments performed in triplicate.
Differences were considered statistically significant at p < 0.05.

http://ccb.jhu.edu/software/hisat2/index.shtml
http://ccb.jhu.edu/software/hisat2/index.shtml
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3. Results
3.1. Interfering DGAT Gene Inhibited the Differentiation of Bovine Adipose Cells Induced by
Oleic Acid

Prior to the experiment, we first cultured and identified the extracted preconditioned
adipocytes in vitro. The results showed that the extracted precursor adipocytes had general
cell growth characteristics (Supplementary Figure S1a,b), and the expression patterns of
precursor adipocyte marker genes (Supplementary Figure S1d) and adipogenic marker
genes (Supplementary Figure S1e) were consistent with the growth characteristics of
precursor adipocytes, which could be used for subsequent experiments.

We performed sequential expression of DGAT1 and DGAT2 and found similar expression
patterns between DGAT1 and PPARγ and C/EBPα, that is, the expression levels of DGAT1
gradually increased with the extension of differentiation time. However, the expression
pattern of DGAT2 was the opposite of that of DGAT1 (Supplementary Figure S1e).

In the absence of oleic acid, only a small number of lipid droplets were formed in
bovine precursor adipose cells on day 8 of differentiation (Supplementary Figure S1c).
When 100 uL oleic acid was added, the accumulation of triglycerides and adiponectin
significantly increased for 96 h (Supplementary Figure S2b), and the expression of adipose
marker genes and related genes in the triglyceride synthesis pathway significantly increased
(Supplementary Figure S2c,d). Therefore, the amount of oleic acid added was 100 uL.

The siRNA-mediated interference effects on DGAT1 and DGAT2 are shown in Figure 1A.
The interference efficiency of siRNA-DGAT1-1157 with DGAT1 was 77.5% compared with
that of the negative control. Therefore, siRNA-DGAT1-1157 was selected for subsequent
infection testing and was named sh-1. siRNA-DGAT2-108 of DGAT2 had the highest
interference efficiency. Therefore, siRNA-DGAT2-108 was selected for subsequent infection
tests and named sh-2. The experimental group coinfected with these two genes was named
sh-1 + 2.
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Figure 1. Effect of interference with DGAT gene on differentiation of bovine proadipocytes. (A) mRNA
expression of DGAT post siRNA infection. (B) Oil red O staining (Scale bars: 200 µm). (C) Con-
centration of triglycerides and adiponectin. (D) Expression of genes associated with triglyceride
synthesis pathway. (E) Expression of genes associated with lipid metabolism. Data are presented
as the mean ± SEM (n = 3). The different letters (a–d) represent significant differences (p < 0.05) in
gene expression.

As shown in Figure 1B, different amounts and sizes of lipid droplets were formed in
each experimental group due to the addition of oleic acid. The number and size of the lipid
droplets in the sh-1 + 2 group were significantly lower than those in the other experimental
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groups. Meanwhile, compared with the control group, the contents of TAG and ADP in the
sh-2 and sh-1 + 2 groups were significantly lower (p < 0.05) (Figure 1C).

The effects of DGAT1 and DGAT2 knockdown on the expression of genes related to the
phosphoglycerol pathway synthesized by TAG are shown in Figure 1D. The expression of
DGAT1 in the sh-1 group was significantly lower than that in the other experimental groups
(p < 0.05). However, there was no significant difference between the sh-2 and sh-1 + 2
groups (p > 0.05). The expression level of DGAT2 in the sh-1 test group was the lowest.
There was no significant difference between the sh-1 group and sh-2 group (p > 0.05), but
there was between the sh-1 test group and the other test groups (p < 0.05). AGPAT4 gene
expression in the sh-NC and sh-2 groups was significantly lower than that in the other
experimental groups (p < 0.05), and that in the sh-1 group was significantly higher than
in the sh-2 and sh-1 + 2 groups (p < 0.05). LIPIN1 gene expression in the sh-1 group was
significantly lower than that in the other experimental groups (p < 0.05), but there was no
significant difference between the sh-2 group and sh-NC groups (p > 0.05), while that in the
sh-1 + 2 group was significantly higher than in the other experimental groups (p < 0.05).
The expression of MGAT1 and GPAT4 genes in the sh-1 + 2 group was higher than that in
the sh-NC group. However, the difference was not statistically significant (p > 0.05). The
expression levels of MGAT1 and GPAT4 in the sh-1 and sh-2 experimental groups were the
lowest. However, there were no significant differences between the two groups (p > 0.05).

The effects of DGAT1 and DGAT2 on the expression of lipid metabolism-related genes
are shown in Figure 1E. The PPARγ gene expression in the sh-1 group was lower than that
in the sh-2 and sh-1 + 2 groups, while the C/EBP-α gene expression was significantly higher
than that in the sh-2 and sh-1 + 2 groups (p < 0.05). The SCD gene, sh-2 and sh-1 + 2 groups
were significantly lower than the other experimental groups (p < 0.05). The expression
level of FABP4 in the sh-1 + 2 group was significantly higher than that in the other groups
(p < 0.05), and the expression level in the sh-2 group was the lowest and significantly
lower than that in the other groups (p < 0.05). The expression of PLIN2 in the sh-1 group
was significantly lower than that in the other experimental groups (p < 0.05), while the
expression of PLIN2 in the sh-2 and sh-1 + 2 groups was not significantly different (p > 0.05)
but was significantly lower than that in the negative control group (p < 0.05). The expression
of CD36 in the sh-2 and sh-1 + 2 groups was significantly higher than that in the other
groups (p < 0.05).

3.2. Difference Analysis of Bovine Preadipocytes Infected with sh-DGAT1/sh-DGAT2

Results from total RNA integrity tests showed that the quality of the extracted RNA
was consistent with the requirements of the sequencing experiment for library construction
(Figure 2A). Quality evaluation of the sequencing data showed that the proportion of
high-quality clean reads was >91.00% in all the groups (Table S1). The libraries were
aligned against the Bos taurus (https://ftp.ensembl.org/pub/release-86/gtf/bos_taurus/
Bos_taurus.UMD3.1.86.gtf.gz (accessed on 18 December 2021)) genome (Table S2). The
uniform-level gene coverage results showed no obvious bias toward the front (Figure 2B),
and log10(FPKM + 1) showed a normal distribution (Figure 2C).

A total of 2070 DEGs were screened in the sh-1 group, including 1214 upregulated
and 856 downregulated genes (Figure 3A). A total of 2242 DEGs were screened in the sh-2
group, of which 1255 were upregulated and 987 were downregulated (Figure 3B). In the
sh-1 + 2 group, the total number of DEGs was 2446, of which 1317 were upregulated and
1129 were downregulated (Figure 3C).

https://ftp.ensembl.org/pub/release-86/gtf/bos_taurus/Bos_taurus.UMD3.1.86.gtf.gz
https://ftp.ensembl.org/pub/release-86/gtf/bos_taurus/Bos_taurus.UMD3.1.86.gtf.gz
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3.3. Functional Analysis of Differentially Expressed Genes GO

The biological functions of DEGs were elucidated using GO enrichment analysis, and
the 20 most significantly enriched GO terms were ranked according to the significance level.
As shown in Figure 4, the biological processes (BP) of each treatment group accounted
for most single gene annotations, followed by cell components (CC), and none of them
were enriched in molecular function (MF). BP mainly includes multicellular organismal
development and regulation of multicellular organismal processes, cellular developmental
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processes, cell differentiation, and cell surface receptor signaling pathways. CC enrichment
mainly included the extracellular matrix, extracellular regions, and extracellular regions.
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3.4. KEGG Enrichment Analysis of DEGs

KEGG pathway enrichment analysis showed that the main enrichment pathways of
DEGs in the experimental groups included ECM-receptor interaction and the PI3K-Akt,
MAPK, TGF-beta, and Hippo signaling pathways (Figure 5A–C).
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3.5. Analysis of Signal Pathways Related to Differentially Expressed Genes and Lipid Metabolism

Transcriptome sequencing results showed that after DGAT2 knockdown, several dif-
ferentially enriched genes were associated with fat deposition in the selected pathways.
After interference with DGAT2, PPARγ-regulated target genes also changed in the PPAR
signaling pathway, and matrix metalloproteinase (MMP1), long-chain lipoyl CoA syn-
thetase (ACSL1), peroxidase acyl-CoA oxidase 2 antibody (ACOX2) were downregulated.
FABP3, CD36 and oxidized low-density lipoprotein receptor 1 (OLR1) were upregulated
(Figure 6A). There were 22 differential genes in the Wnt signaling pathway, among which
16 genes were upregulated, including PLCB4, SFRP2, PRKCB, WNT2B, MYC, TCF7, DKK2,
CCN4, and PLCB1, and six were downregulated genes, namely SFRP4, SFRP1, SERPINF1,
WNT2, PRKCG, and PORCN (Figure 6B). There were 12 differentially expressed genes in
the AMPK signaling pathway, including seven upregulated genes and five downregulated
genes. The upregulated genes were PIK3CD, CREB3L3, FASN, CD36, HMGCR, STRADB,
and PPP2R2C, while those downregulated were FBP1, INSR, PFKFB1, CFTR, and PFKFB3
(Figure 6C). Twelve DEGs were screened from the above signaling pathways for real-time
PCR validation. The primer sequences are listed in Table S3, while the results of real-time
quantitative fluorescence PCR are shown in Figure 6A-C. The q-PCR results of different
genes were consistent with the expression trends of the RNA-seq results.
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4. Discussion

Short interfering RNA (siRNA) can bind to the target gene or messenger RNA of the
target gene to inhibit expression with high specificity and efficiency [13]. TAGs are the
most important form of energy storage in eukaryotic cells, most of which are stored in the
LD of fat cells. As a key rate-limiting enzyme in TAG synthesis, DGAT plays an important
role in lipid accumulation [14], and its expression level directly determines the polyester
differentiation ability of fat precursor cells. DGAT includes two subtypes, DGAT1 and
DGAT2, which, although they catalyze the same biochemical reaction and have similar
broad lipid acyl-CoA substrate specificity, play completely different roles in mammalian
TAG metabolism [15]. In this study, small interfering RNA technology targeting DGAT1
and DGAT2 genes was used to infect bovine preadipocytes separately or jointly with sh-
DGAT1 and sh-DGAT2, respectively, to explore their effects on TAG and lipid droplet
synthesis during lipid differentiation. The interference effect of DGAT1 was higher than
75%, and the interference effect of DGAT2 was as high as 70%, which met the requirements
for subsequent tests.

Unsaturated fatty acids and C-carotenoids from cattle feed can increase the expression
of PPARγ and are natural activators of PPARγ [16]. As an agonist of PPARγ, the exogenous
addition of oleic acid affects the expression of DGAT. However, the effects of oleic acid
on the DGAT1 and DGAT2 genes of large mammal cattle remain nebulous. Different
concentrations of oleic acid could promote the accumulation of lipid droplets in adipocytes
of foie gras, as well as the expressions of lipid metabolism-related genes DGAT1, DGAT2,
PPARγ, and PLIN, but with higher concentrations, the effect of oleic acid was gradually
decreased [17]. In this study, the expressions of DGAT1, DGAT2, PPARγ, CEBP/α, FABP4,
and PLIN2 genes showed a significantly increasing trend with the increase of oleic acid
concentration, and the higher the concentration, the greater the increase, which was contrary
to previous studies [17], possibly due to the differences in species and cell sources.

The increased expression of DGAT2 is associated with the formation of large lipid
droplets, whereas the overexpression of DGAT1 only produces small lipid droplets [18].

DGAT2 has been shown to regulate the accumulation of TAGs in the tissues of
DGAT1-deficient mice [19]. Additionally, DGAT2 was highly expressed in various lipid-
metabolizing tissues [20]. Moreover, DGAT2 can compensate for LD formation in DGAT1-
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deficient intestinal stem cells [21]. In the present study, DGAT2 overexpression increased the
formation and accumulation of LD in Yanbian cattle preadipocytes, whereas DGAT2 knock-
down inhibited LD formation in the cells, which was consistent with previous findings [22].
Several studies have shown that low expression of DGAT2 can cause a decrease in the TAG
content of adipocytes [18].

DGAT2 overexpression increased the expression of lipid-forming genes and the accu-
mulation of TAGs in skeletal muscle cells (BSCs) [14]. In this study, inhibition of DGAT2
expression was positively correlated with TAG and ADP content in preadipocytes. The
importance of DGAT2 in TAG synthesis was further explained [18].

Transcriptome sequencing is an important method for exploring gene function [23].
The PPAR signaling pathway plays an important role in regulating various lipid activities
such as lipogenesis, fatty acid transport, and adipocyte differentiation. In yaks, there is a
significant negative correlation between FABP3 mRNA expression and MUFA level [24].
The transcriptome sequencing results of this study showed that the expression of FABP3 in
the pathway regulating lipid metabolism in the PPAR signaling pathway was significantly
upregulated following interference with DGAT2. If the mRNA expression level of FABP3 in
Yanbian cattle is negatively correlated with MUFA levels, then the expression level of FABP3
will be downregulated after the addition of oleic acid. However, the expression of this gene
was upregulated after interference with DGAT2, which suggests a negative regulatory effect
between DGAT2 and FABP3. The regulation of the adipocyte differentiation pathway by
MMP-1 was significantly downregulated. We further speculate that the DGAT2 gene plays
an important role in lipid metabolism and differentiation regulation. The ACSL enzyme
family is crucial to fatty acid metabolism in mammals and includes five members: ACSL1,
ACSL3, ACSL4, ACSL5, and ACSL6 [25]. ACSL1, involved in the activation of TAG fatty
acid synthesis [26], is found in the liver, heart, and fat cells and has a wide range of fatty
acid specificities [27]. In mice, overexpression of cardiac ACSL1 increased the accumulation
of TAG in cardiomyocytes by 12-fold [28]. Our sequencing results showed that following
interference with DGAT2, ACSL1 was significantly downregulated in the PPAR signaling
pathway, consistent with the results of previous studies, indicating that DGAT2 and ACSL1
are positively regulated.

AMPK, an important cellular energy sensor [29], is a key factor in controlling cellular
energy homeostasis and metabolism [30] and can reduce the expression of SREBP-1, PPARγ,
and C/EBp-α, thereby inhibiting the accumulation of fat during fat formation [31]. FASN
is a key enzyme involved in the process of fatty acid regeneration and plays a crucial
role in energy homeostasis by converting excess carbon intake into fatty acid storage [32].
CFTR is a Cl- channel in the apical membrane of epithelial cells regulated by cAMP and
protein kinase a (PKA). AMPK acts as a “biorheostat” of CFTR, that is, activation of
AMPK can inhibit CFPT [33]. In addition, the loss of functional expression of CFTR is
thought to upregulate AMPK activity in cystic fibrosis (CF)-deficient epithelial cells [33].
Transcriptional sequencing results showed that following interference with DGAT2, FASN
expression in the AMPK signaling pathway was upregulated, while CFPT expression was
downregulated. This is possibly because, after DGAT2 expression is inhibited, intracellular
energy is reduced, and AMPK activity is activated, which further promotes fatty acid
synthesis, thus upregulating FASN expression and downregulating CFPT expression. This
finding is consistent with those of the previous studies.

Wnt is involved in various important biological processes, including tissue regen-
eration, animal development, cell proliferation, and differentiation, and is a member
of a conserved glycoprotein family. The typical Wnt/b-catenin signaling pathway is a
highly conserved pathway critical to cell fate and patterns during development [34]. The
catenin signaling pathway is regulated by a series of secreted molecules, including Wnt
inhibitory signaling factor-1 (WIF1), Cerebrus, Sclerostin, Dickkopf-1 (DKK1) and secreted
curl-associated proteins (SFRP). Sclerostin and DKK1 antagonize typical signals by binding
to LRP5/6, whereas WIF1, cerebrus and SFRP2 interact directly with Wnt proteins [35]. In
mammals, SFRPs comprise five protein families: Frzb (SFRP3), SFRP1, SFRP2, SFRP4, and
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SFRP5 [36]. Since SFRPs are homologous to the WNt-binding domain sequence of the Fz
receptor, they are considered typical Wnt signaling antagonists that can bind to Wnt pro-
teins and block signal transduction [37]. However, it has recently been reported that SFRPs
synergistically mimic Wnt activity by interacting directly with Fz receptors [38], antagoniz-
ing each other’s actions [39], enhancing the extracellular transport of Wnt proteins [40], or
exerting other roles besides direct control of Wnt signaling pathways [41]. The sequencing
results showed that SFRP2 and Wnt2 expression was upregulated following interference
with DGAT2. Furthermore, the Wnt signaling pathway is closely related to the upstream
gene process of lipogenic differentiation [42], which promotes the differentiation of mes-
enchymal stem cells into myoblasts or osteoblasts while inhibiting the differentiation of
precursor adipocytes.

The identification of candidate genes is an important step in promoting marker breed-
ing in Yanbian cattle. The results of this study confirm that DGAT1 and DGAT2 play
important regulatory roles in adipocyte differentiation and lipid metabolism, providing in-
sights into improving the bovine genome annotation and molecular breeding of beef cattle.

5. Conclusions

In this study, owing to the addition of OA, LD generation was observed after the
DGAT1 and DGAT2 genes were disrupted, the contents of TAG and ADP were signifi-
cantly reduced, and the expression of genes related to fat metabolism was inhibited at the
mRNA level. RNA-seq was used to analyze the differentially expressed genes interfering
with DGAT1 and DGAT2 in bovine preadipocytes, and 2070, 2242, and 2446 DEGs were
detected in the sh-DGAT1 and sh-DGAT2 infected groups alone and co-infected groups,
respectively. In the sh-DGAT2 treatment group, DEGs were enriched in the AMPK, TGF-β,
and PPAR signaling pathways associated with adipocyte proliferation and differentiation,
thus regulating the production of lipids by regulating the transcription of related genes
in adipocytes.
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